

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 1 – 8, 2005.
© IFIP 2005

The Epistemology of Validation and Verification Testing

T.S.E. Maibaum

Department of Computing and Software
McMaster University
tom@maibaum.org

Abstract. We wish to be able to give formal definitions (in the sense of science
or engineering) for concepts like requirements validation and for the
relationship between a requirements specification and an abstract design of the
intended system. Ditto validation of designs and the final executable
application with respect to the original "application concept", on the one hand,
and the requirement specification, on the other. We have been developing a
framework based on the work of the logical empiricists and other analytic
philosophers over the last 80 years to support our understanding of software
engineering concepts. Recent developments (dating from the 80s)in the area of
"confirmation" (of a hypothesis concerning a theory by some (experimental)
evidence) promises to illuminate some of these problematic concepts. In this
talk we address the problem of establishing the very relation between
requirement specifications and scenarios, as used, for example, in UML. The
same framework can also be applied to the problem of testing implementations
against designs, so called verification testing.

1 Introduction

Requirements engineering (RE) is a black art! We are forever confronted by the
assertion that, whilst requirements specifications may be a formal entity, analysable
even in a mathematical sense, it is informally related to an informal “entity”, the so-
called application concept. If we cannot define precisely (and meaningfully) the
statement “this scenario confirms (or discomfirms) this behaviour specification”, then
how can we pretend we know what a behaviour specification (and therefore a
requirements specification) specifies? Suppose further that we are interested in
questions such as the following: Is requirements language X better than Language Y
for defining the requirements of applications of class W? On what basis can we justify
the fact that we like the work reported in [21,32,,22,23] and that it says something
important about requirements engineering?

On what basis can we answer these questions so that the answers can be justified on
a “scientific” or “engineering” basis? If we cannot answer the first question, how
can we begin to address the others? If some entities and relationships are informal,
what is there left aside from anecdote to support requirements “meta-analysis”? The

 Original version co-authored with the late AM Haeberer and with the assistance of

MV Cengarle, then of Institut für Informatik, Ludwig-Maximilians-Universität München.

2 T.S.E. Maibaum

 purpose of this talk is to demonstrate that a framework can be defined, turning the
“informal” entities and relationships of the above discussion into well defined
concepts that are amenable to formal analysis.

2 Gedanken Experiments, Requirement Specifications and
Confirmation

In former papers [16,17, 6,7, 8] we have endeavoured to lay the basis for the
epistemological analysis of software engineering. In [17], we analyse superficially the
relationships among the various objects in a metamodel of the software process we
posited (called W) and which is reproduced in Figure 1.

 () correctnesspo

si
tiv

e
an

al
og

y
(

)
va

li
da

ti
on

 te
st

in
g

HPS
hypothetical

posit

EA
engineering
(software

realisation)
artifact

positive analogy ()

RSP
requirement
specification

SP1
design

specification

SPn
design

specification

no
rm

al
desi

gn / e
ureka

 p
ositi

ve a
nalo

gy (
)

(
) quasi-m

erotic explanation
(

) m
ero

tic
explan

atio
n

(
) merotic explanation

(3) refinem
ent

co
rre

ct
ne

ss
 (

)

elucidation / illum
ination

re
ifi

ca
tio

n
/ r

ea
lis

at
io

n

validation testing

form
al p

roof a
nd/or v

eri
fica

tio
n tes

tin
g

form
al proof and/or verification testing

formal proof, correct construction and/or verification testing

fo
rm

al
 p

ro
of

, c
or

re
ct

 c
on

str
uc

tio
n

an
d/

or

validation testing

 va
lid

atio
n tes

tin
g

reality modified (extended) reality

 c

on
te

xt
 C

T
X

P

 context CTXA

() merotic explanation
formal proof and/or verification testing

 form
al proof, correct construction and/or verification

Fig. 1.

 The Epistemology of Validation and Verification Testing 3

At the leftmost lower corner of this figure we see the factual1 relation HPS+CTXP
! RSP, where HPS is what we called the hypothetical posit of the intended software
artifact EA in [17], CTXP its context, and RSP the requirements specification for EA.
In [17] we claim that the relation !, whose analysis is the purpose of this talk, is
what we called there a quasi merotic explanation.

To be able to study formally the leftmost lower hollow arrow in Figure 1, which is
nothing but the notorious process of ab initio requirements elicitation, we need a
framework in which we can reason about the nature of this process, about the objects
HPS, CTXP, and RSP, and about the relation !. It is the purpose oft his talk to
analyse the nature of this relation and, in order to do that, to establish an adequate
framework for reasoning about it and the objects involved. It is very important to bear
in mind that, in its present state, the Ω meta-model is idealised in various ways; one
of them is that we are considering ab initio development, meaning that we are not
considering legacy artifacts. This means that we consider requirement specifications
as being elicited from (hypothetical) scenarios in which there are no legacy software
artifacts or systems, and therefore, this eliciation process does not involve design
recovery. Moreover, we will assume that there is no existing software artifact or
system from which we can glean a single clue about decomposition; thus, merotic
explanations2 are inhabitants of our post-requirements world.

The process we have in mind for devising a new engineering artifact is as follows.
See the figure at the end of this extended abstract. We have a somewhat vague
requirement (called protoRSP) for a new artifact to be, EA, which at this point is
merely a hypothetical posit HPS. This vague requirement protoRSP is actually a set of
properties we know (or we desire) the artifact to be (represented here by the
hypothetical posit) should exhibit. These properties are of two kinds, i.e., abstract
(theoretical) ones, such as, for instance, behaviours, and their observable counterparts,
i.e., sets of observable instances of them, which we will call evidence E (e.g.,
scenarios). In our engineering setting, evidence is produced both by the operation of
an engineering artifact EA (after its construction!), or by the operation of an
hypothetical posit HPS, as in a gedanken experiment. The sets of such evidence are
part of what we are calling here the context CTXA of the engineering artifact EA, or
the context CTXP of the hypothetical posit, respectively. Then, we construct an
extension of the language belonging to our underlying science/technology and to the
already existing engineering discipline with the necessary symbols, etc., to enable us
to state precisely the requirements specification RSP, and to show how evidence
produced by the operation of the hypothetical posit HPS confirms RSP, and that (if the
status of our current technology makes its construction viable) the resulting engi-
neering artifact EA will be in a certain relation with HPS that enables us to expect that

1 We classify the relationships among the objects in the Ω meta-model into factual and logical,

as we have done in [H&M00]. We give an exact definition of these clasificatory terms below.
2 An exact definition of what a merotic explanation is can be found in [17]. Informally

speaking, we can consider that the structure of the resulting software artifact EA in a software
process satisfying the Ω meta-model (or any of the series of increasingly reified design
specifications SPi) provides an explanation of why the requirements specification predicts
(and retrodicts) correctly its operation. Since this explanation is composed from parts
following EA’s (or SPi’s) structure, it was called “merotic”.

4 T.S.E. Maibaum

EA will also produce evidence that confirms RSP. (As we argue in [17], this relation is
a positive analogy, i.e., HPS " EA. See the figure.) Then, we construct EA, through a
process of design and reification, which adds design and realisation detail to the
above extension.

If, on the one hand, protoRSP is a description in everyday language, or in a
previous stage in the development of our scientific/technological language, of the
evidence produced by HPS and, on the other hand, RSP is the exact description of the
behaviour confirmed by evidence produced by HPS or EA, then we may be tempted to
characterise protoRSP as what Carnap [4] calls an explicandum and the corresponding
requirement specification RSP as its explicatum, both related by an explication3. As
Carnap stated [4] “the task of explication consists in transforming a given more or
less inexact concept into an exact one or, rather, in replacing the first by the second.
We call the given concept (or the term used for it) the explicandum, and the exact
concept proposed to take the place of the first (or the term proposed for it) the
explicatum.”

The analysis of the reason why we said that this is a simplistic viewpoint will
introduce the core points of this talk. Notice that we had distinguished between, on
the one hand, evidence, which is observable (perhaps with the aid of certain apparata),
such as scenarios, and, on the other hand, certain abstract (mathematical) objects,
such as behaviours. These abstract properties are of a very dangerous kind, because if
we become overenthusiastic in their introduction, we can obtain a complete zoo of
scientifically useless abstractions, such as, for instance, phlogiston, vital force, or
entelechy. (Software engineering, as all the novel disciplines whose corpus is not well
defined, is especially prone to accept such useless abstractions.) However, mass in
physics is one of these concepts (as is force); mass is needed to state Newton’s
principle for relating force with acceleration. Otherwise, Newtonian mechanics
cannot be developed, or even stated. If we look to current scientific language, even
that familiar to laymen, we find many abstract terms denoting abstract objects or
properties, such as, for instance, gene, electron, magnetic field, preservation of the
angular momentum, or esprit de corps. For instance, some of Kepler’s laws can be
stated in a language the designata of whose nouns would be accepted by everyone as
observables. However, this is not the case with Newtoninan Dynamics; terms such as
angular momentum, gravitational field, and universal gravitational constant have non
observable designata. Notwithstanding, nobody will say that these terms are useless;
without them Newtonian Mechanics is unthinkable. The difference between Kepler’s
laws and Newtonian mechanics is the difference between empirical generalisations
and scientific theories. This difference resides in their respective predictive powers;
from Kepler’s laws we can infer the movements and positions of the planets, whilst
from Newtonian Mechanics we can infer the same but also particular laws, such as
Kepler’s laws. Unfortunately, it seems that the existence of such terms (nouns) with
non-observable designata, is a must if we want an expressive scientific theory, or a
statement belonging to a scientific theory, and not an empirical generalisation.

3 Notice that in this context (i.e., that of the Philosophy of Science) explication and explanation

are not synonymous; we are using explication in the particular sense we are discussing, and
explanation in the sense of scientific explanation.

 The Epistemology of Validation and Verification Testing 5

However, an exaggerated use of theoretical terms leads us down the path to
metaphysics, so Occam’s razor comes into play. In our case, we have evidence, as for
instance the collection of behavioural data hypothetically generated by an
hypothetical posit, which can be stated in a language the designata of whose nouns are
observable, and we have abstract objects, such as behaviours, which do not designate
observable things, but from which we can infer hypotheses potentially confirmable by
evidence (e.g., scenarios in UML). Thus, the vocabulary of the language whose nouns
designate observable things and properties is smaller than the vocabulary of the
language whose nouns designate representatives of these observable things plus
abstract things and properties. Furthermore, the restriction of observability4 of the
former language makes wider the difference between the two languages, for it is
obvious that universal quantifiers in the former must be finite, i.e., equivalent to
generalised finite conjunctions (neither our senses nor any physical instrument
enables us to observe a whole from infinitely many parts), whilst those of the latter
language can be, and are usually, infinite. Moreover, we can have in the latter
language modalities, such as permission and obligation, and temporal quantifiers,
such as forever, once, and sometime in the future.

The principal problem is, in Clark Glymour’s words [12], “How can evidence
stated in one language confirm hypotheses stated in a language that outstrips the first?
How can one make an inference from statements in the narrower language to
statements in the broader language? The hypotheses of the broader language cannot
be confirmed by their instances, for the evidence, if framed in the narrower tongue,
provides none. Consistency with the evidence is insufficient, for an infinity of
incompatible hypotheses may obviously be consistent with the evidence, and the same
is true if it is required that the hypotheses logically entail the evidence. The structure
of the problem is: what relations between [...] observation statements, on the one
hand, and statements [...] about unobservable things or unobservable properties, on
the other hand, permit statements of the former kind to confirm statements of the
latter kind?”.

From what we have said above, it seems plausible to say that the relation ! is one
of confirmation between the evidence produced by HPS, on the one hand, and RSP,
on the other. As a first approximation we can state the following:

Definition. Evidence E confirms RSP iff we can use some hypotheses deduced from
RSP to deduce from E other hypotheses deducible from RSP.

This idea about the mechanism by which we can decide if a theory agrees or
disagrees with a piece of evidence (observable) was first conceived by Carnap [5] and
later explored and developed by Clark Glymour [12]. Let us call the former
hypotheses in the above definition, bootstrap hypotheses; thus, our definition can be
re-stated as: evidence E confirms RSP iff we can deduce from RSP a set of bootstrap

4 We are using observable, observability, and abstract, without giving a precise definition of

what we are referring to. We will give precise definitions for them, actually for their exact
counterparts, which will have the same spelling but which will actually be different terms
with exact meanings, i.e., designata.

6 T.S.E. Maibaum

subtheories of RSP which enable the deduction from E of other hypotheses deducible
from RSP. It is exactly in the conditions established for the deduction of bootstrap
subtheories where, for instance, the necessary application of Occam’s razor we had
talked about above must be embedded. Such requirements are the source of the
complexity of the confirmation procedure (the so-called bootstrap strategy of
confirmation) we introduce below in the talk.

In discussing confirmation, we must here make something very clear. We need to
separate carefully two different issues. The frst is the mechanism by means of which
we can decide that a certain piece of evidence “agrees” or “disagrees” with a given
theory. We will talk below of two of them: one is that succinctly presented in the
discussion that led to the definition above and the other is the notorious and flawed
hypothetico-deductive method (of Newton and others). The second is the criterion of
confirmation. We can informally explain this issue by contrasting some of the
proposed criteria. One, which we will call Popperian falsifiability (also used in the
hypothetico-deductive method), is: if the evidence disagrees with the theory (we need
some mechanism for deciding this, i.e., the first issue), then the theory should be
discarded; conversely, if the evidence agrees with the theory, then we do not have any
new information about the appropriateness of the theory for describing the phenom-
enon producing the evidence. Another criterion, advanced by Lakatos, says that a
theory is something resulting from a difficult and expensive process and, therefore,
nobody is willing to discard it because of a mere disagreement with a piece of
evidence; so an auxilliary hypothesis is created to explain the disagreement. Finally,
the Carnapian logical measure function [4] presents a criterion of confirmation based
on degrees of confirmation: if the evidence disagrees with the theory, one can blame
the theory or certain auxilliary hypotheses about the experimental method producing
the evidence, the measurement instruments, etc. But actually, as in the Popperian
case, we blame something, often the theory itself. The main difference between the
Carnapian criterion of confirmation and Popperian falsifiability is about what we do
when the theory agrees with the evidence. Here, instead of saying that we do not have
more information about the appropriateness of the theory, we will say that the degree
of confirmation of this theory is greater than the degree of confirmation of a theory
not agreeing with this piece of evidence. Carnap associates with this degree of
confirmation a logical function (which he calls Logical Probability [4]). This logical
function is strongly related with Carnap’s inductive logic (and today with theories
about belief revision).

In this talk we will deal only with the first issue, i.e., how we can decide that a
requirements specification RSP agrees or disagrees with a piece of evidence
hypothetically produced by the hypothetical posit HPS. The second issue will be
treated in a forthcoming paper, since if we adopt the Carnapian logical measure
function, we should inspect also Carnap’s inductive logic and his “continuum of
inductive methods”, which will bring us closer to the issue of requirements elicitation,
and, therefore, to the leftmost lower hollow arrow in Figure 1. However, to be able to
produce an effective setting for this talk, we need to append to the so-called bootstrap
mechanism, which deals with the first issue above, some kind of confirmation crite-
rion. We will use a not very complicated one, which is a modification of one put
forward by Hempel.

 The Epistemology of Validation and Verification Testing 7

References

1. Rudolf Carnap, On Inductive Logic. Philosophy of Science, Vol. 12, 72-97. 1945.
2. Rudolf Carnap, Continuum of Inductive Methods. Univ. of Chicago Press. 1952
3. Rudolf Carnap, Meaning and Necessity. Supplement A, Empiricism, Semantics, and

Ontology. Midway Reprint Edition. 1988.
4. Rudolf Carnap, Logical Foundations of Probability. The University of Chicago Press.

Second Edition. 1962.
5. Rudolf Carnap, An Introduction to the Philosophy of Science (re-edited from Philosophical

Foundations of Physics, Basic Books, 1966). Ed. Martin Gardner, Dover Publications, Inc.
1995.

6. Maria V. Cengarle and Armando Haeberer, Towards an epistemology-based methodology
for verification and validation testing. See http://www. informatik.uni-muenchen.de under
M.V. Cengarle. 1999.

7. María V. Cengarle and Armando M. Haeberer, Specifications, programs, and
confirmation. Proceedings of the Workshop on Requirements, Design, Correct
Construction, And Verification: Mind The Gaps! F.A.S.T. Gesellschaft für angewandte
Softwaretechnologie mbH- Munich April 2000. http://www.fast.de

8. Cengarle, M V., Haeberer, A. M.. A formal approach to specification-based black-box
testing. Proceedings of the Workshop on Modelling Software System Structures in a fastly
moving scenario. June 13-16, 2000. Santa Margherita Ligure, Italia.
www.disi.unige.it/person/FerrandoE/MSSSworkshop.

9. David Christensen, Glymour on evidential relevance, Philosophy of Science. Vol 50. 471-
481, 1983.

10. John Earman and Clark Glymour, What Revisions does Bootstrap Testing Need? A Reply.
Philosophy of Science. Vol. 55. 261-264, 1988.

11. Clark Glymour, Hypothetico-deductivism is Hopeless. Philosophy of Science. Vol. 47.
322-325, 1980.

12. Clark Glymour, Theory and Evidence. Princeton Univ. Press. 1980.
13. Clark Glymour, On testing and evidence. In John Earman ed. Testing Scientific Theories,

Minnesota Studies in the Philosophy of Science, Vol. X. Univesity of Minnesota Press.
1983.

14. Clark Glymour, Revisions of bootstrap testing, Philosophy of Science. Vol 50. 626-629,
1983.

15. Carl G. Hempel, International Encyclopedia of Unified Science, Vol. 2, No. 7:
Fundamentals of Concept Formation in Empirical Science. University of Chicago Press.
23-38, 1952.

16. Armando M. Haeberer and Tom S. E. Maibaum, The very idea of software development
environments: a conceptual architecture for the arts environment. In B. Nuseibeh and D.
Redmiles, eds. Proc. of 13th IEEE Int. Conf. on Automated Software Engineering (ASE-
98), IEEE CS Press, 260–269. 1998.

17. Armando M. Haeberer and Tom S. E. Maibaum, Scientific rigour, an answer to a
pragmatic question: a linguistic framework for software engineering, to appear in Proc. of
ICSE2001, 23rd Int. Conf. on Software Engineering. Toronto 2001.

18. Mary Hesse. The Structure of Scientific Inference. University of California Press. 1974.
19. Jako Hintikka, Towards a Theory of Inductive Generalization. In Y. Bar-Hillel, Proc. of

the 1964 Congress for Logic, Methodology, and the Philosophy of Science. 274-288.
Stanford University Press. 1962.

8 T.S.E. Maibaum

20. Michael Jackson, Formal Methods and Traditional Engineering. Journal of Systems and
Software special issue on Formal Methods Technology Transfer. Vol. 40. 191-194. 1998.

21. Michael A. Jackson and Pamela Zave, Deriving Specifications from requirements: an
Example. Proc. ICSE’95 - 17th International Conference on SE. IEEE Computer Society
Press, 15-24. 1995.

22. Axel van Lamsweerde and Emmanuel Letier, Handling Obstacles in Goal-driven
Requirements Engineering. IEEE Transactions on SE, Vol. 26, September 2000.

23. Axel van Lamsweerde and L. Willemet, Inferring Declarative Requirements Specifications
from Operational Scenarios. IEEE Transactions on SE, Vol. 24, No. 12, 1089-1114.
December 1998.

24. Tom S.E. Maibaum, Mathematical Foundations of Software Engineering: a roadmap. In
Eds. A. Finkelstein and J. Kramer, Future of Software Engineering, ICSE 2000. IEEE C.S.
Press. 2000.

25. 25.E. Nagel, The Structure of Science. Harcourt, Brace. 1961.
26. Bryan G. Norton, Linguistic Frameworks and Ontology: A Re-Examination of Carnap's

Metaphilosophy. Mouton Publishers. 1977.
27. Karl R Popper, The Logic of Scientific Discovery. Hutchinson, London 1968.
28. Herbert Simon, The axiomatization of physical theories. Philosophy of Science. Vol 37.

16-26, 1970.
29. Wlad M. Turski, An Essay on Software Engineering at the Turn of Century. In Ed. Tom

Maibaum, Proc.of Fundamental Approaches to Software Engineering 2000, LNCS 1783,
Springer. 2000.

30. Wlad M. Turski and Tom S.E. Maibaum, The Specification of Computer Programs.
Addison-Wesley, 1987.

31. Walter G. Vincenti, What Engineers Know and How They Know It : Analytical Studies
from Aeronautical History. Johns Hopkins U. Press. 1993.

32. Pamela Zave and Michael A. Jackson, Four Dark Corners of Requirements Engineering.
ACM Tansactions on SE and Methodology, Vol. 6, No. 1. 1-30. 1997.

33. Jan M. Zytkow, What revisions does bootstrap testing need?. Philosophy of Science. Vol
53. 101-109, 1986.

	Introduction
	Gedanken Experiments, Requirement Specifications and Confirmation
	References

