
The Personal Publication Reader: Illustrating
Web Data Extraction, Personalization and

Reasoning for the Semantic Web

Robert Baumgartner1, Nicola Henze2, and Marcus Herzog1

1 DBAI, Institute of Information Systems,
Vienna University of Technology,

Favoritenstrasse 9-11, 1040 Vienna, Austria
{baumgart, herzog}@dbai.tuwien.ac.at

2 ISI - Semantic Web Group, University of Hannover,
Appelstr. 4, D-30167 Hannover, Germany

henze@kbs.uni-hannover.de

Abstract. This paper shows how Semantic Web technologies enable
the design and implementation of advanced, personalized information
systems. We demonstrate by means of an example application how per-
sonalized content syndication can be realized in the Semantic Web. Our
approach consists of two main parts: The web data extraction part, pro-
viding the information system with real-time, dynamic data, and the
personalization part, which deduces - with the aid of ontological domain
knowledge - personalized views on the data. The prototype of the system
has been realized using the Personal Reader Framework for designing,
implementing, and maintaining Web content Readers1.

eywords: semantic web, personalization, reasoning on the semantic
web, web data extraction.

1 Motivation

The realization of the Semantic Web idea to be “an extension of the current
web in which information is given a well-defined meaning, better enabling com-
puters and people to work in cooperation” [5] has in only a few years pushed
researchers and computer specialists to explore machine-readable semantics, ap-
propriate markup and description languages, and sharable knowledge represen-
tation techniques. While these before mentioned techniques exist (at the writing
time of this paper) as W3C recommendations, is the design of the so-called up-
per layers of the Semantic Web tower[4], e.g. the rule and reasoning layer, or the
layers of proof and trust, still to explore.

1 This research has been partially supported by REWERSE - Reasoning on the Web
(rewerse.net), Network of Excellence, 6th European Framework Program.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 515–530, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

K



516 R. Baumgartner, N. Henze, and M. Herzog

In this paper, we investigate how advanced information systems for the Se-
mantic Web can be realized. We claim that a huge class of Semantic Web-enabled
information systems should be able to extract relevant information from the web,
and to process and combine pieces of distributed information in such a way that
the content selection and presentation fits to the current and individual needs
of the user. From this viewpoint, such systems need to focus especially on the
information extraction process, and the personalized content syndication process.
The actual authoring process of information, and the information management
processes, are important aspects, too, if we consider portal-like applications.
However, there is a sustainable need of systems which can detect and process
already existing Web information. To demonstrate our ideas for personalized
content syndication, we consider the following scenario:

Peter is working as a researcher at a university. He publishes his research
findings in journals and conferences, and also puts his publication online
onto his institute’s homepage. Peter is also enrolled in a research project.
From time to time, he is requested to notify the project coordination of-
fice about his new publications.
The project coordination office maintains a member page where infor-
mation about the members, their involvement in the project, research
experience, research publications, etc. is maintained.

When we analyze the scenario, we see that

1. data about the publications is duplicated - it is stored at the university where
Peter is working, but also on the Web pages of the project,

2. information about the project (people, research goals, achievements, etc.) is
available online, but not related to the publications (unless somebody relates
this information by hand).

The questions at hand from the scenario are:

– Can we organize this process in a way that Peter needs to publish his pub-
lications only once, e.g. at his institute’s Web page? Thus that we avoid
duplication of information, together with all negative side-effects like main-
tenance and update problems?

– Can we make use of the available contextual information on the project?
– Can we extract (relevant) information from Web pages?
– Can we combine the data in an intelligent way in order to provide a user a

personally optimized access to the information? From the scenario, we may
conclude that information about the role of researchers in the project like
“Bob is participating mainly in working group X, and working group X
is about topics Y and Z. strongly cooperating with working groups Y and
Z” might be available. If we succeed in making this information available to
machines to reason about, we can derive new information like: “This research
paper of Bob is related to working group X, other papers of working group
X on similar research questions are A,B, and C, etc.”



The Personal Publication Reader 517

This paper answers the above stated questions and demonstrates their realization
within the Personal Reader framework[8, 9]. We have implemented a Personal
Reader instance, the so-called Personal Publication Reader (PPR) which makes
use of web data extraction techniques, reasoning about ontological knowledge
and metadata description of informations, and provides a personal semantic view
on publication data. The Personal Publication Reader has been designed and
developed in the context of the Network of Excellence “REWERSE - Reasoning
on the Web” and syndicates and personalizes information about the project
structure, people and objectives of the REWERSE project, etc., and information
about research papers in the context of the project.

The paper is organized as follows: In Section 2 we briefly outline our idea of
establishing personalization services for the Semantic Web, and describe the ar-
chitecture of the Personal Reader framework. The following Section 3 discusses
approaches for Web Data extraction, and introduces the Lixto Suite. Section
4 then describes the realization of the Personal Publication Reader (PPR) in
detail: We describe what kind of data is available via the Web (Section 4.1), and
how we extract (Section 4.2), and transform it (Section 4.3) for the PPR. The
domain ontology of the PPR, describing the REWERSE project, its members
and research objectives, is topic of Section 4.4. Section 4.5 shows how vari-
ous personalization rules derive new facts as well as personalized views on the
data on top of extracted data, ontological knowledge, and user profile informa-
tion. Concluding remarks and an outlook on ongoing and future work end this
paper.

2 Personal Web Content Readers

Flexible information systems which need to be capable of adjusting to different
application domains require a different architecture: not a monolithic approach,
but several, independent components, each one serving a specific purpose. The
recent Web service-technology focuses on such-like requirements: A Web service
encapsulates a specific functionality, and communicates with other services or
software components via interface components (e.g. [20, 15]).

We consider each (personalized) information provision task as the result of
a particular service (which itself might be composed of several services, too).
The aim of this approach is to construct a Plug & Play - like environment, in
which the user can select and combine the kinds of information delivery services
he or she prefers. With the Personal Reader Framework, we have developed an
environment for designing, implementing and maintaining personal Web con-
tent Readers [8, 9]. These personal Web content Readers allow a user to browse
information (the Reader part), and to access personal recommendations and
contextual information on the currently regarded Web resource (the Personal
part). The next section outlines briefly the architecture of the Personal Reader
framework.



518 R. Baumgartner, N. Henze, and M. Herzog

2.1 The Personal Reader Framework: Designing and Maintaining
Personal Web Content Readers

The architecture of the Personal Reader framework is a rigorous approach for
applying Semantic Web technologies. A modular framework of Web services
– for constructing the user interface, for mediating between user requests and
currently available personalization services, for user modeling, and for offering
personalization functionality – forms the basis of each Personal Reader Instance
(see Figure 1).

Fig. 1. Architecture of the Personal Reader framework, showing the different compo-

nents of the Personal Reader: visualization, personalization, and the Personal Reader

backbone (consisting of the connector service which organizes the communication and

matching between the various visualization and personalization services)

The aim of the Personal Reader framework is to realize Web content Read-
ers which give the user the possibility to select services, which provide different
or extended functionality, e.g. different visualization or personalization services,
and combine them into a personal Web content Reader instance. The frame-
work features a distributed open architecture designed to be easily extensible.
It utilizes standards such as XML[21], RDF[17], etc., and technologies like Java
Server Pages (JSP)[11] and XML-based-RPC[22]. The communications between
all components / services is syntactically based on RDF descriptions. This pro-
vides the required flexibility for combining various personalization and visual-
ization services in one application, and thus supports the realization of our Plug
& Play idea for personalization functionality on the Semantic Web.

2.2 Related Work on Personalized Information Systems

To the best of our knowledge, we are not aware of personalized information sys-
tems on the Semantic Web which realize the personalization-as-service idea in a



The Personal Publication Reader 519

similar way. Personalized information systems require a sophisticated model of
the actual application domain, thus, traditionally, these systems do not provide
(and do not aim for) extensible architectures and systems. However, in [10], we
have conducted a study on the re-usability aspects of personalization function-
ality, with special focus on the area of adaptive hypermedia systems. This study
led to the conclusion that in fact even highly system-dependent personalization
functionality like those from adaptive hypermedia research, can be encapsulated
and prepared for re-use, an important precondition for the successful realization
of personalization services is given.

3 Web Data Extraction and Integration

3.1 Objectives and Approaches

The unstructured Web of today contains millions of documents which are not
query-able as a database and heavily mix layout and structure. Moreover, they
are not annotated at all. There is a huge gap between Web information and the
qualified, structured data as usually required in corporate information systems or
as envisioned by the Semantic Web. However, until the vision of a Semantic Web
is realized, and also, towards a faster achievement of this goal, it is absolutely
necessary to (semi-)automatically extract relevant data from HTML document
and automatically translate this data into a structured format, e.g., XML. Once
transformed, data can be used by applications, stored into databases or populate
ontologies.

A program that automatically extracts data and transforms it into another
format or markups the content with semantic information is usually referred to as
wrapper. Wrappers bridge the gap between unstructured information on the Web
and structured databases. A number of classification taxonomies for wrapper
development languages and environments have been introduced in various survey
papers [6, 12, 13]. In general, it is distinguished between high-level programming
languages, machine learning approaches and supervised approaches. Due to the
lack of space we refer to the mentioned survey papers for an overview of available
methods and tools.

3.2 Lixto Visual Wrapper

Lixto Visual Wrapper [2] is a methodology and tool for visual and interactive
wrapper generation developed at the University of Technology in Vienna to-
gether with the Lixto Software GmbH. It allows wrapper designers to create
so-called “XML companions” to HTML pages in a supervised way. As internal
language, Lixto relies on Elog. Elog is a datalog-like language especially designed
for wrapper generation. The Elog language operates on Web objects, that are
HTML elements, lists of HTML elements, and strings. Elog rules can be speci-
fied fully visually without knowledge of the Elog language. Web objects can be
identified based on internal, contextual, and range conditions and are extracted
as so-called “pattern instances”.



520 R. Baumgartner, N. Henze, and M. Herzog

In [7], the expressive power of a kernel fragment of Elog has been studied, and
it has been shown that this fragment captures monadic second order logic, hence
is very expressive while at the same time easy to use due to visual specification.

Besides expressiveness of a wrapping language, robustness is one of the most
important criteria. Information on frequently changing Web pages needs to be
correctly discovered, even if e.g. a banner is introduced. Visual Wrapper offers
robust mechanisms of data extraction based on the two paradigms of tree and
string extraction. Moreover, it is possible to navigate to further documents dur-
ing the wrapping process. Validation alerts can be imposed that give warnings
in case user-defined criteria are no longer satisfied on a page.

The usage of Elog is completely invisible to the average wrapper designer
and all operations are carried out by visual means. This is comprised of two
steps: First, the identification phase, where relevant fragments of Web pages
are extracted (see Figure 2). Such extraction rules are semi-automatically and
visually specified by a wrapper designer in an iterative approach. This step is
succeeded by the structuring phase, where the extracted data is mapped to some
destination format, e.g. enriching it with XML tags to subsequently populate an
ontology with instance data.

3.3 Lixto Transformation Server

Heterogeneous environments such as integration and mediation systems require a
conceptual information flow model. The usual setting for the creation of services
based on Web wrappers is that information is obtained from multiple wrapped
sources and has to be integrated; often source sites have to be monitored for
changes, and changed information has to be automatically extracted and pro-
cessed. Thus, push-based information systems architectures in which wrappers
are connected to pipelines of post-processors and integration engines which pro-
cess streams of data are a natural scenario, which is supported by the Lixto
Transformation Server [3]. The overall task of information processing is com-
posed into stages that can be used as building blocks for assembling an informa-
tion processing pipeline. The stages are to

– acquire the required content from the source locations; this component re-
sembles the Lixto Visual Wrapper plus Deep Web Navigation and Form
iteration;

– integrate and transform content from a number of input channels and tasks
such as finding differences,

– interact with external processes, and
– format and deliver results in various formats and channels and connectivity

to other systems.

The actual data flow within the Transformation Server is realized by hand-
ing over XML documents. Each stage within the Transformation Server accepts
XML documents (except for the wrapper component, which accepts HTML),
performs its specific task (most components support visual generation of map-
pings), and produces an XML document as result. This result is put to the



The Personal Publication Reader 521

successor components. Boundary components have the ability to activate them-
selves according to a user-specified strategy and trigger the information pro-
cessing on behalf of the user. From an architectural point of view, the Lixto
Transformation Server may be conceived as a container-like environment of vi-
sually configured information agents. The pipe flow can model very complex
unidirectional information flows (see Figure 3). Information services may be
controlled and customized from outside of the server environment by various
types of communication media such as Web services. The Transformation Server
includes a user management that allows application designers to subscribe and
parameterize components of other application designers.

4 The Personal Publication Reader

To realize the Personal Publication Reader (PPR) within the Personal Reader
framework (see Section 2), we extract the publication information from the var-
ious Web sites of the partners in the REWERSE project: All Web pages con-
taining information about publications of the REWERSE network (see Section
4.1) are periodically crawled and new information is automatically detected, ex-
tracted and indexed in the repository of semantic descriptions of the REWERSE
network (see Sections 4.2, 3.3, 4.3). Information on the project REWERSE, on
people involved in the project, their research interests, and on the project orga-
nization, is modeled in an ontology for REWERSE (see Section 4.4). Extracted
information and ontological knowledge are used to derive a syndicated view on
each publication: who has authored it, which research groups are related to this
kind of research, which publications are published by the research group, which
publications are on the similar research, etc. Information about the current user
of the system (such as specific interests of the user, or his membership to the
project) is used to individualize the view on the data (see Section 4.5).

4.1 Publication Data on the Web

In this scenario we are in particular interested to give a personalized view on
publications of the members of the REWERSE network of excellence. There-
fore, the ontology of the Personal Publication Reader has to be populated with
instance data from publication sources. In most of the cases, the organizations
offer access to their publications through a Web interface. However, each Web
presentation is totally different, some use e.g. automatic conversions of bibtex
or other files, some are manually maintained, some are based on databases.
Such a presentation is well suited for human consumption, but hardly usable for
automatic processing. Nevertheless, the Web is the most valuable information
resource in this scenario. In order to access and understand these heterogeneous
information sources one has to apply web extraction techniques as described in
Section 3.

In Table 1 selected REWERSE members are given and their publication
format is described. The table explains how the publications are structured, and



522 R. Baumgartner, N. Henze, and M. Herzog

Table 1. Publication Web pages of selected REWERSE members

Participant Structure and Presentation

Munich http://www.pms.informatik.uni-muenchen.de/publikationen

all publications on a single page sorted by years (latest on top), auto-
generated format, usage of HTML elements inside publications, even
for individual authors, links and bibtex available

Hannover http://www.kbs.uni-hannover.de/Stamm/Publikationen.html

all publications on a single page sorted by years (newest on top, pub-
lications numbered by years), publications consistent (some formatted
differently), data very complete, usage of HTML elements inside pub-
lications, links available

Heraklion http://www.ics.forth.gr/publications.jsp

publications on multiple pages structured by years; additional structur-
ing with next links, sites and publications consistent, data very com-
plete, usage of HTML elements inside publications, links and abstracts
available

Linköpping http://www.ida.liu.se/ext/dpr/access2/

publications on multiple pages structured by years, sites and publica-
tions not consistent, usage of HTML elements inside publications, links
on selected authors, publications numbered

how the format of a single publication looks like. Moreover, it describes whether
at least some parts of a single publication are rendered via HTML elements
(such as italics for the title). For most member sites it holds that even if HTML
elements are used usually authors are merely separated by commas.

Furthermore, the table indicates whether additional information to author,
title, and year are available and how complete the information is (if e.g. year or
conference is missing). The least common denotator for all member pages are
the availability of author names, title name and publication year, in some cases
additionally abstracts and links are available.

4.2 Gathering Web Data for the Personal Publication Reader

In the following, we describe a step-by-step construction of this example from
the viewpoint of an application designer who creates this application.

A human being tends to assign semantic meaning to parts of a Web page; a
designer does not think of table row as of a set with text values, but rather as a
publication entry. Therefore, the basic building block of a wrapper program is a
so-called pattern, a container for pieces of information with the same meaning.
Patterns are structured in a hierarchical fashion. In the lower half of the Visual
Wrapper’s UI (see Figure 2) an active example Web page is displayed for mark-
ing example instances: For each type of Web page, an own wrapper has to be
created; in the following the wrapper creation for the publications of Munich is
illustrated.



The Personal Publication Reader 523

Fig. 2. Lixto Visual Wrapper: Wrapping Publication Pages

In this case, the designer identifies one of the list items (each resembling a
publication) as a pattern PublicationLine. Once a pattern is created, the designer
continues with visually defining a filter, a crucial part of the pattern which
defines how to extract relevant information from its parent pattern instances.
Internally, filters are represented in Elog, but the language is entirely hidden
from the wrapper designer.

Defining a filter expects the designer to select an example publication with
two mouse clicks on the example Web page. A filter definition continues with
optional fine-tuning of properties for the generated generalization of the chosen
example. It is possible to visually debug the wrapper program, i.e., to test filters.
Typically, operators test filters after adding new components. Based on results,
the designer decides whether to extend (i.e., add a filter) or shrink (i.e., add
condition to an existing filter) the set of matched instances.

In this example, the system displays the complete list of matched publications
for the so-far created filter by highlighting parts of the Web page. In cases
where the system generalization does not detect all instances correctly, additional
conditions can be imposed.

Next a child pattern Title of the just defined pattern is created and then
a filter with the condition that the extracted element is in italics. The pattern
Author on the Munich page can be easily characterized, too, by the fact that a
special hyperlink is present and that the author names precede the title.

On other pages such as e.g. Linköpping the extraction of authors is more ad-
vanced. Some authors are inside hyperlinks, others merely separated by commas.
Moreover, on other sources authors are sometimes incorrectly splitted, names
abbreviated and different separators used. Therefore, we developed an author
concept based on all detected variations.



524 R. Baumgartner, N. Henze, and M. Herzog

On the Munich page the year can be extracted from several places (see Fig-
ure 2). One possibility is from the internal number. The first line of the list item
is extracted, and in a subsequent step the four digit number is taken out. On
some other sources the year has to be extracted from the headline, and in a
subsequent step mapped to each entry.

In a similar fashion the remaining patterns are defined and the wrapper is
stored. The XML Companion of the publication Web page that can be regularly
generated by applying the wrapper is comprised of entries like the one given
below:

<Publication>

<Title>Visual Exploration and Retrieval of XML Document

Collections with the Generic System X2</Title>

<Author>Holger Meuss</Author>

[...more authors...]

<Year>2004</Year>

<Link>http://www.pms.informatik.uni-muenchen.de/

publikationen/PMS-FB/PMS-FB-2004-12.pdf</Link>

</Publication>

As next step the XML data of the various sources has to be combined, cleaned,
syndicated into the ontology, and regularly scheduled. These operations are car-
ried out by configuring a visual information flow in the Lixto Transformation
Server as described in Section 4.3.

Fig. 3. Lixto Transformation Server: REWERSE Publication Data Flow



The Personal Publication Reader 525

4.3 Visual Data Aggregation for the Personal Publication Reader

In the Personal Publication Reader scenario, the application designer visually
composes the information flow from Web sources using the Lixto Transformation
Server to an RDF presentation that is handed over to the Personal Publication
Reader once a week.

First, the application designer creates Source components that contain Lixto
wrappers. In the source components (that are reflected as disks in Figure 3) a
schedule is defined how often which Web source is queried and Deep Web navi-
gation sequences containing logins and forms can be stored. Next, the wrapper
designer can combine the XML documents by adding integration components.

In the “XSL” components publication data is harmonized to fit into a com-
mon structure, an attribute “origin” is added containing the institution’s name,
and author names are harmonized by being mapped to a list of names known by
the system. The triangle in Figure 3 represents a data integration unit; here data
from the various institutions is put together and duplicate entries are removed.
IDs are assigned to each publication in the subsequent step. Finally, the XML
data structure is mapped to a defined RDF structure (this happens in the lower
arc symbol in Figure 3) and passed on to the Personal Publication Reader as
described below. A second deliverer component delivers the XML publication
data additionally. One sample RDF output entry is depicted below:

<rdf:Description

rdf:about="http://www.pms.informatik.uni-muenchen.de/

publikationen/PMS-FB/PMS-FB-2004-12.pdf">

<dc:publisher>University of Munich</dc:publisher>

<dc:title>Visual Exploration and Retrieval of XML Document

Collections with the Generic System X2</dc:title>

<dc:creator>

<rdf:Seq>

<rdf:li rdf:resource="#Holger Meuss"/>

<rdf:li rdf:resource="#Klaus U. Schulz"/>

<rdf:li rdf:resource="#Felix Weigel"/>

<rdf:li rdf:resource="#Simone Leonardi"/>

<rdf:li rdf:resource="#Francois Bry"/>

</rdf:Seq>

</dc:creator>

<dc:date>2004</dc:date>

<dc:identifier>http://www.pms.informatik.uni-muenchen.de/

publikationen/PMS-FB/PMS-FB-2004-12.pdf</dc:identifier>

</rdf:Description>

This application can be easily enhanced by connecting further Web sources.
For instance, abstracts from www.researchindex.com can be queried for each
publication lacking this information and joined to each entry, too. Moreover,
using text categorization tools one can rate and classify the contents of the
abstracts. Another possibility is to extract organization and people data from
the institution’s Web pages to inform the ontology to which class in the taxonomy
an author belongs (such as full professor).



526 R. Baumgartner, N. Henze, and M. Herzog

4.4 Modeling Domain Knowledge: The REWERSE Ontology

In addition to the extracted information on research papers that we obtain as
described in the previous section, we collect the data about the members of the
research project from the member’s corner of the REWERSE project. We have
constructed an ontology for describing researchers and their involvement in scien-
tific projects like REWERSE. This “REWERSE-Ontology” has been built using
the Protégé tool [16]. It extends the Semantic Web Research Community Ontol-
ogy (SWRC) [19]. An excerpt of the REWERSE-Ontology, written in OWL[14]:

<owl:ObjectProperty rdf:ID="hasStaffMember">

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="#hasMember"/>

</rdfs:subPropertyOf>

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="employedAt"/>

</owl:inverseOf>

<rdfs:label xml:lang="de">Angestellte</rdfs:label>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#University"/>

<owl:Class rdf:about="#Institute"/>

<owl:Class rdf:about="#Project"/>

<owl:Class rdf:about="#Department"/>

<owl:Class rdf:about="#Company"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="#Person"/>

<rdfs:label xml:lang="en">Staffmember</rdfs:label>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#employedAt">

<rdfs:label xml:lang="en">employed at</rdfs:label>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Project"/>

<owl:Class rdf:about="#Institute"/>

<owl:Class rdf:about="#University"/>

<owl:Class rdf:about="#Department"/>

<owl:Class rdf:about="#Company"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

<rdfs:subPropertyOf rdf:resource="#involvedIn"/>

<rdfs:label xml:lang="de">angestellt bei</rdfs:label>

<rdfs:domain rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#hasStaffMember"/>

</owl:ObjectProperty>



The Personal Publication Reader 527

To match the domain knowledge in the REWERSE Researcher Ontology
to the extracted publication data, we have a resource identification problem.
The author names may vary - for example, F. Bry, Frano̧is Bry, Prof. F.
Bry, etc. . A “helper” ontology, describing the full name of each author, and
a variety of commonly used designators of his or her name, is currently used to
solve this matching task.

4.5 Content Syndication and Personalized Views

As we have described in the previous sections, we have extracted relevant data
from various, non-uniform Web sites, and created an extension of the SWRC
ontology to model the needs of scientific projects such as REWERSE. We will
now see how personalization rules reason about this collected data in order to
syndicated and personalize the view on the data. A discussion on personalization
reasoning for the Semantic Web can be found in [1]. As an example, the following
rule (using the TRIPLE[18] syntax) determines all authors of a publication:

FORALL A, P all_authors(A, P) <-

EXISTS X, R (

P[’http://.../rewerse#’:author -> X]@’http:...#’:publications

AND X[R -> ’http://www.../author’:A]@’http:...#’:publications).

Further rules combine information on these authors from the researcher on-
tology with the author information. E.g. the following rule determines the em-
ployer of a project member, which might be a company, or a university, or, more
generally, some instance of a subclass of an organization:

FORALL A,I works_at(A, I) <-

EXISTS A_id,X (name(A_id,A)

AND ont:A_id[ont:involvedIn -> ont:I]@’http:...#’:researcher

AND ont:X[rdfs:subClassOf ->

ont:Organization]@rdfschema(’http:...#’:researcher)

AND ont:I[rdf:type -> ont:X]@’http:...#’:researcher).

For a user with specific interests, for example “interest in personalized infor-
mation systems”, information on respective research groups in the project, on
persons working in this field, on their publications, etc., is syndicated. As an ex-
ample, the following rule derives all persons working in specific working groups
in the project. Personalization is realized by matching the results of this rule
with the individual request, e.g ont:WG[ont:name -> ’WG A3 - Personalized
Information Systems’).

FORALL WG,M working_group_members(WG,M) <-

ont:WG[rdf:type -> ont:WorkingGroup]@’http:..#’:researcher

AND ont:WG[ont:hasMember-> ont:M]@’http://...#’:researcher.

For the PPR, we instantiated a personalization service in the Personal Reader
framework which holds the above mentioned rules, and further personalization
rules of the PPR. An appropriate visualization service for creating the user
interface has been implemented. The screenshot in Figure 4 depicts the output
of the visualization service of the PPR.



528 R. Baumgartner, N. Henze, and M. Herzog

Fig. 4. Screenshot of the Personal Publication Reader, showing the syndicated view

on publications in REWERSE, the context in the project in which this research has

been done, together with the appropriate links, and additional information about the

authors of the publication like homepage, phone number, etc. The Personal Publication

Reader is available via the URL www.personal-reader.de

5 Conclusion

This paper describes an approach for realizing advanced personalized informa-
tion systems in the Semantic Web. We discuss our approach by means of an
example application, a Personal Publication Reader, which provides a person-
alized, syndicated view on distributed, non-uniform web data. The information
provision part for the Personal Publication Reader is solved by using the Lixto
approach. Lixto is an easily accessible technology based on a solid theoretical
framework [2, 3, 7] and a visual approach that allows application designers to de-
fine continuously running information agents fetching data from the Web. Many
functions that will be tangible only in the future “Semantic Web” can be cru-
cially supported by the usage Lixto. Content syndication and personalization is
achieved by reasoning about ontological knowledge and extracted Web data. The
Personal Publication Reader is realized using the Personal Reader Framework
for designing, implementing, and maintaining personalized Web Content Read-
ers. Until know, we have realized such Readers for e-Learning and for publication
browsing, ongoing work focuses on implementing additional personalization ser-
vices, and on on improving the service orchestration functionality in our frame-



The Personal Publication Reader 529

work. In future work we will continue our approach of realizing Personalization
Services for the Semantic Web.

References

1. G. Antoniou, M. Baldoni, C. Baroglio, R. Baumgartner, F. Bry, T. Eiter, N. Henze,
M. Herzog, W. May, V. Patti, S. Schaffert, R. Schindlauer, and H. Tompits. Rea-
soning methods for personalization on the semantic web. Annals of Mathematics,
Computing & Telefinformatics, 2(1):1–24, 2004.

2. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with Lixto. In Proc. of VLDB, 2001.

3. R. Baumgartner, M. Herzog, and G. Gottlob. Visual programming of web data
aggregation applications. In Proc. of IIWeb-03, 2003.

4. T. Berners-Lee. The semantic web - mit/lcs seminar, 2002. http://www.w3c.org/
2002/Talks/09-lcs-sweb-tbl/.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

6. S. Flesca, G. Manco, E. Masciari, E. Rende, and A. Tagarelli. Web wrapper in-
duction: a brief survey. AI Communications Vol.17/2, 2004.

7. G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages
for Web Information Extraction. In Proc. of PODS, 2002.

8. N. Henze and M. Herrlich. The Personal Reader: A Framework for Enabling
Personalization Services on the Semantic Web. In Proceedings of the Twelfth GI-
Workshop on Adaptation and User Modeling in Interactive Systems (ABIS 04),
Berlin, Germany, 2004.

9. N. Henze and M. Kriesell. Personalization functionality for the semantic web:
Architectural outline and first sample implementation. In Proccedings of the 1st
International Workshop on Engineering the Adaptive Web (EAW 2004), co-located
with AH 2004, Eindhoven, The Netherlands, 2004.

10. N. Henze and W. Nejdl. A logical characterization of adaptive educational hyper-
media. New Review of Hypermedia, 10(1), 2004.

11. SUN - java Server Pages, 2004. http://java.sun.com/products/jsp/.
12. S. Kuhlins and R. Tredwell. Toolkits for generating wrappers. In Net.ObjectDays,

2002.
13. A. H. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief

survey of web data extraction tools. In Sigmod Record 31/2, 2002.
14. OWL, Web Ontology Language, W3C Recommendation, Feb. 2004. http://

www.w3.org/TR/owl-ref/.
15. OWL-S: Web Ontology Language for Services, W3C Submission, Nov. 2004.

http://www.org/Submission/2004/07/.
16. Protege Ontology Editor and Knowledge Acquisition System, 2004. http://

protege.stanford.edu/.
17. RDF Vocabulary Description Language 1.0: RDF S, 2004. http://www.w3.org/

TR/2004/REC-rdf-schema-20040210/.
18. M. Sintek and S. Decker. TRIPLE - an RDF Query, Inference, and Transformation

Language. In I. Horrocks and J. Hendler, editors, International Semantic Web
Conference (ISWC), pages 364–378, Sardinia, Italy, 2002. LNCS 2342.



530 R. Baumgartner, N. Henze, and M. Herzog

19. SWRC - Semantic Web Research Community Ontology, 2001. http://
ontobroker.semanticweb.org/ontos/swrc.html.

20. WSDL: Web Services Description Language, version 2.0, Aug. 2004.
http://www.w3.org/TR/2004/WD-wsdl20-20040803/.

21. XML: extensible Markup Language, 2003. http://www.w3.org/XML/.
22. XML-based RPC: Remote procedure calls based on xml, 2004. http://

java.sun.com/xml/jaxrpc/index.jsp.


	Motivation
	Personal Web Content Readers
	The Personal Reader Framework: Designing and Maintaining Personal Web Content Readers
	Related Work on Personalized Information Systems

	Web Data Extraction and Integration
	Objectives and Approaches
	Lixto Visual Wrapper
	Lixto Transformation Server

	The Personal Publication Reader
	Publication Data on the Web
	Gathering Web Data for the Personal Publication Reader
	Visual Data Aggregation for the Personal Publication Reader
	Modeling Domain Knowledge: The REWERSE Ontology
	Content Syndication and Personalized Views

	Conclusion
	References



