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Abstract. This study proposes a novel forecasting approach – an adaptive 
smoothing neural network (ASNN) – to predict foreign exchange rates. In this 
new model, adaptive smoothing techniques are used to adjust the neural net-
work learning parameters automatically by tracking signals under dynamic 
varying environments. The ASNN model can make the network training proc-
ess and convergence speed faster, and make network’s generalization stronger 
than the traditional multi-layer feed-forward network (MLFN) model does. To 
verify the effectiveness of the proposed model, three major international cur-
rencies (British pounds, euros and Japanese yen) are chosen as the forecasting 
targets. Empirical analyses reveal that the proposed novel forecasting model 
outperforms the other comparable models. Furthermore, experimental results 
also show that the proposed model is an effective alternative approach for for-
eign exchange rate forecasting. 

1   Introduction 

The difficulty in predicting foreign exchange rates, due to their high volatility and 
complexity, has long been an imperative concern in international financial markets as 
many econometric methods are unable to produce significantly better forecasts than 
the random walk (RW) model [1]. Recent studies provide some evidence that nonlin-
ear models are able to produce better predictive results, ameliorating the performance 
of the simple RW model. Of the various nonlinear models, the artificial neural net-
work (ANN) model has emerged as a strong alternative for predicting exchange rates. 
As claimed by Grudnitski and Osburn [2], neural networks are particularly well suited 
for finding accurate solutions in an environment characterized by complex, noisy, 
irrelevant or partial information. Literature documenting this research effort is quite 
diverse and involves different architectural designs. Some examples are presented. 
Early applications of neural networks in forecasting chaotic time series have been 
performed by Lapedes and Farker [3]. Weigend et al. [4] and Refenes et al. [5] ap-



524 L. Yu, S. Wang, and K.K. Lai 

 

plied multilayer forward network (MLFN) models in their forecasts of foreign ex-
change prices. Weigend’s model performance was tested in terms of accuracy, giving 
support to nonrandom behavior. Refenes’ work extended Weigend’s research by add-
ing a validity test to the model’s performance and compared the results with those of 
the forward rate, thereby providing added support to the forecasting ability of neural 
networks in the foreign exchange market. Tenti [6] applied recurrent neural network 
(RNN) models to forecast exchange rates. Hsu et al. [7] developed a clustering neural 
network (CNN) model to predict the direction of movements in the USD/DEM ex-
change rate. Their experimental results suggested that their proposed model achieved 
better performance relative to other indicators. De Matos [8] compared the strength of 
a MLFN with that of a RNN based on the forecasting of Japanese yen futures. Like-
wise, Kuan and Liu [9] provided a comparative evaluation of MLFN’s performance 
and an RNN for the prediction of an array of commonly traded exchange rates. In a 
more recent study by Leung et al. [10], MLFN’s forecasting accuracy was compared 
with the general regression neural network (GRNN). The study showed that the 
GRNN possessed a greater forecasting strength relative to MLFN with respect to a 
variety of currency rates. Zhang and Berardi [11] adopted an ensemble method for 
exchange rate forecasting and obtained better results than those under a single net-
work model. Chen and Leung [1] used an error correction neural network (ECNN) 
model to predict exchange rates and good forecasting results can be obtained with 
their model. 

Although a handful of studies exist on neural network applications in foreign ex-
change markets, most of the literature focuses on the MLFN [1-5, 8-10, 12-15]. How-
ever, there are several limitations to the MLFN. For example, convergence speed of 
the MLFN algorithm is often slow, thus making the network learning time long. Fur-
thermore, it is easy for the optimal solution to be trapped into local minima thus mak-
ing generalization capability weak. Therefore, we propose an adaptive smoothing 
technique to overcome these limitations to predict the daily exchange rates for three 
major internationally traded currencies: British pounds, euros and Japanese yen. In 
order to provide a fair and robust evaluation of the ASNN model relative to perform-
ance, the forecasting performance of the proposed ASNN model is compared with 
those of the MLFN model, which is used as the benchmark model. The rest of this 
article is organized as follows. Section 2 describes the ASNN model in detail. Section 
3 gives an experiment and reports the results. And Section 4 concludes the article. 

2   Adaptive Smoothing Neural Network for Forecasting 

2.1   The Introduction of Neural Networks 

Artificial neural networks (ANNs) – originally developed to mimic neural networks, 
in particular the human brain – are composed of a number of interconnected simple 
processing elements called neurons or nodes. Each node receives an input signal from 
other nodes or external inputs; after processing the signals locally through a transfer 
function, a transformed signal is output to other nodes or final outputs. ANNs are 
characterized by the network architecture; that is, the number of layers, the number of 
nodes in each layer and how the nodes are connected. In a popular form, the multi-
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layer feed-forward network (MLFN), all nodes and layers are arranged in a feed-
forward manner. The first or the lowest layer is an input layer where external informa-
tion is received. The last or the highest layer is an output layer where the network 
produces the model solution. In between, there are one or more hidden layers which 
are critical for ANNs to identify the complex patterns in the data. All nodes in adja-
cent layers are connected by acyclic arcs from a lower layer to a higher layer. ANNs 
are already one of the types of models that are able to approximate various nonlineari-
ties in the data, and this makes them popular with academics and practitioners. 

However, there are several drawbacks to the popular MLFN. First of all, the con-
vergence speed of the MLFN algorithm is often slow, thus making network learning 
time long. Second, it is easy for the optimal solution obtained to be trapped into local 
minima, thus making generalization capability weak. Finally, the question of how to 
select reasonable network architecture is still an intractable problem.  

In view of the above problems, in the following subsection we propose a novel al-
gorithm to improve the MLFN by introducing adaptive smoothing techniques. 

2.2   The Adaptive Smoothing Neural Network Model 

In this study, adaptive smoothing techniques are used to adjust the neural network 
learning parameters automatically in terms of tracking signals under dynamic varying 
environments. This yields a new weight adjustment algorithm in virtue of quality 
control (QC) concept. In MLFN, model errors are usually the squared error or mean 
squared error (MSE). But using these error metrics makes it difficult to capture devia-
tions between actual values and network output values (or expected values). In the 
process of neural network learning, adaptive smoothing algorithms can utilize ordi-
nary error and mean absolute deviation (MAD) as a supplement of error measure to 
adjust the network’s parameters (i.e., learning weights). With the aid of cumulative 
ordinary error (COE), MAD, and derivative tracking signal (TS), an adaptive smooth-
ing neural network model can be formulated. 

Assume that a network with m layers has n nodes, the transfer function of every 

node is usually a sigmoid function (i.e., 
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If TS is “large”, this means that COE(N) is large relative to the mean absolute de-
viation MAD(N). This in turn says that the network output is producing errors that are 
either consistently positive or consistently negative. That is, a large value of TS im-
plies that the network output is producing forecasts that are either consistently smaller 
or consistently larger than the actual values that are being forecast. Since an “accu-
rate” forecasting system should be producing roughly one half positive errors and one 
half negative errors, a large value of TS indicates that the forecast output is not reli-
able. In practice, if TS exceeds a control limit, denoted by θ, for two or more con-
secutive periods, this is taken as a strong indication that the forecast errors have been 
larger than an accurate forecasting system can reasonably be expected to produce. In 
our study, the control limitθis generally taken to be 3σ for a neural network model 
with the aid of the ‘3σ limits theory’ proposed by Shewhart [16]. 

If the error signal indicates that adjustment action is needed, there are several pos-
sibilities. One possibility is that the model needs to be changed. To do this, input 
variables may be added or deleted to obtain a better representation of the time series. 
Another possibility is that the model being used does not need to be changed, but the 
estimates of the model’s parameters need to be changed. When using a neural net-
work model, this is accomplished by changing parameters (i.e., model weights and 
bias). 

Now we present the parameter adjustment process. Define the error gradi-
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The error jkδ is propagated back to the lower layers in terms of Equations (6) and (9).  

In order for the network to learn, the value of each weight has to be adjusted in pro-
portion to each unit’s contribution to the total error in Equations (6) and (9). The 
incremental change in each weight for each learning iteration is computed using 
Equations (10) and (11) in the following: 

jkikjkij cOcW ϕδ ⋅+⋅⋅=∆ 21  (10) 

where c1 is a learning rate (0≤c1<1), c2 is a positive constant that, being less than 1.0, 
is the smoothing rate to smooth out the weigh changes; and 
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It should be noted that there is a difference between our weight adjustment and the 
traditional momentum term. The traditional momentum term is only used to acceler-
ate the neural network learning speed, while our weight adjustment cannot only in-
crease learning speed but can also adjust the network search path and speed network 
convergence and improve neural network learning performance. 

For convenience, we give the detailed algorithm for ASNN in the sequel: 

(1) Initialize random weights to avoid saturation in the learning process. 
(2) Iterate the following procedures, until error goals are satisfactory 

a. For k=1 to N 
(i) Compute Oik, netjk, COE(N), MAD(N) and kŷ  (forward process) 

(ii) Compute jkδ  from the output layer to the preceding layer in-

versely (backward process) 
b. For any nodes in the same layer, compute jkδ  according to Equations (6) 

and (9) 
(3) Adjust weights with Equations (10) and (11) in terms of error gradient and 

tracking signals. 

This completes the introduction of the ASNN algorithm. Usually, we can obtain the 
following benefits relative to traditional MLFN algorithms. First of all, learning error 
limits can be controlled via the corresponding program, making the search space 
smaller and learning accuracy higher. Second, model parameters can be adjusted 
adaptively in term of tracking signals, thus making network learning more efficient. 
Third, the search path can be adjusted by a smoothing factor and making it easier to 
obtain the network optimal solution than by using the MLFN algorithm. 

To summarize, adaptive smoothing neural networks can adjust the model parame-
ters adaptively and automatically via tracking signals, thus making the network search 
and convergence speed faster and avoiding local minima as far as possible. 
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2.3   ASNN for Time Series Forecasting 

An adaptive smoothing neural network can be trained by the historical data of a time 
series in order to capture the nonlinear characteristics of the specific time series. The 
model parameters (such as connection weights and nodes biases) will be adjusted 
iteratively by a process of minimizing the forecasting errors (e.g., MSE). For time 
series forecasting, the computational form of the ASNN model with three-layer net-
work connection is expressed as 

t
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where aj (j = 0, 1, 2, …, q) is a bias on the jth unit, and wij ( i = 1, 2, …, p; j =  1, 2, 
…, q ) is the connection weight between layers of the model, f(•) is the transfer func-
tion of the hidden layer, p is the number of input nodes and q is the number of hidden 
nodes. Actually, the ASNN model in (12) performs a nonlinear functional mapping 
from the past observation (xt-1, xt-2, …, xt-p) to the future values xt, i.e., 

tptttt vxxxgx ξ+= −−− ),,,,( 21 !  (13) 

where v is a vector of all parameters and g is a nonlinear function determined by the 
network structure and connection weights. Thus, in some senses, the ASNN model is 
equivalent to a nonlinear autoregressive (NAR) model [15]. To verify the effective-
ness of the ASNN model, a simulation study is presented in the following section. 

3   Experiment  tudy  

3.1   Data Sources 

We use three different datasets in our forecast performance analysis. The data used 
are daily and are obtained from Pacific Exchange Rate Service 
(http://fx.sauder.ubc.ca/), provided by Professor Werner Antweiler, University of 
British Columbia, Vancouver, Canada. They consist of the US dollar exchange rate 
against each of the three currencies (EUR, GBP and JPY) with which it has been 
studied in this research. We take the daily data from 1 January 2000 to 31 October 
2002 as in-sample data sets, and we take the data from 1 November 2002 to 31 De-
cember 2002 as evaluation test sets or out-of-sample datasets (partial data sets exclud-
ing holidays), which are used to evaluate the good or bad performance of the predic-
tions, based on evaluation measurements. In order to save space, the original data are 
not listed in the paper, detailed data can be obtained from the website. In addition, to 
examine the forecasting performance, the normalized mean squared error (NMSE) 
[15] and directional change statistics of exchange rate movement (Dstat) [14, 15] are 
employed here. 

3.2   Experimental Results 

When the data are prepared, we begin the ASNN model’s training and learning proc-
ess. In these experiments, we prepare 752 data (two years’ data excluding public holi-
days). We use the first 22 months’ data to train and validate the network, and use the 

 S



 ASNNs in Foreign Exchange Rate Forecasting 529 

 

last two months’ data for prediction testing. For convenience, the three-day-ahead 
forecasting results of three major international currencies using the proposed ASNN 
model are shown in Table 1. 

Table 1. Forecast performance evaluation for the three exchange rates 

British pounds Euros Japanese yen Exchange 
rates MLFN ASNN MLFN ASNN MLFN ASNN 

NMSE 0.5534 0.1254 0.2137 0.0896 0.2737 0.1328 
Dstat(%) 55.00 77.50 57.50 72.50 52.50 67.50 

As can be seen from Table 1, we can conclude that: (i) from the viewpoint of 
NMSE indicator, the ASNN model performs consistently better than the MLFN 
model; (ii) furthermore, the NMSE of the MLFN model is much larger than that of the 
ASNN model, indicating that adaptive smoothing techniques can effectively control 
error changes and significantly improve network performance; and (iii) from the Dstat 

point of view, the correct number of direction of exchange rate movements increases 
when using the ASNN model. Among these, the increase in the British pound rate is 
the largest, while the increase in the Japanese yen rate is the smallest. This suggests 
that there may be some additional factors that need to be studied in relation to the 
Japanese yen. One possible reason is that the Japanese yen exchange rate is more 
volatile than that of the British pound; another might be that the market for yen is 
bigger and more efficient than the market for British pounds. However, we also find 
that it is feasible to predict exchange rates using the ASNN model, and that the results 
are promising. 

4   Concluding Remarks and Future Research 

This exploratory research examines the potential of using an ASNN model to predict 
main international currency exchange rates. Our empirical results suggest that the 
ASNN forecasting model may provide better forecasts than the traditional MLFN 
forecasting model. The comparative evaluation is based on a variety of statistics such 
as NMSE and Dstat. For all currencies included in our empirical investigation, the 
ASNN model outperforms the traditional MLFN model in terms of NMSE and Dstat. 
Furthermore, our experimental analyses reveal that the NMSE and Dstat for three cur-
rencies using the ASNN model are significantly better than those using the MLFN 
model. This implies that the proposed ASNN forecasting model can be used as a fea-
sible solution for exchange rate prediction. 

However, our work also highlights some problems that need to be addressed fur-
ther. For example, the accuracy of rolling forecasting is still unsatisfactory for certain 
currencies, such as the Japanese yen. Of course, the above problems show possible 
directions for future work in formulating a generic adaptive smoothing neural network 
prediction model for exchange rate prediction as follows: 

(i) As foreign exchange markets constitute a very complex system, more factors 
that influence the exchange rate movement should be considered in future research. 
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(ii) A new adaptive smoothing algorithm that improves the traditional MLFN 
model should be added to neural network software packages so that users working in 
other domains can more easily utilize new neural network models in their work. 
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