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Abstract. Ontologies are the backbone of the Semantic Web as they al-
low one to share vocabulary in a semantically sound way. For ontologies,
specified in OWL or a related web ontology language, Description Logic
reasoner can often detect logical contradictions. Unfortunately, there are
two drawbacks: they lack in support for debugging incoherence in ontolo-
gies, and they can only be applied to reasonably expressive ontologies
(containing at least some sort of negation).

In this paper, we attempt to close these gaps using a technique called
pinpointing. In pinpointing we identify minimal sets of axioms which need
to be removed or ignored to turn an ontology coherent. We then show how
pinpointing can be used for debugging of web ontologies in two typical
cases. More unusual is the application of pinpointing in the semantic
clarification of underspecified web ontologies which we experimentally
evaluate on a number of well-known web-ontologies. Our findings are
encouraging: even though semantic ambiguity remains an issue, we show
that pinpointing can be useful for debugging, and that it can significantly
improve the quality of our semantic enrichment in a fully automatic way.

1 Introduction

Ontologies play a crucial role in the Semantic Web (SW), as they allow “intel-
ligent agents” to share information in a semantically unambiguous way, and to
reuse domain knowledge (possibly created by external sources). However, this
makes SW technology highly dependent of the quality, and, in particular, of the
correctness of the applied ontology. Two general strategies for quality assurance
are predominant, one based on developing more and more sophisticated ontol-
ogy modeling tools, the second one based on logical reasoning. In this paper we
will focus on the latter. With the advent of expressive ontology languages such
as OWL and its close relation to Description Logics (DL), non-trivial implicit
information, such as the is-a hierarchy of classes, can often be made explicit by
logical reasoners. More crucially, however, state-of-the art DL reasoners can effi-
ciently detect incoherences even in very large ontologies. The practical problem
remains what to do in case an ontology has been detected to be incoherent.

Suppose, for example, that an academic researcher wants to make information
about his work available in OWL on the Internet. In the spirit of the Semantic
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Web, he refers to an existing external ontology about research environments us-
ing the ontology cerif at [5]. Studying it with an available ontology browser,
he finds that the available classes are very useful and that the hierarchy corre-
sponds to his intentions. Unfortunately, the connected logical reasoner tells him
that both the concepts Faculty and Institute are unsatisfiable. What is he sup-
posed to do? Things are even more difficult when our researcher tries to use two
or more different ontologies with multiple ownership. As an example, assume
that you want to use both the SUMO and the CYC upper ontologies in a single
document. Unfortunately, this attempt leads to over 1000 unsatisfiable concepts.

A second obstacle is that ontologies are often specified in a very limited way.
Even though the OWL representation language offers high expressiveness most
state-of-the-art online ontologies use fragments of minimal expressiveness.1 The
most prominent example is when the modeling ignores disjointness information of
atomic classes, as this renders most logical method for quality assurance useless.2

This means that, in order to re-introduce logical methods for quality control, we
need to semantically enrich the ontology first.

To summarize, to ensure the quality of web-ontologies, there are two major
problems to be solved: We call semantic clarification the process of automat-
ically enriching ontologies by appropriate disjointness statements which rein-
troduces the logical functionality in the process of ontological quality control.
Secondly, even though incoherences in ontologies might be detected easily, there
is usually little support for the identification and elimination of the modeling
errors, a problem we call debugging. Debugging is a non-trivial process as it is
not unusual to deal with over 700 unsatisfiable classes in real applications.

This paper intends to give a qualitative analysis over the potential of non-
standard reasoning techniques for debugging and semantic clarification. For this
purpose, we propose a method called pinpointing. Pinpointing is a pragmatic
and rather simple technique based on debugging methods we introduced in [16]
and boils down to ignoring those ontological axiom which are most likely to be
responsible for the incoherence. Before plunging into a more theoretical study of
this simple type of reasoning with inconsistency we decided to empirically study
the practical effect of pinpointing in the Semantic Web. For this purpose we dis-
cuss two applications of pinpointing for debugging of ontologies, as introduced
in the two previously described scenarios. First, there is the most obvious case of
published ontologies which are originally incoherent, and secondly, we consider
incoherence as a result of the merging of two or more ontologies. To assess the
application of pinpointing for semantic clarification we undertook a number of
experiments. We automatically create disjointness statements for “underspeci-
fied” ontologies by assuming that all the direct siblings in a well-defined is-a

1 Consider that not even 10% of the ontologies in [5] contain negation.
2 Inconsistencies in an ontology can be caused by erroneous use of a variety of different

language constructs, such as cardinality or role restrictions. The most common reason
is disjointness of concepts, though, and we will focus on this class of problem in this
paper. None of the described techniques, however, depends on, or is restricted to
this particular kind of inconsistencies.
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hierarchy should be disjoint. In practice, this assumption is often too strong,
and introducing these disjointness statements usually results in a hugely inco-
herent ontology. We show that, by applying our pinpointing strategy, we can
often reduce the number of erroneous disjointness statements significantly.

The main contribution of this paper is threefold: we combine previously
known debugging techniques into a framework called pinpointing, which we
present and evaluate in the Semantic Web context. Moreover, we show that
the application of pinpointing can significantly improve the quality of semantic
clarification, a process which in itself is useful for quality assurance of ontologies.

The remainder of this paper is organized as follows: after a brief overview of
related work, we give the formal notion of pinpointing in Section 3. In Section 4
we describe three typical cases of pinpointing for debugging of web ontologies.
Finally, Section 5 describes our experiments on Semantic Clarification.

2 Related Work

The building of ontologies has been discussed extensively in the literature, and
many links can be found on the W3C website [18] about modeling methodology
and ontology languages. For Description Logics the handbook [1] is an excellent
reference. Explanation has been an issue in the DL community for several years,
but most papers, such as [3], deal with subsumption. The number of papers
dealing with theoretical studies of reasoning with inconsistency is enormous (just
to mention [9, 15]). Our approach in this paper, however, is more humble, as we
only investigate the effect of a simple reasoning strategy in an empirical way.

From a more practical point of view, closest to our work are the Chimaera and
PROMPT tools ([10] and [12]), which provide support for the merging, analysis
and diagnosis of a knowledge base but not, to our knowledge, for debugging.
The techniques, that we use to calculate our minimal incoherence preserving
sub-TBoxes (MIPSs), however, are similar to those introduced in [2], where the
authors use Boolean minimization to calculate minimal inconsistent ABoxes to
construct an implicit minimal model for defaults. Finally, our work on semantic
clarification is based on the ideas of [4].

3 Pinpointing in Web Ontologies

This paper is about debugging incoherent ontologies in the Semantic Web, i.e.,
about detection and elimination of logical contradictions in machine-readable
formalisations of the shared vocabulary of a particular application domain. We
first explain our use of the term ontology and formally define what we mean by
incoherence, before introducing our debugging methodology.

3.1 Ontologies in the Semantic Web

In recent years, several semantic web languages have been developed to support
the integration of ontologies, and OWL has now been accepted as the recommen-
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dation of the W3C as the standard web ontology language [18]. It builds on the
XML surface syntax, XML Schema datatypes, the RDF datamodel and RDFS se-
mantics for hierarchies of classes and properties, and it adds more vocabulary to
build complex classes and properties. Among others it provides relations between
classes, cardinality, enumeration of individuals and Boolean operators. An OWL
ontology consists mainly of axioms and facts, where the latter describe proper-
ties of individuals and where the former associate classes and properties with
possibly complex information. Examples for OWL axioms in the abstract syntax
are Class(Mollusk partial Invertebrate) and disjointWith(Mollusk Worm Arthro-
pod) which states that mollusks are invertebrates but not worms or arthropods.
In this paper, we will focus on axioms, and other language constructs available
in OWL. OWL has a number of predecessor languages, such as DAML, OIL and
DAML-OIL, and many ontologies currently available are simply defined in RDF
or RDFS [8]. For the purpose of this paper, we make no distinction between the
different types of ontologies and refer to any online collection of axioms in one of
the above formalisms as a web ontology. On top of RDF, OWL is also rooted in
other frameworks such as frames and Description Logics (DL). The connection
to DL is useful, as it provides model-theoretic semantics with formally defined
reasoning, for which there are several highly optimized and efficient reasoners.

Description Logic Reasoning for Ontologies. We shall not give a formal
introduction to Description Logics here, but point to Chapter 2 of [1]. Briefly,
DLs are set description languages with concepts, interpreted as subsets of a do-
main, and roles, interpreted as binary relations. In this paper, we will also use
the terms concepts (roles) and classes (properties). In a terminological compo-
nent T (called TBox), the interpretation of concepts can be restricted to the
models of T by defining axioms of the form C�̇D, where C and D are con-
cepts.3 Based on this formal model-theoretic semantics, a TBox can be checked
for incoherence, i.e., whether there are unsatisfiable concepts; concepts which
are necessarily interpreted as the empty set in all models of the TBox. Other
reasoning services include subsumption of two concepts (a subset relation w.r.t.
all models of T ). Subsumption and incoherence are standard reasoning services
available in all DL reasoners, such as FaCT [7] and RACER [6]. Although a
DL reasoner can classify an ontology and check for the existence of unsatisfiable
concepts efficiently, they offer little support for the detection and elimination of
errors, i.e., for debugging.

In [16], we proposed a first step to close this gap by introducing a method
to explain the incoherence using the notions MUPS, MIPS and cores, which we

3 Although the definitions and methods in this paper are quite general, the algorithms
we implemented and applied in the experiments are restricted to unfoldable ALC
TBoxes. ALC is a simple yet relatively expressive DL with conjunction (C �D), dis-
junction (C �D), negation (¬C) and universal (∀r.C) and existential quantification
(∃r.C). A TBox is called unfoldable if the left-hand sides of the axioms are atomic,
and if the right-hand sides contain no direct or indirect reference to the defined
concept [11]. Overall, we will not consider assertional components in this paper.
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will recall in the following section. But this is not sufficient for debugging, as we
will have to repair an incoherent ontology before being able to use it. In Section
3.3 we propose a strategy for fixing the incoherence by pinpointing.

3.2 Explaining Logical Incoherences

In this section, we study ways of explaining incoherences in DL terminologies.
The idea is to simplify a terminology T in order to reduce the available informa-
tion until only the cause of the incoherence remains. More concretely, we exclude
axioms that are irrelevant to the incoherence.

To debug an incoherent terminology, we have to identify and eliminate
debugging-relevant axioms, where an axiom is relevant if a contradictory TBox
becomes coherent once the axiom is removed or, at least, a particular, previ-
ously unsatisfiable concept becomes satisfiable. Consider the following (incoher-
ent) TBox T1, where A,B and C are primitive and A1, . . . , A7 defined concept
names:

ax1 : A1 �̇ ¬A � A2 � A3 ax2 : A2 �̇ A � A4

ax3 : A3 �̇ A4 � A5 ax4 : A4 �̇ ∀s.B � C

ax5 : A5 �̇ ∃s.¬B ax6 : A6 �̇ A1�
ax7 : A7 �̇ A4 � ∃s.¬B ∃r.(A3 � ¬C � A4)

The set of unsatisfiable concept names as returned by a complete DL reasoner
is {A1, A3, A6, A7}. Although this is still of manageable size, it hides crucial
information, e.g., that unsatisfiability of A1 depends on unsatisfiability of A3,
which is incoherent because of the contradiction between A4 and A5. We will
use this example to explain our explanation methods.

Unsatisfiability-preserving sub-TBoxes of a TBox T and an unsatisfiable con-
cept A are subsets of T in which A is unsatisfiable. In general, there are several
of these sub-TBoxes: and we select the minimal ones, i.e., those containing only
axioms that are necessary to preserve unsatisfiability.

Formally, let A be a concept which is unsatisfiable in a TBox T . A set T ′ ⊆ T
is a minimal unsatisfiability-preserving sub-TBox (MUPS) of T if A is unsatisfi-
able in T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′. We will abbreviate
the set of MUPS of T and A by mups(T , A). MUPS for our example TBox T1

and its unsatisfiable concepts are:

mups(T1, A1)= {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T1, A3)= {{ax3, ax4, ax5}}
mups(T1, A6)= {{ax1, ax2, ax4, ax6},

{ax1, ax3, ax4, ax5, ax6}}
mups(T1, A7)= {{ax4, ax7}}

MUPS are useful for relating unsatisfiability to sets of axioms but are also the
basic ingredients for the calculation of Minimal Incoherence Preserving Sub-
terminologies, which are the smallest subsets of an original TBox preserving
unsatisfiability of at least one atomic concept.
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Formally, let T be an incoherent TBox. A TBox T ′ ⊆ T is a minimal
incoherence-preserving sub-TBox (MIPS) of T if T ′ is incoherent, and every
sub-TBox T ′′ ⊂ T ′ is coherent. We will abbreviate the set of MIPSs of T
by mips(T ). For our example terminology T1 we get three MIPSs mips(T1) =
{{ax1, ax2},{ax3, ax4, ax5}, {ax4, ax7}}. It can easily be checked that each of
the three incoherent TBoxes in mips(T1) is indeed a MIPS since taking away a
single axiom renders each of the three coherent. The first one signifies, for ex-
ample, that the first two axioms are already contradictory without reference to
any other axiom, which suggests a modeling error already in these two axioms.

Minimal incoherence-preserving sub-TBoxes identify the smallest sets of TBox
axioms that cause the original TBox to be incoherent. In terminologies such as
DICE, which are created through migration from other representation formalisms,
there are several such sub-TBoxes, each corresponding to a particular contra-
dictory terminology. Cores are now sets of axioms occurring in several of these
incoherent TBoxes. The more MIPSs such a core belongs to, the more likely it
is that axioms are the cause of contradictions.

Formally, a non-empty intersection of n different MIPSs in mips(T ) (with
n ≥ 1) is called a MIPS-core of arity n (or n-ary core) for T . Every set containing
precisely one MIPS is, at least, a 1-ary core. The most interesting cores of a
TBox, T , are those with axioms that are present in as many MIPSs of T as
possible, i.e., having maximal arity. On the other hand, the size of a core is also
significant, as a larger core indicates that clusters of axioms cause contradictions
in combination only. In our example, axiom ax4 occurs both in {ax3, ax4, ax5}
and {ax4, ax7}, which makes {ax4} a core of arity 2 and size 1 for T1, which is
the core of maximal arity in this example.

There is no unique way of deciding which axioms in the MIPS are the most
relevant for the incoherence. Our approach is pragmatic: we assume that an
axiom is more likely to be erroneous the more often it occurs in the set of MIPS.
Therefore, we look for cores with maximal arity.

The general definitions of MUPS, MIPS and cores do not depend on a par-
ticular ontology language and can easily be extended to include facts about
individuals. However, the algorithms we implemented are restricted to unfold-
able ALC terminologies. It was shown in [16] that the problem of calculating
MIPS for an ALC terminology is in PSPACE. Nevertheless, in our experience
calculating all the MIPS was practically feasible in all but a few cases.4 This is
due to the relatively simple structure of the ontologies we considered. For more
complex cases, approximative methods need to be investigated. Similarly, check-
ing elements of mips(T ) for cores of maximal arity requires exponentially many
checks in the size of mips(T ). For efficiency reasons, we therefore currently only
check for cores of size 1.

4 The overall run-times for the experiments described in Section 4 and 5 were minutes
rather than hours even for the most complex ontologies.
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3.3 A Strategy for Fixing Incoherences

MIPSs, MUPS and cores do not offer an immediate recipe for fixing an inco-
herent web ontology. For web ontologies we propose a strategy which iteratively
calculates the cores (of size 1) of maximal arity, repeating the process on the
remaining MIPSs. Moreover, the algorithms for MIPS and MUPS have been im-
plemented for terminological debugging of ALC terminologies. To apply them to
web ontologies we need some preprocessing. Given a web ontology O we apply
the following steps:

1. Remove the ABox, as well as property statements and axioms where the
left-hand side is non-atomic.

2. Replace equivalence statements by implications
3. Collect all implications C � D1,. . . , C � Dn in a single conjunction C �

D1 � · · · � Dn.
4. Call the resulting terminology T (not necessarily unfoldable)

The strategy for automatically fixing the incoherences by pinpointing is then as
follows; calculate:

1. the set Unsat(T ) of unsatisfiable concept-names in T using RACER;
2. the MUPS mups(T , CN) for all concept-names CN ∈ Unsat(T );
3. the MIPSs mips(T ) for T from the MUPS;
4. let M := mips(T ), P (O) = ∅. Now calculate while M �= ∅:

(a) the core {ax} of M of size 1 with maximal arity, and add it to P (O);
(b) remove from M the mips containing ax.

5. P (O) will be called the pinpoint of O.
6. Finally, remove P (O) from T .

The pinpoint of the ontology O is a set of axioms in the preprocessed version.
Every axiom corresponds precisely to a concept-name (because of step 3) or is
a disjointness statement. By the pinpoint of an ontology, we will therefore refer
both to sets of axioms as well as to sets of concept and disjointness statements.
Note that for debugging and semantic clarification, we often focus on these
pinpoints. This is because there is usually only a handful of those as compared
to hundreds of MIPSs, which can be quite complicated. However, in practice,
MIPSs will always have to be consulted if one wants to understand the underlying
reasons for incoherence of an ontology.

Fixing an ontology by pinpointing offers a simple solution to the incoher-
ence problem since by adjusting or removing the information about the pin-
points we can guarantee to the restoration of logical coherence with (almost)
minimal intrusion in the ontology. Pinpoints correspond to hitting-sets [14] for
the MIPS, but they are not necessarily minimal. Take, as example, a set M =
{{ax1, ax2}, {ax3, ax4}, {ax5, ax1}, {ax5, ax3}} of MIPS, with {ax5, ax1, ax3} as
possible pinpoint, even though {ax1, ax3} is a miminal covering set for M . On
the other hand, it has to be remarked that calculating minimal hitting-sets from
the set of MIPS is NP-complete, as compared to linear time to calculate pin-
points from the MIPS.
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We evaluated our strategy of debugging of web ontologies by pinpointing on a
number of applications. The goal of our experiments was twofold, first to assess
some case studies on more typical applications of debugging, but also to put
forward a more unconventional approach to resolving semantic ambiguity that
we claim can be supported by our proposed methods.

4 Debugging Web-Ontologies by Pinpointing

Pinpointing was initially developed for debugging of the medical terminology
DICE. To evaluate whether the method use useful for and scales to web ontologies
we looked at two case studies: first, importing an unsatisfiable ontology, and,
secondly, merging several ontologies.

4.1 Import an Institute and Ignore the Faculty:

Remember our introductory example from the academic, who plans to use the
cerif ontology, which defines two concepts in unsatisfiable ways. This exam-
ple demonstrates the simplest application of debugging by pinpointing, namely
when a user wants to import an incoherent ontology. Our suggested strategy
for debugging is as follows: whenever we detect an incoherence in an ontology
we trace down the most likely source of the logical contradiction by calculating
the pinpoint for it. For the cerif ontology there are two MIPSs with a single
concept Faculty occurring in both, i.e., the pinpoint contains only Faculty. This
tells us that the source of the logical incorrectness of the definition of Institute
is probably the incorrect definition of Faculty. At least theoretically, this would
allow the user to “rescue” the Institute class, by overwriting or simply ignoring
the Faculty concept.

Although the cerif is a real-world example, incoherent ontologies are rarely
published on-line. In contrast, debugging at creation or migration time is quite
typical. Let us describe how pinpointing was used when the DICE terminology
was migrated from frames to a Description Logics representation.

4.2 Is a Physical Quantity Temporal or Mathematical?

The previous example illustrated the use of debugging by pinpointing of a single
ontologies. Most people, however, will use several ontologies and in this case,
might be even more likely to encounter incoherence. In the Introduction we
mentioned the example of using both the SUMO and CYC upper ontologies. As they
are topic-related, and as CYC provides disjointness statements, there is indeed
a high number of unsatisfiable concepts. Let us define our observation in more
detail, starting with a description of the ontologies.

– SUMO: the Suggested Upper Merged Ontology is an upper level ontology sug-
gested by the IEEE Suggested Upper Ontology Working group. It was cre-
ated by the Teknowledge Corporation and was made publicly available at
http://ontology.teknowledge.com [17].
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– CYC: OpenCyc is the open source version of the Cyc technology, “the world’s
largest and most complete general knowledge base.” CYC includes about 6,000
concepts – an upper ontology for all of human consensus reality – and 60,000
assertions about the 6,000 concepts, interrelating them, constraining them,
in effect (partially) defining them. http://www.opencyc.org. [13]

In our experiments we removed the unique name-spaces from both SUMO and
CYC and syntactically merged the two ontologies. We then used RACER to check
for coherence, which resulted in an un-ordered list of 1093 unsatisfiable concepts.
Initially this seems to be a discouraging result. However, the pinpoint of the joint
ontology contains only 4 concept names Event, Product, Entity and Tuple. This
is surprising as it means that we can ensure coherence of the merged ontology
by ignoring (or fixing) the axioms defining Event, Product, Entity and Tuple.

Let us try to get a better intuition for the problem. Each of the four concepts
defined by the axioms in the pinpoints occur in contradictions in a variety of
different combinations of other concepts. Let us look at one of the MIPSs, here in
form of the derivation of one of the contradictions, namely of the concept Physi-
calquantity. Here, the upward derivation stems from the SUMO hierarchy and the
downward derivation from CYC, as a Physicalquantity is defined as a quantity
in SUMO and a Scalarinterval in CYC. A contradiction occurs as the class Math-
ematicalOrComputationalThing is defined to be disjoint from Temporalthing in
CYC. Interestingly enough it is definition of the concept Entity as a Temporalth-
ing that is to be ignored by our strategy, which is what constitutes one of the
“philosophical” difference between the SUMO and CYC ontologies.

Temporalthing
Somethingexisting

Entity

Abstract
Quantity

Physicalquantity

Scalarinterval
NTupleinterval

Tuple
MathematicalObject

Mathematicalthing
MathematicalOrComputationalThing

For the naive user of the two ontologies, the practical benefit of pinpointing
is immediate. Discarding the axioms defining the four elements of the pinpoint
will directly render the ontology coherent and all the remaining 1089 previously
unsatisfiable concepts satisfiable, and therefore usable again. This restores most5

of the useful reasoning facilities which users have learned to expect from their
ontology development tools.

5 Removing the axioms obviously has side effects. In the case of the concept Entity
this implies that none of the descendants of Entity can be classified as a TEMPO-
RALTHING any more. In this sense a certain CYC view of the world predominates.
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5 Semantic Clarification by Pinpointing

To improve the quality of the DICE terminology, the developers migrated a frame-
based to a DL-based representation. For this purpose, they made a number of
very strong assumptions, as they had to decide on the semantic interpretations of
operators such as slot-fillers or super-classes. One of the main issues was to make
disjointness between classes explicit. In the frame-based version of DICE, it is
impossible, for example, to state that nothing can be both a Liver and a Kidney,
i.e., that the classes are disjoint. However, a controlled medical terminology
should prohibit the definition of a particular organ as a subclass of Liver�Kidney.
In [4] Cornet and Abu-Hannah discuss a number of assumptions they base their
migration on. The most interesting for this paper is the:

Strong Disjointness Assumption (SDA): In a well-modeled termi-
nology the direct siblings, i.e. children of a common parent in the sub-
sumption hierarchy should be disjoint.

In a Semantic Web application, we face a similar dilemma as in the migra-
tion of DICE. Many publicly available ontologies have been created by migration
from frame-based representations, but usually, relatively weak a priori assump-
tions were made in the migration process (such as not including any disjointness
statements). In this paper, we propose a more rigid migration strategy that
should help the user end up with a version of his/her ontology where at least
some basic disjointness relation between atomic concepts has been established.
This is achieved by applying the Strong Disjointness Assumption and using a
mechanism to deal with exceptions. In our case, this mechanism is based on
pinpointing. Let us describe the general strategy.

5.1 The Strategy for Semantic Clarification

Given a semantically weakly specified ontology O (without disjointness state-
ments) we, first, add all possible disjointness statements according to the SDA
to O before debugging the ensuing incoherences by pinpointing. More formally
this consists of the following steps:

1. Use RACER to classify O.
2. Let D = {{C1

1 , . . . , C1
n1
}, . . . , {Cm

1 , . . . , Cm
nm

}} be the set of all sets of concept
names which have at least one common parent in the subsumption hierarchy.

3. The set sug disj(O)= {disjoint(C1
1 , . . . , C1

n1
), . . . ,

disjoint(Cm
1 , . . . , Cm

nm
)} contains all the disjointness statements suggested

given the SDA.
4. Add sug disj(O) to O to create the possibly incoherent O∗ = O∪sug disj(O).
5. Calculate the pinpoint P (O∗) for O∗ = O∪sug disj(O)
6. Remove the disjointness statements D ∈ P (O∗) from O∗ to make it coherent.
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5.2 Experiments

To evaluate clarification by pinpointing we applied our strategy on ontologies,
first, to assess the quality of the added disjointness statements given our strong
disjointness assumption, and secondly, to study how much pinpointing can im-
prove on these results. We do this in three steps, first, we evaluate the relation
of the size of an ontology with the damage inflicted on the ontology by adding
disjointness statements. Secondly, we look at the quality of the disjointness state-
ments themselves. Finally, we check whether more information improves the se-
mantic clarification. First, however, we discuss the data used for the experiments.

The Data (Web Ontologies): The problem with an evaluation such as ours
is that it requires domain knowledge to evaluate the quality of the disjointness
statements. Therefore, we focused on general knowledge ontologies and on on-
tologies describing domains where we have some expertise (such as soccer). We
used the following ontologies:

– MGED: provides standard terms for the annotation of microarray experiments
in order to enable structured queries on those experiments;

– UNSPSC: a translated version of the Universal Standard Products and Ser-
vices Classification Code which provides an open, global multi-sector stan-
dard for efficient, accurate classification of products and services;

– soccer: “concepts that are specific to soccer: players, rules, field, supporters,
actions, etc. Used to annotate videos.” [5]

– SUMO: (as described above);
– MILO: a midlevel ontology that acts as a bridge between the high-level ab-

stractions of the SUMO and the low-level detail of the domain ontologies;
– Eco: an ontology describing properties specific to the economy;
– Trans: an ontology of terms about transportation-related information;
– Gov: an ontology of government concepts;
– Geo: an ontology of geography.

The last 6 ontologies were all made available by the Teknowledge Corporation
and more details can be found at [17]. Most information for the last 4 ontologies
is taken from the CIA World Fact Book (2002), but many other sources are used.

Question 1: Is the Size of an Ontology Relevant for Semantic Clar-
ification? In the first set of experiments, we wanted to study what role the
structure and size of an ontology plays when adding disjointness statements for
clarification. For this purpose, we added disjointness statements to the ontolo-
gies described above and calculated the set of unsatisfiable concepts and the
MIPSs. We take a high number of unsatisfiable concepts and many MIPSs as an
indicator that the Strong Disjointness Assumption is inadequate for the given
ontology. Table 1 gives an overview of the number of implications (the only ax-
ioms we consider), the number of disjointness statements created, the number of
unsatisfiable concepts in the ontology with the disjointness statements, and the
number of MIPSs.
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Table 1. Adding disjunctions to web ontologies

O = MGED UNSPSC soccer SUMO MILO Eco Trans Gov Geo

#axioms 370 9795 194 669 1764 409 455 50 417
#disj 34 1463 40 169 342 60 89 12 82
#Unsat(O∗) 72 0 0 175 46 213 145 0 11
#mips(O∗) 42 0 0 149 59 154 189 0 22

Note that we have small ontologies which become incoherent and that the
big ontology UNSPSC remains coherent even after adding over 1000 disjoint-
ness statements. It shows that the size of an ontology is not the main fac-
tor in semantic clarification. There is not even a unique pattern for the 4
specialized ontologies provided by Teknowledge: whereas the geography ontol-
ogy Geo has only very few (11) unsatisfiable concepts, there are now 89 un-
satisfiable concepts in the transportation ontology Trans which is of similar
size, although one would expect comparable modeling. It is clear that a more
careful analysis is needed, taking a closer look at the created disjointness
statements.

Question 2: How Useful are Disjointness Statements? In the next step
of the experiments, each of the created disjointness statements was evaluated
by a human assessor as true or false. In some cases, the evaluators did not have
enough domain knowledge so the numbers do not always add up. Unfortunately,
we could not further experiment with UNSPSC and MILO because of their size
and we did not consider MGED because of our lack of expert knowledge. Table 2
summarizes the results for the evaluation of the quality of the created disjointness
statements and our pinpointing based debugging method.

Remember that the soccer ontology soccer and both Gov and GEO were
coherent when adding the disjointness statements so that, obviously, no MIPS
could be found. Astonishingly, there is again a big discrepancy between the
Trans and the Geo ontology, which does not even disappear after removing the
pinpointed disjointness statements. It is difficult to see the reasons for this odd
behavior of two ontologies that are, in principle, of a very similar structure,
size and pedigree, but we suppose that it is due to differences in modeling. We
look now at some examples to get a better understanding of what might go
wrong.

Error Analysis: The soccer ontology adds a level of structure to the class of
players by separating goalkeepers, other players and substitutes. This, however,
is strange modeling practice, as goalkeepers can be substitutes. The disjointness
statement (disjoint Goalkeeper OtherPlayer Substitute) which would be added
by our clarification strategy would therefore be erroneous. As we do not have
more information about goalkeepers and substitutes, this error cannot be found
using our pinpointing strategy.

In the Geo ontology volcanoes and upland areas are both classified as land-
forms, which suggests the addition of (disjoint . . .UplandArea Volcano) (we will
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Table 2. Evaluating the Quality of the Disjointness Statements

O = soccer SUMO Eco Trans Gov Geo

#disj 40 169 60 89 14 82
#false disj 5 63 14 49 7 19
#unknown 0 8 0 17 0 8
#correct disj 35 98 46 23 7 55
#correct in % 87% 60% 76% 31% 50% 74%
#improved by removing P (O) 0 25 5 15 0 5
#correct after improving in % 87% 76% 85% 52% 50% 81%

refer to this statement as DISS) according to our clarification strategy. Here, pin-
pointing can help, as we now have an unsatisfiable concept VolcanicMountain
with two MIPSs {Mountain, Volcano, VolcanicMountain, DISS} {UplandArea,
Mountain, VolcanicMountain, DISS}, and a subsequent pinpoint DISS.6 What
this suggests is the following: pinpoints can be useful when there is enough spe-
cialized knowledge to make the exceptions to the disjointness statements explicit.
In the above case, this is the knowledge about a volcanic mountain, which is both
an Upland and a Volcano, helps us find the error.

The observation that more specialized knowledge helps to improve the qual-
ity of the pinpointing leads us to a final round of experiments on the SUMO
ontology.

Question 3: Does More Knowledge Help Debugging? To assess the claim
that additional information can make pinpointing more successful, we com-
bined SUMO with the more specialized ontologies MILO, Eco, Trans, Gov and
Geo from the Teknowledge family. Remember that with pinpointing, we were
able to improve the quality of the added disjointness statements by 16% in
our previous experiment, but 38 statements remained erroneous. For the last
experiment, we added to SUMO the 169 disjointness statements following from
the Strong Disjointness Assumption and removed from it the 25 occurring in
the pinpoint. The resulting ontology is coherent. Adding MILO to this ontol-
ogy, however, creates new incoherences, and we find a further 15 erroneous
disjointness statements. Adding the 4 specialized ontologies Trans,Eco, Geo
and Gov also helps detecting 2 more false disjunctions, which leaves the new
SUMO (with pinpoints removed) with 86% correct disjointness statements (up
from 60%).

Erroneous Disjointness Statements? Even after pinpointing we are left with
14% incorrect disjointness statements in the above experiment. This sounds
dangerous, but has to be put in the perspective of the application. Remem-

6 If an incoherent terminology is the result of a semantic clarification process, it is part
of the assumption that some of the new, artificially created, statements are likely to
be incorrect. Therefore, whenever we have a choice, (as in this example) we include
the disjointness statement into the pinpoint.
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ber, that disjointness statements are only interesting for reasoning to estab-
lish coherence, and that they do not influence the subsumption hierarchy, given
that the ontology is indeed coherent. What remains is the danger that logi-
cal contradictions occur when creating new objects referring to semantically
enriched class. But then, again, pinpointing offers a simple solution: if it is in-
deed the disjointness axiom that causes the contradiction it alone will consti-
tute the pinpoint, and will automatically be removed to render the new object
satisfiable.

6 Conclusion and Further Work

With the arrival of more expressive ontology languages in the Semantic Web
community, incoherences increasingly become a problem that can seriously ham-
per the construction and application of web ontologies. In this paper we pre-
sented a strategy for automatically identifying and fixing incoherences that
is based on first explaining their causes and, secondly, choosing (and elim-
inating) axioms that most frequently participate in the underlying logical
contradictions.

We discussed our pinpointing strategy with respect to standard debugging
of incoherences. Then, we showed how pinpointing can help the semantic clar-
ification of underspecified ontologies. For the first case-studies, we checked a
number of web ontologies for coherence and explored what happens when the
two upper-level ontologies CYC and SUMO are merged. The most interesting find-
ing was that, although there was a very high number of unsatisfiable con-
cepts, the pinpoint only consisted of 4 elements. We suggest that studying
these concepts in more detail can help in clarifying the alternative modeling
approaches.

The second case-study was an attempt to clarify the semantics of web ontolo-
gies for which no disjointness (or negation) of classes is specified. In this case,
incoherence is impossible, but we can automatically add disjointness statements
if we assume that direct siblings in a hierarchy should be disjoint. We evaluated
this assumption on a number of web ontologies by first including these dis-
jointness statements and, subsequently, applying our pinpointing strategy. The
empirical and qualitative results showed that too many disjointness statements
remained because not all exceptions to our assumption were covered. However,
we already outlined a way out of this dilemma, which is to extend general ontolo-
gies with more specific ontologies to better identify exceptions and therefore to
exclude the erroneous disjointness statements. Conceptually, it should be a sim-
ple extension to add facts, but the additional computational complexity might
render the approach infeasible in practice.

Finally, it remains to study our pinpointing approach to reasoning with in-
coherent ontologies from a theoretical perspective. Surely enough ignoring the
ontological axiom from the cores renders the ontology coherent, but nothing can
be said so far about the quality (such as maximality or meaningfulness) of the
resulting ontology.
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