
Using TTCN-3 for Testing Platform Independent Models

Gabor Batori and Domonkos Asztalos

Software Engineering Group, Ericsson Hungary Ltd.,
P.O.B.107, H-1300 Budapest, Hungary

{Gabor.Batori, Domonkos.Asztalos}@ericsson.com

Abstract. In the field of telecommunication UML and Model Driven Architec-
ture (MDA) have an increasing acceptance. MDA brings up new questions about
the testing of the application developed by this technology. In MDA, Platform In-
dependent Model (PIM) is the source of the system, and all maintenance and
enhancement is performed at the platform independent level. However, MDA
supporting tools provide only limited means for describing model level test pro-
cedures so a framework for model testing is indispensable. This paper investigates
how to assist the model level test development with TTCN-3. We found that with
the help of model translators we can facilitate and partly automate the test devel-
opment process.

1 Introduction

The Model Driven Architecture (MDA) [1] of the Object Management Group has
become the dominating trend in software engineering. MDA recommends starting the
design of an application with a Platform-Independent Model (PIM) representing the
business functionality and behavior, undistorted by technology details in the form of a
UML model. In the next phase, Platform-Specific Models (PSM) containing software
architecture dependent information are generated from the PIM by applying mappings
in an MDA tool, preferably by automatic model transformations. Finally, in the code
generation phase MDA tools automatically generate all or most of the implementa-
tion code for the deployment technology. Model transformation methodologies have
been under extensive research recently. These transformation techniques provide higher
quality compared to manually written programs but they require that the PIM contains
the smallest possible number of faults. Unfortunately, it does not matter what tech-
nology we use and how much time we put into design and how careful we are when
programming; mistakes are inevitable. Automation does not alone guarantee neither
the proper choice of underlying architecture nor the elimination of conceptual flaws
from the analysis model because defects injected in the requirements analysis are also
deployed automatically into the implementation.

Due to the increased complexity of IT systems and increased customer require-
ments for quality of service (QoS) and reliability, mathematical-based test generation
techniques often fail, because of the difficulty to select test cases from a (theoretical)
unbounded number of tests. However, there is a strong need for effective testing of com-
plex applications, because it is a well known fact that the development and implementa-
tion of tests is very time consuming and labor intensive. MDA based software develop-

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 304–317, 2005.
c© IFIP 2005



Using TTCN-3 for Testing Platform Independent Models 305

ment offers an effective way to analyze computer systems with early-phase simulation
and the tests created at the early-phase analysis can be reused on the implementation
level.

We use TTCN-3 [2] as a test description language for platform independent model
tests. One essential benefit of TTCN-3 is that the specification of tests is possible in
a platform independent way. Our goal is to develop a framework for testing Platform
Independent Model with TTCN-3, and analyze the possibility of reusing the analysis
level tests on the implementation level.

This paper is organized as follows. In Section 2, we examine existing researches
related to testing UML models. We will present a brief review of Model Driven Archi-
tecture focusing on the testing concepts in Section 3 and address our testing approach.
Section 4 concludes the TTCN-3 language architecture and its relation to MDA. In Sec-
tion 5 we present the structure of a model testing framework and the generation of this
framework with a model transformer. In Section 6, we summarize the current status of
the tester and our future plans.

2 Related Work

Lots of approaches have been taken to use the early-phase model as a basis of test
development. Classic problems of model-based testing are [3]:

1. the generation of test cases from model according to a given coverage criterion,
2. the generation of a test oracle to determine the expected result of a test,
3. the execution of tests in test environments, possibly also generated from models.

Model-based testing is used to define tests which verify that a specific implementation
accurately capture its requirements. Algorithms [4, 5, 6] have been defined to derive
tests from formal system specification given in UML notation and their usage has been
demonstrated with sample applications. But today none of the approaches are widely
used in the industrial practice for large applications. One reason may be the difficulty to
define selection criterions that result test cases with high coverage in respect to the re-
quirements of the application. Furthermore, if MDA and code generation techniques are
used, the test generation can apply with a purpose different of the classical approach.
The difficulty that restricts the usage of problem (1) is: the code and test generation
algorithms have the same source, the PIM. In this case only the correctness of the trans-
lation method could be verified.

UML technology focuses primarily on the definition of system structure and behav-
ior and provides only limited means for describing complex test procedures [7]. CASE
tools provide only minimal support for developing tests. They only assist to create unit
tests, therefore:

– We can execute only a small number of tests.
– We have to execute and estimate them manually.
– The scope of a test is only an object or a small cluster of objects.



306 G. Batori and D. Asztalos

A special UML profile based on the UML 2.0 specification was initiated for test
description using UML [8]. This profile aims at bridging the gap between designers and
testers by providing a means for using UML for system modeling and test development.
This allows a re-use of UML design documents for testing and makes test development
possible in an early system development phase. But UML is not the appropriate lan-
guage to address executable tests, because it is hard to define complex structures of
test data and the graphical notation is sometimes inconvenient especially in case of
a complex test description. The authors of paper [9] showed a methodology of how
to use the UML 2.0 Testing Profile on an existing UML design model. The usability
of the method was demonstrated by developing a test model for a Bluetooth roaming
model.

The paper [10] describes a MOF (Meta-Object Facility) based meta-model of
TTCN-3 and the realization of the meta-model in Eclipse. Moreover, it shows how
to integrate TTCN-3 tools via this meta-model.

3 Testing Concepts in MDA

MDA envisages systems being designed independently of the eventual technologies,
and a PIM can then be transformed into specific platforms. This section provides an
overview of the model driven architecture focusing on the testing aspect.

3.1 Software Development with Executable UML

The OMG Model Driven Architecture addresses the complete life cycle of designing,
deploying, integrating and managing applications using open standards. The MDA aims
at providing a framework for the creation of applications in such a context where even
the interface between the target application and the underlying execution platform is
changing. MDA is a new way of writing specifications and developing applications,
based on a platform-independent model (PIM) and using transformations to create
platform-specific models (PSMs) and source code. The idea is that in a platform in-
dependent model the developer concentrates on a description of what the system has
to do without going into details of how that will be achieved. The platform specific
model, by contrast, describes how the system will realize the behavior implied by the
analysis model [11]. MDA uses the Unified Modeling Language (UML) as notation.
The UML 1.4 standard had relatively little to say about the detailed behavior that
might be specified for the action associated with transitions and states or the meth-
ods implementing operation. In UML 1.5 and UML 2.0 specification, a UML Action
Semantics [12] has been introduced. With the Action Semantics (AS) we can create ex-
ecutable models [13] with a detailed dynamic behavior description. This model can
be executed in an appropriate simulator. The benefits of this approach go well be-
yond simply reducing or eliminating the coding stage. It also ensures platform inde-
pendence, avoids obsolescence (programming languages may change, the model does
not) and allows full verification of the models by executing them in a test and debug
environment.



Using TTCN-3 for Testing Platform Independent Models 307

Platform−Specific
Models

Code
Generation

Model
Transformations

Software
Application Testing

Analysis errors
e.g. wrong state

Target related
Problems e.g.
timing, performance

Platform−
Independent Model

Fig. 1. The MDA architecture

3.2 Testing in MDA

The designated architecture of MDA is summarized in Fig. 1. Firstly, analysts create the
analysis model1 based on the system requirements. Then automatic transformations are
used to create platform specific models (PSMs) and source code. The last phase is the
testing of the implementation. In this method the testing phase only starts after the code
generation has finished. There are two main problems in this method: (1) The creation
of a new model transformer for a new platform is very time consuming, hence the code
generation and the testing phase can be delayed, although there is an executable and
testable model. (2) The model transformation can lead to the mixing up of platform
independent and platform specific information in the implementation. This makes it
difficult to eliminate the errors from the PIM.

In our approach (Fig. 2), we split the testing into two phases. In the first phase, the
simulated platform independent model is verified. In this early stage only the functional
correctness of the model could be tested. Since the analysis model is the source of
the system and the following model transformations, it requires rigorous testing. The
errors found during this phase are related to the analysis model, therefore we call them
analysis errors.

In the second phase, the testing of the implementation is started. Based on the early-
phase tests the testers can build performance, inter-operability etc. test cases. The func-
tional tests can be also repeated in order to verify that the model transformations do
not make any unexpected changes. To minimize the work invested to the testing of
the application we should reuse the early-phase tests. In order for testing to reach its
full potential, it is essential to use the same testing framework throughout the entire
MDA software development process. We use a dashed arrow between the implemen-
tation testing and the platform independent model in Fig. 2 because the early-phase

1 Analysis model and Platform Independent Model (PIM) are used as synonyms in this paper.



308 G. Batori and D. Asztalos

Simulation
Independent Model

Platform−Specific
Models

Code
Generation

Model
Transformations

Software
Application Testing

Analysis errors
Eliminate

PIM
Testing

Platform−

Fig. 2. Extended test model in MDA

testing ensures that the implementation does not contain analysis errors, hence during
the implementation testing only platform related errors can be found. We present some
exceptions in the end of Section 5.2

In the following section we demonstrate that the TTCN-3 language is a feasible can-
didate for this purpose. We present a short overview of the standardized language for
test description, focusing on how to depict tests on analysis as well as on implementa-
tion level.

4 TTCN-3 and Its Relation to MDA

TTCN-3 (Testing and Test Control Notation 3) is the new industry-standard test spec-
ification language that was developed and standardized by the European Telecommu-
nication Standards Institute (ETSI). TTCN-3 can be applied for all kinds of black-box
testing for reactive and distributed systems and makes it possible to be used not only in
conformance testing of telecommunication protocols but as well as for testing Internet,
mobile, data base access etc. protocols and also for inter-operability, robustness etc.
testing. Use of TTCN-3 to support test development has been investigated to encour-
age the parallel development of a test suite together with a standard system analysis.
TTCN-3 language consists of three main units:

Test Behavior. Test behavior is a specification of what to test with which input, re-
sult, and under which conditions. The TTCN-3 language defines several constructs for
describing the functionality of a test system. TTCN-3 allows an easy and efficient de-
scription of complex test behavior in terms of sequences, alternatives, loops and parallel
stimuli and responses.



Using TTCN-3 for Testing Platform Independent Models 309

Test Configuration. This part is responsible for the communication between the System
Under Test (SUT) and the test system. However, the real physical connection is outside
the scope of TTCN-3. Instead, a well defined (but abstract) test system interface shall
be associated with each test case. A complex test configuration may contain several test
components which could communicate with each other and the system under test.

Test Data Definition. One of the key elements of TTCN-3 is the ability to send and
receive complex messages over the communication ports defined by the test configu-
ration. TTCN-3 supports a number of predefined basic data types and structured types
constructed from the basic data types. The TTCN-3 has a special language element, the
template, that provides sophisticated means for describing test data. Templates are used
either to transmit a set of distinct values or to test whether a set of received values match
the template specification.

The general testing process with TTCN-3 includes the following main steps: the
developed abstract test suite is compiled and extended with an adaptor (one special im-
plementation of an abstract TTCN-3 test port) that provides the connection between
the tested system and the executable test suite. Then, the executable test suite is exe-
cuted against the system under test. Finally, the results are evaluated. The TTCN-3 is
an abstract language, hence one can describe the test behavior independently of the un-
derlying communication architecture and data presentation. The structure of a TTCN-3
tester is summarized in Fig. 3. Note that the basic conception of the model driven archi-
tecture is almost the same (see in Section 3.2), but the TTCN-3 focusing on the testing
domain.

There are two ways to alter the behavior of a test suite. One solution is to change the
communication interface and the data encoding/decoding rules. In the field of wireless
communication there are many protocols that are able to transmit data in several differ-
ent ways depending on how reliable the connection is or how important the message is
etc. A good example is the WAP (Wireless Application Protocol) protocol, which can
work on various bearers i.e. SMS, GPRS, Circuit Switched Data etc. This functionality
is especially important in the 3G or 4G mobile technologies where many high level
applications have to work on different transaction protocols.

The second solution is to change the test data definitions. TTCN-3 provides a simple
form of inheritance that enables us to modify an existing template without changing the

Compiler

TTCN−3
Abstract

Test Suite

Executable
Test Suite

Abstract
Test Port

Platform Specific
Test Port

Platform Specific
Data Presentation

Abstract Test
DescriptionData Definitions

Platform−Specific
Tests

Fig. 3. The Architecture of the TTCN-3 language



310 G. Batori and D. Asztalos

original definition. This makes the adaptation of templates to different testing situations
possible and avoids the duplication of similar test data.

In accordance with the discussion above this approach allows to use TTCN-3 during
all part of the model-driven software development. The functionality and the specifica-
tion details are separated, therefore the early-phase functional tests can be reused on
implementation level.

5 Testing Framework for Platform Independent Models with
TTCN-3

In this section, we show how to use the TTCN-3 language in model driven software
development.

5.1 Simulating Executable UML Models

Model execution enables developers to focus on the appropriate behavior of the problem
to be solved, independently of platform dependent problems at an early development
phase. Executable models allow the early verification with simulation, since they com-
pletely describe the dynamic behavior of the system. In order to simulate a model we
need a special environment that is capable to interpret executable models. This environ-
ment is referred to as a UML Virtual Machine. As input, the Virtual Machine requires an
executable UML model (class diagram, state-chart, action specification) and executes
the model according to the initial state and the receiving inputs. Having this Virtual
Machine we are able to define test interfaces.

According to [17], PIMs suffer from testability problems in the area of observability,
the ability to detect errors in control flows, and controllability, the capability to cause
the software to execute an appropriate path. An OMG Request For Proposal (RFP) has
been initiated on a standardized interface of testing and debugging executable UML
models [16]. In Fig. 4, the structure of the interface is concluded.

The goal of the Test Instrument Interface is to standardize the hooks into model ex-
ecution to allow test setup, stimulus, and data collection. Model simulators have some
support for model connection, they provide the ability to define breakpoints in the ex-
ecutable model, to log the actions during the execution. But they do not allow to use

Driver/
DebuggerProtocol

TII

UML
Virtual Machine

Simulation
Architecture

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

PIM
Test

Fig. 4. Test Instrumentation Interface



Using TTCN-3 for Testing Platform Independent Models 311

external testers for the testing of the model. In our approach, we transform UML mod-
els to be able to communicate with an external tester, so that the original simulation
framework can be used. The interface definitions between the test system and the UML
model are addressed on UML level and the physical communication interfaces are de-
rived from these definitions. The extension of executable models with communication
ability is provided through model transformations.

5.2 Towards the Mapping of UML Models into TTCN-3

To create executable tests three partly coherent tasks have to be carried out:

– Define the data uses in the test cases
– Define the behavior of the test cases
– Define the test framework (test configuration)

In this paper we concentrate on the solution of the first and the third problem with
the help of a model translators. A test framework covers the concepts for specifying
test components, the interfaces of and connections between the test components to the
System Under Test. Telecommunication protocols and softwares are distributed appli-
cations, therefore our testing framework was designed to allow the definition of com-
plex distributed test scenarios on model level. We defined a model transformer which
is capable to extend an executable UML model in order to test in a distributed test
configuration.

Most tedious activities during test development are to accurately define the inter-
faces between the system under test (SUT) and the test system, and specify the test
data sending and receiving on these interfaces. Therefore, another model transformer
was defined to create the data definition and the testing framework in TTCN-3 core
language. The test cases can be written manually based on the derived definition.

MDA offers the potential to automatically transform a PIM, perhaps after annotat-
ing it with some platform information, to different PSMs. Modeler will tag their PIM
component with information to control the translation. This approach allows us to store
test specific information in the analysis model independently of the design aspects.

To create a model transformer in UML we have to create the meta-model of the
target language, in our case the meta-model of the TTCN-3 language. Fig. 5 depicts the
communication and data representation part of our meta-model.

The elements of the meta-model are populated (instantiate the elements of the meta-
model) depending on the platform-independent model. According to our experience the
communication interfaces on the implementation level are represented by operations of
classes on the model level. Hence, we specify a tagging structure in order to mark the
operations that are relevant for testing. Tags may denote the direction of the commu-
nication channel created from the tagged operation or the name of the test port which
the given operation belongs to. The data presentation of UML differs from the one of
TTCN-3, therefore we had to define mapping rules between them. Because of the lack
of space only the main mapping rules are summarized in Table 1.

The simple UML data types have unambiguous representation in TTCN-3. The only
exception is the text type because in TTCN-3 five different basic string types can be
defined. We selected the charstring type to represent the UML text type in TTCN-3.



312 G. Batori and D. Asztalos

ID:Integer

TTCN Signature

name:Text

name:Text

TTCN Port

1..n

1

0..n

0..n0..n

0..n

0..1

0..n 0..n

0..n

0..n1

0..1 0..1

0..n 0..n

1..n

1

1..n

1

name:Text

contains

contains
complex

input output

send receive

send receive

has

name:Text

TTCN Data Type

type:Text
subtype:Text

name:Text
type:Text

TTCN Attribute

simple_type:Boolean
optional:Boolean

name:Text

TTCN Message Port

Send Port
Object Ref.

ID:Integer

Receive Port
Object Ref.

TTCN Template

name:Text

name:Text

TTCN Procedure Port

TTCN Component

Fig. 5. Meta-model of the TTCN-3

Table 1. Data presentation mapping rules

UML TTCN

Simple types (Boolean, Double,Integer) Simple TTCN-3 types
Text charstring

Data set record of
Operation parameters record

Polymorphic operations (with small changes) optional parameters
Polymorphic operations union types

We map the input and output parameters of the operations into record types. TTCN-3
ports are also generated which allows to send and receive these record types. We can
define sending templates for these records to test the operation with various input pa-
rameters. In addition, we can define receiving templates to automatically verify the
results of the operation using the TTCN-3 matching mechanism.

The last two rows of Table 1 show an example how the structure of the platform in-
dependent model influence the TTCN-3 data presentation. If analysts create generaliza-
tion relations with many sub-classes and with polymorphic operations then the structure
of the derived TTCN-3 data types have to reflect this inheritance tree. An operation of
the parent-class can be the representation of a communication port and the sub-classes
inherit this operation but in some sub-classes the operation is overridden. In this case
some parameters of the operation may become optional parameters in TTCN-3 if only



Using TTCN-3 for Testing Platform Independent Models 313

small changes (one or two parameters appear or disappear in the operation definition)
occurred during the redefinition of the operation. If the changes in the parameters of
the operation are considerable then it is more profitable to create a new record for this
parameter structure. In order to refer that the new record is derived from a parent-class
we compose a union type which contains the different definitions of the records corre-
sponding to the operation.

To achieve testability, we also use the tagged elements of the model as weaving
points where we should insert new instructions to extend the UML model. The extended
model is capable of communicating with a tester in the simulator. The extension is based
on the definition of the tagged operation.

With MDA we can develop a translator model [14] which is capable to collect in-
formation from high level, platform independent models and generate the TTCN-3 test
interfaces and data definitions. Accordingly, the technical problems related to the com-
munication between the test system and the UML Virtual Machine can be hidden from
the testers as well as the analysts. Fig. 6 depicts the structure of the PIM tester. A dis-
tributed client-server based environment is responsible for the communication between
the two parts of the model tester. This communication interface is also generated from
the analysis model. The interface has two part. The first part is running in the UML
Virtual Machine. This part is capable to access the model. The second part is the imple-
mentation of TTCN-3 test ports. This implementation contains the mappings between
the UML and TTCN-3 data types.

Physical Layer

Data
Test

Behavior

Test
Interface

Communication Interface

Interface
Operations

Tested
Model

Logical Layer

TTCN−3

PIM Tester

UML

TTCN−3 Executor UML Virtual Machine

Test

Fig. 6. Structure of the PIM tester

The different parts of the platform independent model testing are summarized in
Fig. 7. The test development is started with the transformation of the PIM. The TTCN-3
translator creates the communication interfaces and the data definitions. Based on this
definitions the test data and the test behavior can be defined. The model translator cre-
ates the extended PIM, which is executed in a simulator. The TTCN-3 test cases are
executed on the simulated extended platform independent model.

The model-based testing usually not enough to eliminate all faults from the software
because of the following reasons:



314 G. Batori and D. Asztalos

Translator
Extended

PIM
Model UML VM

Code

Data
Definitions

Interface
Communication

TTCN−3
Translator

Test
Cases

PIM

Fig. 7. Mapping to TTCN-3

– The model may contain special object structures.
– Usage of native codes in the model.
– Usage of third party libraries, existing components.

There are special object structures [15] whose functions depend on the architecture,
hence the functions of these objects have to be tested on implementation level as well.
Some MDA tools allow to insert INLINE (platform specific, native language) codes
into the body of the platform independent action code that can be tested only after
the mapping to the platform specific implementation occurs. Furthermore, one can use
third party libraries or existing components that were created without model driven
technology. In this case, the integration with these components have to be tested, but it
is only possible on implementation level. In spite of these limitations of the platform
independent testing, according to our experience approximately 50-60% of the errors
can be found and eliminated in analysis phase.

5.3 Testing Through a MDA Software Development

We experimented on our testing framework during the development of a network man-
agement software. The test environment is depicted in Fig. 8. The test architecture con-
sists of three different elements.

Managed Network. A managed network may contain a few or several hundreds of man-
aged nodes (MN). The managed nodes provide support to ATM switching and IP for-
warding system. An arbitrary mix of different traffic types – data, voice, and video type
of traffic – can be handled with preserved quality of service and with efficient use of
bandwidth for each traffic type.

Network Management Server. This application is required by telecommunication op-
erators for providing reliable operations of the communication network. The tasks in-
volved include monitoring, troubleshooting, and control operations in a wide range of
network management areas.

Web clients. The operators of the network are able to access the management software
through web-based clients. In case of error the operators can reconfigure the network
topology manually.



Using TTCN-3 for Testing Platform Independent Models 315

The main component, the management server, is modeled in UML and the other
components (client, managed nodes) are emulated by TTCN-3 components. This het-
erogeneous infrastructure can be tested with TTCN-3 parallel components. Our goal
hereby is to test the functionality of the server with different network structures or with
erroneous network topologies. In case of a complex real network it is difficult to con-
figure the network to generate incorrect answers. With TTCN-3 and simulation we can
easily establish these situations and can verify that our application (the simulated PIM
model) works as we expect.

A typical problem in model driven development is that the development of the
platform-independent model finishes before the development of the transformation rules
for the specific platform would be completed. In this case we can test the PIM in a sim-
ulator but the test environment act as a real network.

5.4 Empirical Experiences

We used a sample TTCN-3 test module to investigate what kind of modifications were
needed to rerun the early-phase tests on the implementation. At first, we defined manu-
ally 20 test cases to verify the main functionality of the network management applica-
tion. The test module contained 25 type definitions and 30 template specifications for
the data types. Two types of TTCN-3 test port were used during the testing: a HTTP-
based test port for the client and a SNMP port for the communication to the managed
nodes. For simulation testing purposes the test ports, the test components and the data
type definitions were automatically generated from the PIM model. The test port im-
plementations for the Ericsson’s TTCN-3 test executor were also generated from the
PIM model. Three parallel test components were used during the testing, one for the

MN2 MN3

Network
Management Server

Web−Client2Web−Client1

MN1
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Fig. 8. Test architecture



316 G. Batori and D. Asztalos

emulation of the web-client and two for the emulation of the managed network. The
test suite was executed against the simulated model and 5 errors were found in the PIM.

Secondly, we executed this test suite on the implementation. The implementation
was generated from the platform independent model with a model transformer devel-
oped in Ericsson Hungary. Naturally, we had to change the implementation of the test
ports. We also needed one new data type and 2 new templates. With these modifica-
tions every test case could be executed on the implementation. One additional error was
found in the implementation which was caused by an integration problem between an
existing and a newly developed component.

6 Conclusion and Future Work

In this article we propose an approach for model level testing of applications designed
with model-driven technology. We can adapt this test design process into the standard
model-driven software development process. By using this approach, we are able to an-
alyze Platform Independent Models with tests written in a standardized test description
language. These early-phase tests primarily focus on the functional correctness of the
software. Moreover, by extending the platform independent tests, other types of tests
(e.g. inter-operability, performance) can be derived. Accordingly, the implementation
level test development time can be reduced.

Regarding further investigation, it would be interesting to study the possibility of
using this testing concept throughout the entire model-driven software development
process and work out a general Model-Driven Test Development method.

References

1. R. Soley: Model Driven Architecture: An Introduction. http://www.omg.org/mda.
2. ETSI ES 201 873-1: The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core

Language. V2.2.1 (2003-02), 2003; also an ITU-T standard Z.140.
3. R.Heckel, M.Lohmann: Towards Model-Driven Testing, Electronic Notes in Theoretical

Computer Science Vol.82 (6), 2003.
4. J. Hartman, C. Imoberdorf, M. Meisinger: UML-Based Integration Testing, ISSTA 2000.
5. J. Offut, A. Abdurazik: Generating Tests from UML Specification, UML99 Fort Collins

(CO), October 1999.
6. L. C. Briand , Y. Labiche: A UML-Based Approach to System Testing, Journal of Software

and Systems Modeling (SoSyM) Vol. 1 No.1 2002 pp. 10-42.
7. I. Schieferdecker, Z. R. Dai, J. Grabowski, A. Rennoch: The UML 2.0 Testing Profile and its

relation to TTCN-3, Testing of Communicating Systems – 15th IFIP International Confer-
ence, TestCom2003, Sophia Antipolis (F), May 2003. Lecture Notes in Computer Science
(LNCS) 2644, Springer, May 2003.

8. UML Testing Profile (Final Submission), April 2004 http://www.fokus.gmd.de/u2tp/.
9. Z. R. Dai, J. Grabowski, H. Neukirchen, H. Pals: From Design to Test with UML – Applied to

a Roaming Algorithm for Bluetooth Devices. Testing of Communicating Systems – 16th IFIP
International Conference, TestCom2004, Oxford, United Kingdom, March 2004. Lecture
Notes in Computer Science (LNCS) 2978, Springer, March 2004.



Using TTCN-3 for Testing Platform Independent Models 317

10. I. Schieferdecker, G. Din: A Meta-model for TTCN-3, Applying Formal Methods: Testing,
Performance, and M/E-Commerce: FORTE 2004 Workshops, Toledo, Spain. Lecture Notes
in Computer Science (LNCS) 3236, Springer, October 2004.

11. S. Shlaer, S. J. Mellor: Recursive Design of an Application-Independent Architecture, IEEE
Software, pp. 61-72, January/February 1997.

12. I. Wilkie, A. King, M. Clarke, C Raistrick: UML ASL Reference Guide, Kennedy Carter,
2001.

13. Supporting Model Driven Architecture with eXecutable UML Kennedy Carter 2002.
14. I. Wilkie, A. King, M. Clarke, C Raistrick: The Intelligent OOA Strategy for Configurable

Code Generation, Kennedy Carter, 1997.
15. S. Shlaer, N. Lang: Shlaer-Mellor Method: The OOA96 Report. http://www.projtech.com.
16. Model-level Testing/Debug RFP (Final Submission) April 2004 http://www.omg.org.
17. G. Eakman: Verification of Platform Independent Models, Workshop on Model Driven Ar-

chitecture in the Specification, Implementation and Validation of Object-oriented Embedded
Systems (SIVOES-MDA), San Francisco, October 2003.


	Introduction
	Related Work
	Testing Concepts in MDA
	Software Development with Executable UML
	Testing in MDA

	TTCN-3 and Its Relation to MDA
	Testing Framework for Platform Independent Models with TTCN-3
	Simulating Executable UML Models
	Towards the Mapping of UML Models into TTCN-3
	Testing Through a MDA Software Development
	Empirical Experiences

	Conclusion and Future Work



