

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 289 – 30 , 2005.
© IFIP 2005

From U2TP Models to Executable Tests with TTCN-3
 - An Approach to Model Driven Testing -

Justyna Zander1, Zhen Ru Dai1, Ina Schieferdecker1,2, and George Din1

1 Fraunhofer Fokus, TIP,
Kaiserin-Augusta-Allee 31,

10589 Berlin, Germany
{j.zander,dai,schieferdecker,din}@fokus.fraunhofer.de

2 Technical University Berlin, Faculty IV,
Straße des 17. Juni 135,

10623 Berlin,
Berlin, Germany

Abstract. The approach towards system engineering according to Model-
Driven Architectures (MDA) with code generation derived from model implies
also an increased need for research on automation of the test generation process.
This paper presents an approach to derive executable tests from UML 2.0
Testing Profile diagrams automatically. In particular, an approach to derive
executable tests within the Testing and Test Control Notation (TTCN-3) is
discussed. The transformation rules between the source U2TP meta-model to
the target TTCN-3 meta-model are given.

Keywords: UML 2.0 Testing Profile, UML, Testing, TTCN-3, QVT, Model
transformation, MOF, MDA.

1 Introduction

Recently, the attention around automatic derivation of executable code from abstract
models has been raised in the context of MDA (Model Driven Architecture [1]). We
believe that that this concept can also be used also in testing area. Therefore, it is
proposed to enhance MDA with a separate development line for testing artefacts
 [12]. We believe that derivation of executable tests from their models is possible to
some extent. Due to complete test designs we gain the advantage of reduced work on
pure tests programming. Several efforts have been undertaken to establish an
approach to automate - or at least to provide significant support for an automated -
test generation. Algorithms have been defined to derive tests from formal system
specification given in various notations. But today, none of the approaches is widely
used in the industrial practice for large applications [17]. As UML and MDA have
gained much momentum in industry, we focus on using these concepts to show that
retrieving executable test instances from system model can be supported via test
skeleton generation combined with manual completion of the tests.

MDA prescribes certain model artefacts to be used along system development, how
those models may be prepared and their relationship [1]. It is an approach to system
development that separates the specification of functionality from the specification of

3

290 J. Zander et al.

the implementation of that functionality on a specific technology platform [3]. Main
MDA artefacts are platform independent system models (PIMs), platform specific
system models (PSMs) and system code [1] [14]. There is a clear distinction between
PIM, PSM and system code although it depends on the context, the development
process and the details of the system and target platform, where the border between
PIM, PSM and system code is to be placed. Within these three abstraction levels,
transformation techniques are used to translate model parts of one abstraction level
into model parts on another abstraction level. These transformations can also be used
to specify the relations and invariants between the models on different abstraction
levels, which are the base to check the consistency between models and to validate
models against each other. These MDA abstraction levels can also be applied to test
modelling [15] as according to the philosophy of MDA, the same modelling
mechanism can be re-used for multiple targets [16]. Similarly, test models can be
specified platform independently and platform specific before generating executable
test codes [8].
 As shown in Fig. 1, platform independent system design models (PIM) can be
transformed into platform specific system design models (PSM). While PIMs focus
on describing the pure functioning of a system independently from potential
platforms that may be used to realize and execute the system, the relating PSMs
contain a lot of information on the underlying platform. In another transformation
step, system code may be derived from the PSM. Certainly, the completeness of the
code depends on the completeness of the system design model [8].

Fig. 1. System and Test Development

 According to model driven testing1 approach, a platform independent test design
model (PIT) can be transformed either directly to test code or to a platform specific
test design model (PST) [10]. Finally, the test design model can be transformed into
executable test code from either PST or PIT.
 This paper presents transformations between UML 2.0 Testing Profile (U2TP [4])
specifications used to represent PITs and Testing and Test Control Notation (TTCN-
3 [5]). The transformations are specified as transformation rules between the U2TP

1 We define model driven testing as testing based-MDA.

 From U2TP Models to Executable Tests with TTCN-3 291

meta-model [4] and the TTCN-3 meta-model [10]. Afterwards, the generated output
is completed and compiled to executable test code in Java [18].
 U2TP and TTCN-3 meta-models are both defined as Meta Object Facility (MOF)
models [1]. Transformation rules provided in this paper define relation between
source and target meta-classes of these meta-models, while the transformations are
performed on model (instance) level, i.e. deriving parts of TTCN-3 modules from
parts of U2TP specifications. This procedure is shown in Fig. 2.

Fig. 2. Transformation of U2TP to TTCN-3

 The goal is to get executable tests from U2TP models automatically, however, in
general the generation will only be semi-automatic as U2TP specifications can be
very abstract so that further details are needed to make the tests executable.
Examples include the addition of concrete data, timing or default behaviours.
 The environment, which is used to demonstrate the feasibility of our approach is
Eclipse with its UML2.0 plug-in [19]. U2TP is realized as an extension of the UML
2.0 plug-in via its Java API. The transformation rules are also realized in Java. The
transformations generate objects within a TTCN-3 meta-model instance, which
enables the compilation and execution of the tests designed previously in U2TP.
 The paper is divided into six sections. After the introduction, Section 2 is devoted
to the U2TP and TTCN-3 meta-models which are used as source and target for the
transformations. Additionally, we discuss Eclipse and its UML 2.0 plug-in as a tool
which is used to implement and demonstrate our approach. In Section 3, the
transformation theory in the context of model driven testing is discussed. Section 4
provides the methodology of retrieving the executable test code, which is possible by
applying presented transformation rules and appropriate compilation. The
transformation rules could be formalized in Query/View/Transformation (QVT)
rules defined by CBOP/IBM/DSTC [3]. However due to lack of vendors providing
appropriate tools and because of the limitations of the UML 2.0 profiling support in
Eclipse, we had to realize the transformation rules directly in Java. Thus, we define
our own mapping language and rules based on meta-model classes. In Section 5, an
example of U2TP diagram is presented and the transformation rules for this example
are described. Furthermore, the same example analysis, but resulting from
application of the transformer implementation is continued. In Section 6, the results
are discussed and conclusions are taken. Finally, future work challenges are outlined.

292 J. Zander et al.

2 Related Work

Research as well as industrial work related to generation of executable tests from
UML models according to MDA concepts is being continuously developed.
LEIRIOS Test Generator™ tool (LTG) [23] implements the Smart Testing concept.
It supports Model Based Testing - an approach in which one defines the behaviour of
a system in terms of actions that change the state of the system (state machine).
UML 2.0 models are used for automatic generation of test sequences. LEIRIOS core
technologies implement smart heuristics to compute the test cases.
 Objecteering Software [24] on the other side provides the opportunity of working
with pragmatic design and coding tools, which combine UML modelling, code
production, debugging and Java application testing in a single environment.
Objecteering/UML tool is integrated into the Eclipse 2.0 platform. This integration
allows the Java developer to take advantage of a strongly model-oriented tool,
which, when integrated with a dedicated Java environment, associates the support of
UML modelling with the support of Java development. Objecteering/UML tool bases
however on UML 1.4 meta-model.
 Finally, Telelogic TAU Generation2 [25] represents generation of advanced
software development and testing tools, supporting the latest industry-standards for
visual systems and software development (UML 2.0 Testing Profile) and systems
and integration testing (TTCN-3). Telelogic team provides an approach that
automates testing activities covering test specification, development of testing
software and execution of test campaigns. U2TP is selected as modelling language
for test case specification. The models are then transformed to TTCN-3 language,
which is used for describing executable test cases.
 Our approach is to use similar methodology as LEIRIOS deriving executable tests
from UML 2.0 models, however we extend the models with U2TP concepts and
integrate our tool with Eclipse platform as Objecteering team does. We develop also
transformation rules from U2TP to TTCN-3 as offered by Telelogic, but we define
the rules on the meta-model level using methods available in Eclipse to implement
our approach.

3 Theoretical Background

The transformation between U2TP and TTCN-3 is obtained by use of the Eclipse
framework for meta-modelling, repository generation and read/write access to model
data in repositories. We store model information in Eclipse meta-modelling
framework (EMF [21]) based repositories. The transformation rules are defined
between source and target meta-models (see Fig. 3) and applied to concrete meta-
model instances, i.e. source and target models in U2TP and TTCN-3 respectively.
We design and develop test specifications in U2TP and perform the transformations
on model level so as to get TTCN-3 test model instances.
 In the following section we describe the main concepts of U2TP and TTCN-3, as
well as introduce Eclipse being the tool used for the transformation.

 From U2TP Models to Executable Tests with TTCN-3 293

Fig. 3. Transformation Architecture

3.1 The UML 2.0 Testing Profile

The UML 2.0 Testing Profile (U2TP) defines a language for designing, visualizing,
specifying, analyzing, constructing and documenting the artefacts of test systems. It
is a test modelling language that can be used with all major object and component
technologies and be applied to test systems in various application domains. U2TP
can be used stand alone for the handling of test artefacts or in an integrated manner
with UML for a handling of system and test artefacts together [4]. The UML 2.0
Testing Profile extends UML 2.0 with test specific concepts like test components,
verdicts, defaults, etc. These concepts are grouped into concepts for test architecture,
test data, test behaviour and time. Being a profile, the U2TP seamlessly integrates
into UML. It is based on the UML 2.0 meta-model [2] and reuses UML 2.0 syntax.
The U2TP concepts are structured into:
− Test architecture concepts defining concepts related to test structure and test

configuration, i.e. the elements and their relationships involved in a test,
− Test behaviours concepts defining concepts related to the dynamic aspects of test

procedures and addressing observations and activities during a test,
− Test data concepts defining concepts for test data used in test procedures, i.e. the

structures and meaning of values to be processed in a test, and
− Time concepts defining concepts for a time quantified definition of test procedures,

i.e. the time constraints and time observation for test execution [9].

A detailed structure of U2TP concepts is given in Table 1.

Table 1. Overview of the Testing Profile concepts [8]

Architecture
concepts

Behaviour concepts Data concepts Time Concepts

SUT Test objective Wildcards Timer
Test components Test case Data pools Time zone

Test context Defaults Data partitions
Test configuration Verdicts Data selectors

Arbiter Test control Coding rules
Scheduler

294 J. Zander et al.

 In [4], the meta-model of U2TP is also introduced and explained. It is the source
meta-model for the transformation and hence a basis for defining the mapping rules
as well as to develop source test models being transformed. It is the input for our
transformation work.
 Although Eclipse provides EMF, the UML2 plug-in of Eclipse [19] and the
profiling mechanism of this plug-in for extensions of UML require that the U2TP
meta-model is written in Java from scratch. The UML2 plug-in is based on the UML
2.0 meta-model [2] but provides a specific realization of this in the context of EMF.
It allows us to develop a U2TP plug-in for Eclipse and to integrate it with the TTCN-
3 plug-in for Eclipse [18].

3.2 TTCN-3 and Its Meta-model

The Testing and Test Control Notation version 3 (TTCN-3 [5]) has been developed
at the European Telecommunication Standardization Institute (ETSI) and has been
also standardized at the International Telecommunication Union (ITU-T). TTCN-3 is
a test specification and implementation language to define test procedures for black-
box testing of distributed systems. It enables tests execution, if appropriate tools and
system under test (SUT) are available. In [10] a meta-model for TTCN-3 is provided,
which represents the concept space of TTCN-3 and enables the use of TTCN-3 in the
context of meta-modelling, repositories and model transformations.
 The main objectives for the development of the TTCN-3 meta-model were:
− The separation of concerns by separating the TTCN-3 concept space and semantics

(represented in the TTCN-3 meta-model) from TTCN-3 syntactic aspects (defined
in the core language and the presentation formats).

− The ability to define the semantics on concept space level without being affected
by syntactic considerations e.g. in case of syntax changes.

− To ease the exchange of TTCN-3 specifications of any presentation format and not
of textual TTCN-3 specifications only.

− To ease the definition of external language mappings to TTCN-3 as such
definitions can reuse parts of the conceptual mapping from other languages.

− To integrate TTCN-3 tools into MDA based processes and infrastructures [1].

 The TTCN-3 test meta-model defines the TTCN-3 concept space with additional
support for the different presentation formats. It does not directly reflect the structure
of a TTCN-3 modules but rather the semantics structure of the TTCN-3 language
definition. It is defined as a single package with concept structures for types and
expressions, modules and scopes, declarations, and statements and operations.
 The TTCN-3 meta-model is the target used in our transformation and another base
for the definition of the mapping rules. Each meta-class of the target meta-model is
named applying the same convention: the logical name for the TTCN-3 concept
represented by the meta-class being prefixed with “TT” to make the meta-classes
easily identifiable as meta-classes from TTCN-3. The meta-model for TTCN-3
language is technically defined in UML by using the Rational Rose tool [22]. The
EMF [21] generator provided by Eclipse was used to generate the TTCN-3
repository by the creation of a corresponding set of Java implementation classes
from this Rose model.

 From U2TP Models to Executable Tests with TTCN-3 295

3.3 Eclipse

The Eclipse Project [19] is an open source software development project dedicated to
providing a robust, full-featured, commercial-quality, industry platform for the
development of highly integrated tools. It is composed of three subprojects: the
Eclipse Platform, the Java Development Tools (JDT), and the Plug-in Development
Environment (PDE). The success of the Eclipse Platform depends on how well it
enables a wide range of tool builders to build advanced integrated tools. The Eclipse
Platform provides building blocks and a foundation for constructing and running
integrated software-development tools [20].
 We use PDE to create the U2TP plug-in for Eclipse based on the UML2 Project
 [19]. Additionally, the Eclipse Modelling Framework (EMF) [21] being a modelling
framework and code generation facility enables us to build partly the tools based on
the structured meta-models. EMF is a Java framework and code generation facility
for building tools and other applications based on meta-models defined in EMF. The
EMF Ecore defines the meta-model for all the models handled by the EMF.

4 Transformation Approach

We define transformation from U2TP models to TTCN-3 models. Since TTCN-3
provides a direct generation of executable tests we provide by this translation also a
direct way towards test code. Based on concrete U2TP specifications the user is
enabled to generate TTCN-3 code, to complete the TTCN-3 definitions if needed
afterwards and to execute his/her tests finally. The idea is to provide transformation
rules which enable to map the concepts on meta-model level. However, the
transformation itself is performed on the model level.
 The UML 2.0 Testing Profile is targeted at UML 2.0 providing selected extensions
to the features of TTCN-3 as well as restricting/omitting other TTCN-3 features. In
general, a mapping from TTCN-3 to U2TP is possible but not the other way around.
For the U2TP to TTCN-3 mapping, restrictions on U2TP level are necessary that
restrict the U2TP definitions to executable models. In the following, we assume
U2TP models which can be mapped to TTCN-3. The principal approach towards the
mapping to TTCN-3 consists of two major steps. U2TP stereotypes and associations
are selected and assigned to TTCN-3 concepts. Afterwards, procedures to collect
required information for the generated TTCN-3 modules are defined [5].
 In Fig. 4, the specific application of U2TP to TTCN-3 transformation is
considered in the general framework of MDA-based testing [11], where platform-
independent tests (PIT) relate to platform-independent system models (PIM) and
platform-specific tests (PST) relate to platform-specific system models (PSM). We
provide in this paper mapping from a more abstract test design in U2TP down to a
detailed technical level in TTCN-3.
 Afterwards, the generated test code is completed in TTCN-3 and changed into
executable test code. The translation from PITs to PSTs for specific target system
platforms is not considered in this work. Also, we do not explicitly model the target
test platform (and hence the specifics of the test code dealing with technical test
platform characteristics) but rely here on the capabilities of TTCN-3 to generate and
adapt executable tests by use of the TTCN-3 runtime interfaces (TRI [6]) and the
TTCN-3 control interfaces (TCI [7]).

296 J. Zander et al.

 The way of getting the test code from TTCN-3 repository is performed by using a
TTCN-3 compiler (e.g. TTthree [18]). After provision of a test adaptor, the tests
originally being designed in U2TP can be performed.

Fig. 4. Transformation of PIT/PST in U2TP to Test Code in TTCN-3

 Mapping rules (provided in the next section) define the connection between
appropriate nodes of source and target meta-models. These nodes are stereotypes
(and extensions of UML 2.0 meta-classes), primitive types or interfaces in case of
U2TP and meta-classes in case of TTCN-3 meta-model.

4.1 Mapping Rules Between U2TP and TTCN-3 on Meta-model Level

Mapping is a mechanism for transforming the elements of a model conforming to a
particular meta-model into elements of another model that conforms to another meta-
model [12]. Mapping is specified using some languages. The description may be in
natural language, an algorithm in an action language, or in a model mapping
language. A desirable quality of a mapping language is portability. This enables use
of a mapping with different tools [13].

The mapping language used in this paper is developed by us. A transformation rule
represents the basic unit of mapping between an arrangement of source elements and an
arrangement of target elements [13]. Transformation rules are used in our case to
express mappings from concepts of the U2TP meta-model to concepts of the TTCN-3
meta-model. For example, we map each U2TP TestComponent stereotype to the
TTComponentType meta-class of TTCN-3. Such a procedure is needed for each
element of the source meta-model. Thus, we map each stereotype, interface, primitive
type, as well as properties, operations and parameters to appropriate meta-classes and
associations of the target meta-model. We used the comparison provided in [4], Chapter
6.6.2 as the base for developing the transformation rules and concretized and completed
these rules (Table 2), which defines the semantic relation between U2TP elements and
TTCN-3 meta-model elements. Mapping rules provided at this part present selected, the
most important, however relatively simple issues. The meta-classes of source meta-
model have a correspondence in target meta-model. Hence, concrete mapping rules
between elements of U2TP and TTCN-3 meta-models are provided.

 From U2TP Models to Executable Tests with TTCN-3 297

Table 2. Relation between U2TP and TTCN-3 meta-model elements (excerpt)

U2TP Element TTCN-3 Meta-model Element

SUT
system association of TTTestcase
TTVariable

TestComponent TTComponentType
TestCase TTTestcase

TestContext
TTModule
TTComponentType for the MTC type

TestConfiguration

TTFunction
TTPortLinkKind
TTCreateTC
TTStartTC

TestObjective TTComment

Arbiter
TTComponentType
TTExternalFunction or TTFunction

Verdict TTVerdict
ValidationAction TTExternalFunction or TTFunction

Default
TTDefaultType
TTAltstep

DefaultApplication TTDefaultKind
Stimuli TTOutputKind
Observation TTInputKind

Coordination
TTOutputKind
TTInputKind

LogAction TTLog
InteractionOperator(alt,determAlt) TTAlternative
InteractionOperator(loop) TTLoopKind
DataSelector TTExternalFunction or TTFunction

DataPartition
TTExternalFunction or TTFunction,
TTTemplate

CodingRule TTWithKind
LiteralAny matching/expression

Timer
TTTimer,
TTTimerType

StartTimerAction TTTimerStatementKind
StopTimerAction TTTimerStatementKind
ReadTimerAction,
TimerRunningAction

TTTimerOp

TimeOutAction,
TimeOut,
TimeOutMessage,

TTTimeOut

Duration TTFloatType
Port TTPort , TTPortKind, TTPortType
Parameters TTModuleParameter

 All the mapping rules presented above are connected mostly with single concepts.
However, there are such elements like time zone or scheduler that cannot be
transformed one by one. The time zone concept cannot be directly expressed in
TTCN-3 so that it has been not yet considered in the mapping. Furthermore, it is
assumed that the scheduler is implicitly present in the TTCN-3 semantics and
therefore realized by every TTCN-3 run time environment, so that there is no need to
transform it.

298 J. Zander et al.

 Further investigations in the context of U2TP diagrams are done. The attention is
focused especially on Class Diagram, Sequence and Interaction Diagrams.
Prototypical implementation of the transformations serves as reliable proof of
described concepts. Here, appropriate algorithms to order mapping of various
elements are investigated. Different approaches for each type of UML 2.0 diagrams
are elaborated.

5 An Example

Hence we would like to introduce an example of diagram mapping so as to show
how the mentioned U2TP meta-model concepts can be mapped to TTCN-3 meta-
model concepts. In the example, we show how the particular elements of U2TP
given in Fig. 5 are mapped to TTCN-3 meta-classes on the base of a Sequence
Diagram.

The sequence diagram in Fig. 5 specifies the behaviour for InvalidPIN() Test
Case. The test objective of this test case is: Verify that if a valid card is inserted, and
an invalid pin-code is entered, the log with the content “PIN incorrect” is stored.

Fig. 5. Sequence Diagram – the behaviour of the InvalidPIN test case

The interaction specifies the expected sequence of messages (Stimuli – e.g.
storeCardData(current), Observation – e.g. display(“Enter PIN”)) between Test
Component1 and SUT1, when used as a test behaviour. During a Test Case, Log(“PIN
incorrect”) is used to store log event information. Validation Action sets the verdict
to pass. Validation Actions use an arbiter to calculate and maintain a verdict for a Test
Case. Test Cases always return verdicts. This is normally done implicitly through the
arbiter and doesn’t have to be shown in the test case behaviour. In the example, an
arbitrated verdict is returned implicitly.

The diagram also illustrates the use of a Timer – t1 and a duration constraint
({0..3}). The Timer is used to specify how long the Test Component1 will wait for the
Observation. Thus the Timer – t1 is started after sending a Stimulus by Test
Component1 to SUT1. Once the message (Observation) has been received by the Test
Component1, the Timer is stopped.

 From U2TP Models to Executable Tests with TTCN-3 299

 Mapping rules given below are extended in such a way that the whole path of the
inheritance of TTCN-3 meta-classes is given. In this way better overview on the
meta-models structure is presented. Additional restrictions, like associations are
provided to enable the recognition of some important relations in the TTCN-3 meta-
model.
 Let us consider TestComponent stereotype, which is used for the creation of
test components and their connection to the SUT and to other test components. It
specifies TestComponent1 in Fig. 6. TestComponent is mapped to
TTComponentType. TTComponentType has a TTScope which is an abstract
meta-class in the TTCN-3 meta-model. It is also a TTComplexType, which inherits
from TTType. TTType inherits from TTDeclaration and this respectively is
associated with TTModule which inherits from TTScope (see Fig. 6).

Fig. 6. Test Component mapping

 Symbols used in the creation of mapping rules are given in Table 3:

Table 3. Symbols and their Meaning used in Mapping Language

Symbols Meaning
meta-class1::meta-class2 inheritance of meta-class2 from meta-class1
meta-class1@meta-class2 meta-class1 is composed of meta-class2

meta-class$enumeration
enumeration is included in the meta-class as

 an attribute type
enumerationExample(value) represents the value of given enumeration

 Applying the transformation rules to all the concepts presented in Fig. 5, we get
the following results. Stimulus is the element of U2TP meta-model responsible
for sending messages, calling operations, and replying to operation invocations. An
element corresponding to Stimulus on model level is i.e. storeCardData(current)
in Fig. 5. Stimulus is mapped to TTOutputKind(OutputKind_call) in our
example. TTOutputKind is included in TTOutput meta-class as an attribute
type. TTOutput meta-class inherits from TTOtherStatements, while this
inherits from TTFunctionElement. TTFunctionElement is associated with
TTModule, which inherits from TTScope.

 Stimulus mapping

U2tp::TestComponent !
TTCN3::TTScope::TTComponentType
TTCN3::TTScope::TTModule@TTDeclaration::TTType
::TTComplexType::TTComponentType

U2tp::Stimulus !
TTCN3::TTScope::TTModule@TTFunctionElement::TTOtherStatements
::TTOutput$TTOutputKind(OutputKind_call)

Fig. 7.

300 J. Zander et al.

U2tp::StartTimerAction !
U2tp::StopTimerAction !
TTCN3::TTScope::TTModule@TTFunctionElement::TTControlStatements
::TTTimerStatement$TTTimerStatementKind(stop, stop)

Observation means according to U2TP specification - receiving messages
(receive), operation invocations (getcall), and operation replies (getreply). An element
corresponding to Observation in the example is e.g. display(“Enter PIN”) in Fig.
5. Here, observation is mapped into TTInputKind (InputKind_getreply).
TTInputKind is included in TTInput meta-class as an attribute type.

TTInput meta-class inherits from TTOtherStatements, while this inherits from
TTFunctionElement. TTFunctionElement is associated with TTModule,
which inherits from TTScope.

Fig. 8. Observation mapping

For the time-quantified control of the communication between two components, a
Timer is used. The U2TP stereotypes StartTimerAction and
StopTimerAction are responsible for t1(2.0) starting and t1 stopping (see Fig. 5).
They are mapped to TTTimerStatementKind(start, stop) respectively.
TTTimerStatementKind is included in TTTimerStatement meta-class as an
attribute type. TTTimerStatement meta-class inherits from
TTControlStatements, while this inherits from TTFunctionElement.
TTFunctionElement is associated with TTModule, which inherits from
TTScope.

Fig. 9. StartTimerAction, StopTimerAction mapping

LogAction is a stereotype of U2TP. Log(“PIN incorrect”) shows its use in the
example (see Fig. 5). TTCN-3 provides a log operation for logging test information in
the test trace. The LogAction is mapped to the TTLog meta-class of the TTCN-3
meta-model. TTLog meta-class inherits from TTControlStatements, while this
inherits from TTFunctionElement. TTFunctionElement is associated with
TTModule, which inherits from TTScope.

Fig. 10. LogAction mapping

U2tp::LogAction !
TTCN3::TTScope::TTModule@TTFunctionElement
::TTControlStatements::TTLog

U2tp::Observation !
TTCN3::TTScope::TTModule@TTFunctionElement::TTOtherStatements::TTI

ntput$ TTInputKind(InputKind_getreply)

 From U2TP Models to Executable Tests with TTCN-3 301

Validation. Action is another stereotype of U2TP. It is an external function resulting
in a value of the specific verdict type. It is mapped to TTExternalFunction
inheriting directly from TTScope in TTCN-3 meta-model (see Fig. 11).

Fig. 11. ValidationAction mapping

 The TTCN-3 code created after applying the transformation according to the rules
defined above is presented in Fig. 12.

Fig. 12. TTCN-3 code retrieved from the U2TP Diagram

 The U2TP test configuration or types definition deserve special attention as they
are examples of more complex transformations. Furthermore, for fully specified test
cases, all elements of a diagram should be transformed so as to get the whole TTCN-
3 code.

In the following, we provide a concrete example of mapping using the whole test
specification. Implementation of all the rules mentioned before is the proof of their
correctness. We obtained a transformer being able to provide tests in TTCN-3.

Not all the diagrams specified in U2TP are necessary condition to get the full
TTCN-3 code. State machine for message flow on one test component presents the
same point of view as sequence diagram of the same test behaviour in the context of
TTCN-3. Thus, not all available diagrams are used so as to obtain the complete
code.

The results of the transformer work for diagram from Fig. 5 are given in Fig. 13.
Behavioural function’s name results from test configuration, while body of it is

defined alternatively either by sequence diagram or state machine for a test component.

U2tp::ValidationAction !
TTCN3::TTScope::TTExternalFunction

302 J. Zander et al.

Fig. 13. Transformer Output - TTCN-3 code retrieved from the U2TP Diagram

6 Outlook and Future Work

This paper is devoted to transformation from U2TP test specifications to TTCN-3
code. Transformation rules are defined on meta-model level. Elements of a source
U2TP repository (defined by a meta-class of the source U2TP meta-model) are
mapped to elements in the target TTCN-3 repository (defined by meta-classes in the
target TTCN-3 meta-model). The transformations follow the principles of MDA-
based testing, which differentiates between platform-independent tests (PIT),
platform-specific tests (PSTs), test code and the relations to the corresponding model
artefacts for the system. In particular, a transformation on PIT level is discussed.
Selected examples of diagram interactions are provided and the transformation
according to the previously defined rules is presented.
 The definition of the transformation rules is almost completed. However, special
cases of diagrams set are to be considered. This applies especially to test designs
specifying Sequence Diagrams, Activity Diagrams or Interaction Overview
Diagrams for the same test behaviours at the same time. Additional algorithms
should be developed to let the transformation recognise the same behaviour so as not
to repeat the same specification in the final TTCN-3 code. Also huge effort must be
undertaken so as to map all possible concepts of U2TP, especially such like timezone
or scheduler. We have created Eclipse U2TP Plug-in based on the UML2 Project.
Furthermore, we developed a tool enabling the transformation and aim to provide the
full transformation with graphical front end in future work.
 The transformation results provide skeletons of TTCN-3 code only, which means
that additional effort must be taken by the user so as to produce complete test
definitions. We believe that a fully automated, complete test generation into TTCN-3
will not be feasible in general as test specifications on detailed concrete level contain
additional definitions, which are not available in abstract test models. Still, the
details of this deserve further investigation. Last but not least, a further aim will be to
consider also the generation of PSTs from PITs and/or from platform-specific system
models (PSMs). Which of these two ways of transformations towards PSTs should
be taken is not clear yet. Research on this will allow us to investigate the relation
between platform specifics on system model and test model side.

 From U2TP Models to Executable Tests with TTCN-3 303

References

[1] OMG: Model-Driven Architecture (MDA) http://www.omg.org/docs/omg/03-06-01.pdf,
http://www.omg.org/docs/formal/02-04-03.pdf

[2] OMG: UML 2.0 Superstructure Final Adopted Specification, www.omg.org/cgi-
bin/doc?ptc/2003-08-02

[3] OMG: MOF Query/Views/Transformations, 2nd Revised Submission, ad/04-01-06, 2004.
[4] OMG: UML 2.0 Testing Profile. Final Adopted Specification, ptc/04-04-02, 2004
[5] ETSI ES 201 873-1 V2.2.1: The Testing and Test Control Notation version 3; Part 1:

TTCN-3 Core Language, 2003.
[6] ETSI ES 201 873-5 V2.2.1: The Testing and Test Control Notation version 3; Part 5:

TTCN-3 Runtime Interfaces, 2003.
[7] ETSI ES 201 873-6 V2.2.1: The Testing and Test Control Notation version 3; Part 6:

TTCN-3 Control Interfaces, 2003.
[8] Z. R. Dai: Model-Driven Testing with UML 2.0, Second European Workshop on Model

Driven Architecture (MDA) with an emphasis on Methodologies and Transformations
(EWMDA'04), Canterbury, England, September 2004.

[9] Z. R. Dai, I. Schieferdecker: Time Concepts for UML 2.0 Based Testing. Workshop on
the usage of the UML profile for Scheduling, Performance and Time (SIVOES 2004),
hold in conjunction with the 10TH IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2004), Toronto, Canada, May 2004

[10] D. Thomas: MDA Revenge of the Modellers or UML Utopia ? IEEESoftware, May/June
2004

[11] I. Schieferdecker, G. Din: A meta-model for TTCN-3. 1st International Workshop on
Integration of Testing Methodologies, ITM 2004, Toledo, Spain, Oct. 2004.

[12] M. Born, I. Schieferdecker, O. Kath and C. Hirai: Combining System Development and
System Test in a Model-centric Approach, RISE 2004, Luxembourg.

[13] G. Caplat, J.L. Sourouille: Considerations about Model Mapping, Workshop in Software
Model Engineering Oct. 2003, San Francisco, USA, http://www.metamodel.com/wisme-
2003/18.pdf

[14] A. Kleppe, J. Warmer, W. Bast: MDA Explained: The Model Driven, Architecture–
Practice and Promise. Addison-Wesley Pub Co, 2003.

[15] Gross, H.: Testing and the UML – a perfect fit. Fraunhofer IESE, Technical Report
110.03E, 2003.

[16] J. Siegel, OMG Staff Strategy Group: Developing in omg’s model-driven architecture.,
2001.

[17] I. Schieferdecker, Z. R. Dai, J. Grabowski, A. Rennoch: The UML 2.0 Testing Profile and
its Relation to TTCN-3, IFIP 15th Intern. Conf. on Testing Communicating Systems -
TestCom 2003, Cannes, France, May 2003.Eclipse UML2 Project, http://www.eclipse.
org/uml2/

[18] Testing Technologies: TTworkbench - TTCN-3 IDE in Eclipse, www.testingtech.de
[19] Eclipse UML2: http://www.eclipse.org/uml2/
[20] Eclipse Platform: http://www.eclipse.org/platform/
[21] Eclipse Modelling Framework: http://www.eclipse.org/emf/
[22] Rational Rose Tool, http://www-306.ibm.com/software/awdtools/developer/datamodeler/
[23] LEIRIOS Test Generator™ tool, http://www.leirios.com/products.php
[24] Objecteering/UML tool,

http://www.objecteering.com/news_events_news_oct2002_eclipse.php
[25] P. Leblanc, White Paper, Implementation of the UML Testing Profile and Production of

Executable Test Cases, Telelogic France, 2003

	Introduction
	Related Work
	Theoretical Background
	The UML 2.0 Testing Profile
	TTCN-3 and Its Meta-model
	Eclipse

	Transformation Approach
	Mapping Rules Between U2TP and TTCN-3 on Meta-model Level

	An Example
	Outlook and Future Work
	References

