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Abstract. We wish to be able to give formal definitions (in the sense of science 
or engineering) for concepts like requirements validation and for the 
relationship between a requirements specification and an abstract design of the 
intended system.  Ditto validation of designs and the final executable 
application with respect to the original "application concept", on the one hand, 
and the requirement specification, on the other.  We have been developing a 
framework based on the work of the logical empiricists and other analytic 
philosophers over the last 80 years to support our understanding of software 
engineering concepts. Recent developments (dating from the 80s)in the area of 
"confirmation" (of a hypothesis concerning a theory by some (experimental) 
evidence) promises to illuminate some of these problematic concepts. In this 
talk we address the problem of establishing the very relation between 
requirement specifications and scenarios, as used, for example, in UML. The 
same framework can also be applied to the problem of testing implementations 
against designs, so called verification testing. 

1   Introduction  

Requirements engineering (RE) is a black art!  We are forever confronted by the 
assertion that, whilst requirements specifications may be a formal entity, analysable 
even in a mathematical sense, it is informally related to an informal “entity”, the so-
called application concept.  If we cannot define precisely (and meaningfully) the 
statement “this scenario confirms (or discomfirms) this behaviour specification”, then 
how can we pretend we know what a behaviour specification (and therefore a 
requirements specification) specifies? Suppose further that we are interested in 
questions such as the following: Is requirements language X better than Language Y 
for defining the requirements of applications of class W? On what basis can we justify 
the fact that we like the work reported in [21,32,,22,23] and that it says something 
important about requirements engineering? 

On what basis can we answer these questions so that the answers can be justified on 
a “scientific” or “engineering” basis? If we cannot answer the first question, how  
can we begin to address the others? If some entities and relationships are informal, 
what is there left aside from anecdote to support requirements “meta-analysis”? The 
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 purpose of this talk is to demonstrate that a framework can be defined, turning the 
“informal” entities and relationships of the above discussion into well defined 
concepts that are amenable to formal analysis. 

2   Gedanken Experiments, Requirement Specifications and 
Confirmation 

In former papers [16,17, 6,7, 8] we have endeavoured to lay the basis for the 
epistemological analysis of software engineering. In [17], we analyse superficially the 
relationships among the various objects in a metamodel of the software process we 
posited (called W) and which is reproduced in Figure 1. 
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At the leftmost lower corner of this figure we see the factual1 relation HPS+CTXP 
! RSP, where HPS is what we called the hypothetical posit of the intended software 
artifact EA in [17], CTXP its context, and RSP the requirements specification for EA. 
In [17] we claim that the relation  !, whose analysis is the purpose of this talk, is 
what we called there a quasi merotic explanation.  

To be able to study formally the leftmost lower hollow arrow in Figure 1, which is 
nothing but the notorious process of ab initio requirements elicitation, we need a 
framework in which we can reason about the nature of this process, about the objects 
HPS, CTXP, and RSP, and about the relation !. It is the purpose oft his talk to 
analyse the nature of this relation and, in order to do that, to establish an adequate 
framework for reasoning about it and the objects involved. It is very important to bear 
in mind that, in its present state, the Ω meta-model is idealised in various ways; one 
of them is that we are considering ab initio development, meaning that we are not 
considering legacy artifacts. This means that we consider requirement specifications 
as being elicited from (hypothetical) scenarios in which there are no legacy software 
artifacts or systems, and therefore, this eliciation process does not involve design 
recovery. Moreover, we will assume that there is no existing software artifact or 
system from which we can glean a single clue about decomposition; thus, merotic 
explanations2 are inhabitants of our post-requirements world.  

The process we have in mind for devising a new engineering artifact is as follows. 
See the figure at the end of this extended abstract. We have a somewhat vague 
requirement (called protoRSP) for a new artifact to be, EA, which at this point is 
merely a hypothetical posit HPS. This vague requirement protoRSP is actually a set of 
properties we know (or we desire) the artifact to be (represented here by  the 
hypothetical posit) should exhibit. These properties are of two kinds, i.e., abstract 
(theoretical) ones, such as, for instance, behaviours, and their observable counterparts, 
i.e., sets of observable instances of them, which we will call evidence E (e.g., 
scenarios). In our engineering setting, evidence is produced both by the operation of 
an engineering artifact EA (after its construction!), or by the operation of an 
hypothetical posit HPS, as in a gedanken experiment. The sets of such evidence are 
part of what we are calling here the context CTXA of the engineering artifact EA, or 
the context CTXP of the hypothetical posit, respectively. Then, we construct an 
extension of the language belonging to our underlying science/technology and to the 
already existing engineering discipline with the necessary symbols, etc., to enable us 
to state precisely the requirements specification RSP, and to show how evidence 
produced by the operation of the hypothetical posit HPS confirms RSP, and that (if the 
status of our current technology makes its construction viable) the resulting engi-
neering artifact EA will be in a certain relation with HPS that enables us to expect that 
                                                           
1 We classify the relationships among the objects in the Ω meta-model into factual and logical, 

as we have done in [H&M00]. We give an exact definition of these clasificatory terms below. 
2  An exact definition of what a merotic explanation is can be found in [17]. Informally 

speaking, we can consider that the structure of the resulting software artifact EA in a software 
process satisfying the Ω meta-model (or any of the series of increasingly reified design 
specifications SPi) provides an explanation of why the requirements specification predicts 
(and retrodicts) correctly its operation. Since this explanation is composed from parts 
following EA’s (or SPi’s) structure, it was called “merotic”.  
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EA will also produce evidence that confirms RSP. (As we argue in [17], this relation is 
a positive analogy, i.e., HPS " EA. See the figure.) Then, we construct EA, through a 
process of design and reification, which adds design and realisation detail to the 
above extension. 

If, on the one hand, protoRSP is a description in everyday language, or in a 
previous stage in the development of our scientific/technological language, of the 
evidence produced by HPS and, on the other hand, RSP is the exact description of the 
behaviour confirmed by evidence produced by HPS or EA, then we may be tempted to 
characterise protoRSP as what Carnap [4] calls an explicandum and the corresponding 
requirement specification RSP as its explicatum, both related by an explication3. As 
Carnap stated [4] “the task of explication consists in transforming a given more or 
less inexact concept into an exact one or, rather, in replacing the first by the second. 
We call the given concept (or the term used for it) the explicandum, and the exact 
concept proposed to take the place of the first (or the term proposed for it) the 
explicatum.” 

The analysis of the reason why we said that this is a simplistic viewpoint will 
introduce the core points of this talk. Notice that we had distinguished between, on 
the one hand, evidence, which is observable (perhaps with the aid of certain apparata), 
such as scenarios, and, on the other hand, certain abstract (mathematical) objects, 
such as behaviours. These abstract properties are of a very dangerous kind, because if 
we become overenthusiastic in their introduction, we can obtain a complete zoo of 
scientifically useless abstractions, such as, for instance, phlogiston, vital force, or 
entelechy. (Software engineering, as all the novel disciplines whose corpus is not well 
defined, is especially prone to accept such useless abstractions.) However, mass in 
physics is one of these concepts (as is force); mass is needed to state Newton’s 
principle  for relating force with acceleration. Otherwise, Newtonian mechanics 
cannot be developed, or even stated. If we look to current scientific language, even 
that familiar to laymen, we find many abstract terms denoting abstract objects or  
properties, such as, for instance, gene, electron, magnetic field, preservation of the 
angular momentum, or esprit de corps. For instance, some of Kepler’s laws can be 
stated in a language the designata of whose nouns would be accepted by everyone as 
observables. However, this is not the case with Newtoninan Dynamics; terms such as 
angular momentum, gravitational field, and universal gravitational constant have non 
observable designata. Notwithstanding, nobody will say that these terms are useless; 
without them Newtonian Mechanics is unthinkable. The difference between Kepler’s 
laws and Newtonian mechanics is the difference between empirical generalisations 
and scientific theories. This difference resides in their respective predictive powers; 
from Kepler’s laws we can infer the movements and positions of the planets, whilst 
from Newtonian Mechanics we can infer the same but also particular laws, such as 
Kepler’s laws. Unfortunately, it seems that the existence of such terms (nouns) with 
non-observable designata, is a must if we want an expressive scientific theory, or a 
statement belonging to a scientific theory, and not an empirical generalisation. 

                                                           
3 Notice that in this context (i.e., that of the Philosophy of Science) explication and explanation 

are not synonymous; we are using explication in the particular sense we are discussing, and 
explanation in the sense of scientific explanation. 
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However, an exaggerated use of theoretical terms leads us down the path to 
metaphysics, so Occam’s razor comes into play. In our case, we have evidence, as for 
instance the collection of behavioural data hypothetically generated by an 
hypothetical posit, which can be stated in a language the designata of whose nouns are 
observable, and we have abstract objects, such as behaviours, which do not designate 
observable things, but from which we can infer hypotheses potentially confirmable by 
evidence (e.g., scenarios in UML). Thus, the vocabulary of the language whose nouns 
designate observable things and properties is smaller than the vocabulary of the 
language whose nouns designate representatives of these observable things plus 
abstract things and properties. Furthermore, the restriction of observability4 of the 
former language makes wider the difference between the two languages, for it is 
obvious that universal quantifiers in the former must be finite, i.e., equivalent to 
generalised finite conjunctions (neither our senses nor any physical instrument 
enables us to observe a whole from infinitely many parts), whilst those of the latter 
language can be, and are usually, infinite. Moreover, we can have in the latter 
language modalities, such as permission and obligation, and temporal quantifiers, 
such as forever, once, and sometime in the future. 

The principal problem is, in Clark Glymour’s words [12], “How can evidence 
stated in one language confirm hypotheses stated in a language that outstrips the first? 
How can one make an inference from statements in the narrower language to 
statements in the broader language? The hypotheses of the broader language cannot 
be confirmed by their instances, for the evidence, if framed in the narrower tongue, 
provides none. Consistency with the evidence is insufficient, for an infinity of 
incompatible hypotheses may obviously be consistent with the evidence, and the same 
is true if it is required that the hypotheses logically entail the evidence. The structure 
of the problem is: what relations between [...] observation statements, on the one 
hand, and statements [...] about unobservable things or unobservable properties, on 
the other hand, permit statements of the former kind to confirm statements of the 
latter kind?”. 

From what we have said above, it seems plausible to say that the relation ! is one 
of confirmation between the evidence  produced by HPS, on the one hand, and RSP, 
on the other. As a first approximation we can state the following: 

Definition. Evidence E confirms RSP iff  we can use some hypotheses deduced from 
RSP to deduce from E other hypotheses deducible from RSP. 

This idea about the mechanism by which we can decide if a theory agrees or 
disagrees with a piece of evidence (observable) was first conceived by Carnap [5] and 
later explored and developed by Clark Glymour [12]. Let us call the former 
hypotheses in the above definition, bootstrap hypotheses; thus, our definition can be 
re-stated as: evidence E confirms RSP iff we can deduce from RSP a set of bootstrap 

                                                           
4 We are using observable, observability, and abstract, without giving a precise definition of 

what we are referring to. We will give precise definitions for them, actually for their exact 
counterparts, which will have the same spelling but which will actually be different terms 
with exact meanings, i.e., designata. 
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subtheories of RSP which enable the deduction from E of other hypotheses deducible 
from RSP. It is exactly in the conditions established for the deduction of bootstrap 
subtheories where, for instance, the necessary application of Occam’s razor we had 
talked about above must be embedded. Such requirements are the source of the 
complexity of the confirmation procedure (the so-called bootstrap strategy of 
confirmation) we introduce below in the talk. 

In discussing confirmation, we must here make something very clear. We need to 
separate carefully two different issues. The frst is the mechanism by means of which 
we can decide that a certain piece of evidence “agrees” or “disagrees” with a given 
theory. We will talk below of two of them: one is that succinctly presented in the 
discussion that led to the definition above and the other is the notorious and flawed 
hypothetico-deductive method (of Newton and others). The second is the criterion of 
confirmation. We can informally explain this issue by contrasting some of the 
proposed criteria. One, which we will call Popperian falsifiability (also used in the 
hypothetico-deductive method), is: if the evidence disagrees with the theory (we need 
some mechanism for deciding this, i.e., the first issue), then the theory should be 
discarded; conversely, if the evidence agrees with the theory, then we do not have any 
new information about the appropriateness of the theory for describing the phenom-
enon producing the evidence. Another criterion, advanced by Lakatos, says that a 
theory is something resulting from a difficult and expensive process and, therefore, 
nobody is willing to discard it because of a mere disagreement with a piece of 
evidence; so an auxilliary hypothesis is created to explain the disagreement. Finally, 
the Carnapian logical measure function [4] presents a criterion of confirmation based 
on degrees of confirmation: if the evidence disagrees with the theory, one can blame 
the theory or certain auxilliary hypotheses about the experimental method producing 
the evidence, the measurement instruments, etc. But actually, as in the Popperian 
case, we blame something, often the theory itself. The main difference between the 
Carnapian criterion of confirmation and Popperian falsifiability is about what we do 
when the theory agrees with the evidence. Here, instead of saying that we do not have 
more information about the appropriateness of the theory, we will say that the degree 
of confirmation of this theory is greater than the degree of confirmation of a theory 
not agreeing with this piece of evidence. Carnap associates with this degree of  
confirmation a logical function (which he calls Logical Probability [4]). This logical 
function is strongly related with Carnap’s inductive logic (and today with theories 
about belief revision). 

In this talk we will deal only with the first issue, i.e., how we can decide that a 
requirements specification RSP agrees or disagrees with a piece of evidence 
hypothetically produced by the hypothetical posit HPS. The second issue will be 
treated in a forthcoming paper, since if we adopt the Carnapian logical measure 
function, we should inspect also Carnap’s inductive logic and his “continuum of 
inductive methods”, which will bring us closer to the issue of requirements elicitation, 
and, therefore, to the leftmost lower hollow arrow in Figure 1. However, to be able to 
produce an effective setting for this talk, we need to append to the so-called bootstrap 
mechanism, which deals with the first issue above, some kind of confirmation crite-
rion. We will use a not very complicated one, which is a modification of one put 
forward by Hempel. 
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