Tools for Collaborative VR Application
Development

Adrian Haffegee!, Ronan Jamieson!, Christoph Anthes?,
and Vassil Alexandrov?

L Centre for Advanced Computing and Emerging Technologies,
The University of Reading, Reading, RG6 6AY, United Kingdom
sirO4amh@reading.ac.uk
2 QUP Linz, Johannes Kepler University Linz,
Altenbergerstrale 69, A-4040 Linz, Austria

Abstract. This paper introduces a tool set consisting of open source
libraries that are being developed to facilitate the quick and easy im-
plementation of collaborative VR applications. It describes functionality
that can be used for generating and displaying a Virtual Environment
(VE) on varied VR platforms. This is enhanced to provide collaboration
support through additional modules such as networking. Two existing
VR applications which make use of these tools are described. Both were
developed effortlessly over a short period of time, and demonstrate the
power of these tools for implementing a diverse range of applications.

1 Introduction

With the growing range and power of VR systems, increasing numbers of users
are gaining access to VEs. These are virtual spaces created within the system,
that a user can enter and then interact with. Linking these using various tech-
nologies expand the virtual domain, and bestow the users with quasi person to
person interaction.

A potentially limiting factor in the development of collaborative VR appli-
cations is the time, effort and expense of their implementation. A new tool set
consisting of the CAVE Scene Manager (CSM), networking utilities and ad-
ditional component libraries have been designed and implemented. These aid
developers in creating their applications by providing the key functionality of
generating, displaying and enhancing a VE.

Work relating to this development will be discussed in Section 2. This will be
followed by Sections 3 and 4 respectively; first with a description of the CSM,
and then the additional tools. Two sample applications currently using this tool
set are then mentioned in Section 5, before the paper concludes in Section 6.

2 Related Work

Designing tools for collaborative VR application development requires the con-
sideration of several key areas, most of which have existing implementations.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3516, pp. 350 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Tools for Collaborative VR Application Development 351

Networked VR viewers, such as Coanim which comes with the CAVERNSsoft
toolkit [1], allow the display of geometries for different remote users in a basic
Networked Virtual Environment (NVE). In this type of application users can
modify attributes in the shared environment (e.g. transformations for geome-
tries) or trigger animation events. Further descriptions of this particular type of
VE can be found in [2, 3].

Scenegraph libraries (OpenGL Performer [4], OpenSG [5]), provide a struc-
tured database of entities and their relationships in the scene. Typically these
entities are rendered graphically enabling representation of potentially complex
environments.

Navigation and interaction within the VE is required to allow users to inter-
face with the environment. A good overview of different navigation methods can
be found in [6].

Avatars, which are used to graphically represent remote users, both in their
position and actions, are a highly important feature for collaborative environ-
ments. A description of how these can be implemented is found in [7].

Many different types of VR hardware such as CAVEs [8] or head mounted
displays can be used for the display of VEs. A generic application should allow
operation with many of these differing systems, providing hardware indepen-
dence. Offerings providing similar functionality include those from CAVELib
[9], and VRJuggler [10].

3 The CAVE Scene Manager (CSM)

The CSM handles the VE’s scenegraph representation (described below), as well
as any display’s video rendering. This module is built on top of a scenegraph
library, forming an integral part of the tool set.

Although scenegraph independence would ideally be desired for the tool set,
OpenSG [5] was chosen for the initial design and implementation due to its
cluster support, structure and for being open source.

3.1 Configuration

Despite its name, the CSM can be used for displaying on a wide range of VR sys-
tems and not just CAVEs. Many parameters of these systems, for example sizes,
graphics configuration, or tracking dimensions, change with each installation. To
allow for these differences the CSM uses a configuration file which describes the
particular setup. With this approach, by just referencing a different configuration
file the same application can be run on any VR platform.

To allow simple integration with existing VR installations, the configuration
file format was made compatible with that used for CAVELib configuration.
While the CSM does not utilize all the CAVELib parameters, it uses those suffi-
cient for generating multi-wall stereo images, ignoring those it does not require.

In addition to the standard CAVELib configuration options, additional op-
tional parameters have been included for advanced CSM configuration.

352 A. Haffegee et al.

3.2 Internal Scenegraph Representation

The internal structure of the CSM contains a node tree for the positioning of the
user within the VE. Figure 1 shows the OpenSG representation of these nodes
within the CSM. The circles represent the nodes which are used to describe the
graph hierarchy, while the rectangles are node cores determining the type of
node functionality.

Internal

Directional Root
Light *
Lit
= Scene
Group
' s
[Camera it
Com::clnenl Trolly
| Transform
Wand
f * ST Transform |
Transform PO
| l Transform
Wand 1
Geomelry |

Fig. 1. Node tree for the CAVE Scene Manager

The internal root node has a directional light source core for a headlight,
with its beacon being the lit scene. This ensures every node below the internal
root will be lit if the headlight is on.

An OpenSG component transform is used to position a camera trolley node.
This represents the navigated position in the scene of a trolley upon which the
cameras are mounted. Two child nodes from their camera trolley parent are used
to show the positions of the two tracking devices; the user position from head
tracking, and also the wand position as generated by the CAVE. Finally a basic
geometry node is added to display the default wand within the environment. The
user, wand and camera trolley can be moved independently, and the CSM has
functions for updating these positions as required. A common technique in the
CAVE is to move the camera trolley using the joystick on the controller, with
user and wand positions coming from the tracking devices. For desktop operation
all these movements would come from a keyboard/mouse combination.

A VE application passes the root node of the its scene to the CSM, where
it gets added as a child node of the internal root. This is useful for setting a
scene that has a fixed location and does not move, such as a street or a room.
However, often additional entities are needed to represent objects or remote
users within the scene. Functionality has been provided to add and remove the
node tree representations of these, and also to change their base position and
orientation as required. These functions reference the entity through its root

Tools for Collaborative VR Application Development 353

node without the CSM needing any knowledge of the entities’ composition. This
allows complex animated geometries to be easily incorporated into the scene.

In a similar way the default wand geometry can be overridden to display any
node tree while still tracking any movement of the wand. This could be used to
model a particular type of pointer, a sophisticated moving hand, or even a hand
using or manipulating some additional object.

3.3 Display Walls

The CSM’s main task is to display images, optionally stereo, on one or more
screens (monitors or projection walls). Virtual cameras are placed in the scene,
and are used to determine the images being rendered.

The CSM configuration determines how many cameras exist in the scene.
It has fields for display wall configuration which describe the position of the
viewing device relative to the user’s position. Defaults have been provided for
the regular CAVE walls which form a cube around the user. When these are not
sufficient, such as for a curved screen, the system is configured with the corner
coordinates of the screen or projection plane. One camera is used for each wall
being rendered, facing in the appropriate direction for that wall.

[User | [User |

| Node | { Node |
- e
(Front \ [Right \ [Ler | [Floor [Ler % [Front \| [Right | (Fioor "']
..\Camera ! '._\Carnera -._\Camera_.' -.__Camara'.' '_Camera__.- '._Camera',' -._Camara'. '-._Camsra'_.
Process
Viewport 1 | Viewport 2 | Viewport3 | Viewport 4 Let = Front | Right Floor
] [1] =3 1
% ¥y 1 " Metworking = =
L]) L] v L] . L E—
(] |] Server (]
Server 1 | ! Server 2 | Server 3)| Serverd Broceisss . Server 1 | | Server 2
Gix Pipes| 0.0 [0 [02 [03 [00 [0
= | IOQ-‘:TBEHONK}_
CAVE T
L] -
s o
1024x768+0+0) 102457684040
- L]

1024x768+1024+0

Fig. 2. Client/Server Cluster Window for a 4 pipe (left) and 2 pipe (right) CAVE

3.4 Client/Server Clustering Windows

The OpenGL Utility Toolkit (GLUT), which is used for displaying the graphics
windows can only output to one graphics pipe per process. This is an issue
when multiple displays are required. An alternative to a multiple process scheme

354 A. Haffegee et al.

uses clusters, with the full environment being constructed through a network of
individual computers, each responsible for its own portion.

Both of these approaches are supported in the CSM through OpenSG’s
client/server clustering. A client process handles the scenegraph manipulations,
and one or more server processes render the graphics. These processes can ex-
ist on the same system, operate remotely, or a combination of the two. This is
achieved through CSM configuration.

When clustering, the views generated by the client are split over a grid with
as many cells as there are servers. Each server only requires the data for its cell,
which it renders for its connected display.

Figure 2 shows two possible approaches for clustering for a four wall CAVE.
In the architecture on the left each wall is driven through its own pipe. For this
the client window is split into 4 viewports, with each camera placing its output
into one of these. Each server receives a quarter of the client window, therefore
receiving the data from the camera for the wall it represents.

The architecture on the right is slightly different in that the system only has
two pipes, with each of these driving two walls. In this case the client window
is split in half, with each half being sent to a different server. Two viewports
are combined onto each of these halves to display the correct image split over
two walls. In this example the split is vertically down the middle of each graphic

pipe.

4 Additional Functionality

In addition to the scene and display functionality provided by the CSM, sev-
eral other useful tools are also included. These include a command parser for
accepting user input, which would then be used to activate certain commands or
functionality. Individual application configuration files can also be utilized, and
work along the same lines as for CSM configuration.

Three of the more important tools are avatars, networking and navigat-
ion/interaction, which we describe below.

Avatars. Two types of avatar currently exist. Simple avatars have been included
with limited realism, however they do make use of range based level of detail,
allowing a potentially large number of them to be simultaneously active with
little processing overhead. Alternatively, highly graphical avatars with realistic
motion can also be used. These increase observer immersion as they move and
perform pre-set actions in highly realistic manner.

Networking. A networking infrastructure has been developed providing low
latency, and reliability. This has been integrated into a topology based on the
descriptions from [11], making it possible for remote clients to reliably communi-
cate. Internally, the networking tools control default network handling, including
the necessary messaging for remote avatar representation. To this, functionality
has been provided to allow sharing of user defined messages. As will be seen in
the sample applications these messages can be used for advanced collaboration.

Tools for Collaborative VR Application Development 355

Network simulators and logging/debug routines have also been developed for
assistance in application development.

Navigation and Interaction. Each time the displayed frame is updated the
application polls the tracking information from shared memory. While the head
and wand tracking data are passed to the CSM, the controller information is used
for navigation and interaction. Current navigation makes use of the joystick and
wand orientation to move within the scene. It is anticipated that this could be
further extended through the integration of a navigation framework such as that
described in [12].

Basic collision detection between the user and the scene has also been pro-
vided for when one of the wands buttons had been activated. Either as a result
of this, or directly from the interaction with the wand it is possible to transmit
events to any remote users, thereby forming the basis of user interaction and
collaboration beyond that achieved from a simple visual response.

5 Applications

5.1 Flooding Visualisation

This application demonstrates the benefits gained through visualization in an
immersive environment. As part of the EU CROSSGRID project, it uses the
GRID for landscape flooding simulation [13]. The CSM provides an integral part
of this application, allowing easy viewing on the various types of VR hardware.

=

.x —

Fig. 3. Interaction in the CAVE, Curved Screen and on a desktop system

The data to be simulated is calculated with Globus middleware on the GRID,
and then transferred to the display clients through GRIDFTP. The simulation
makes use of two types of VRML 2.0 models. The first makes up the landscape
and consists of a height map geometry of the terrain, upon which a photographic
image has been superimposed. This provides a realistic environment with good
spatial orientation.

The second group of models, are used for representing the flood water. A
separate set of triangle meshes are provided for each time stamp during the

flooding process, and these are applied in sequence to the terrain to simulate the
flood.

356 A. Haffegee et al.

For efficiency in maintaining a realistic frame rate (>30fps), all geometry data
is preloaded into the scene on start-up. The scene root has two children; one for
the terrain, and the second a switch node which parents each individual flooding
time slice and controls which image is being rendered. The switch node steps
through these slices in order, providing smooth animation. On a desktop system
the simulation is controlled via a keyboard, whereas fully immersive systems will
also use their wand. A flying navigation mode is used, allowing the scene to be
viewed from any angle. The keyboard or wand is also used for animating forward
or backwards at a pre-defined speed, or for pausing the simulation. Figure 3
demonstrates the simulation being used on three different VR platforms.

5.2 Virtual House Application

The second application has been developed as an easily extendible VE that al-
lows remote users to interact collaboratively with objects within a virtual house
environment. It is built on top of the VR tool set which manage display and
navigation, both in the CAVE and on the desktop. It uses the networking func-
tionality to distribute each user’s motion and event data, and the avatars to
display these locally.

Current functionality shares tasks associated with opening and closing a door
in the virtual house. Demonstration of this can be seen in Figure 4, which show
a CAVE user about to manipulate a moving door that has been opened by a
desktop user. In each case the remote user position is depicted by an avatar.
Virtual objects that can be interacted with in this environment are defined as

Fig. 4. Collaborative door opening in the Virtual House application

Dynamic Interaction Objects (DIO). They contain attributes and functionality
relative to how they can perform. For instance, the door DIO has attributes
declaring its axis of rotation and the degree of rotation allowed. For ease of
management and flexibility these attributes are contained in a text file which is
read during execution.

On initialization the scenegraph is traversed, and DIOs are created for those
defined from the text file. Simple collision detection is used to determine if a
user is interacting with one of these DIOs, and if so the relevant attributes are
modified. Additionally, an Object Manager component continuously services the

Tools for Collaborative VR Application Development 357

DIOs, allowing them to modify the VE as required. Events, such as the door
starting to open, are sent over the network for remote notification.

Future improvements will increase functionality of the DIO, allowing it to
respond to multiple input events, thereby developing realistic multi-user con-
current collaboration. Further study is also required of potential latency issues,
both in terms of avatar movement and event passing.

6 Conclusion

This work describes a useful set of tools that have successfully been used to
implement different types of collaborative VR environments. However it should
be noted that these form the basis of a potentially larger and more advanced
offering. Additional work could see advanced networking, the integration of a
navigation library, improved avatars and further collaboration support, all which
would allow equally simple, but more advanced application development.

References

1. Park, K., Cho, Y., Krishnaprasad, N., Scharver, C., Lewis, M., Leigh, J., Johnson,
A.: CAVERNSsoft G2: A toolkit for high performance tele-immersive collaboration.
In: VRST, Seoul, Korea, ACM Press (2000) 8-15

2. Macedonia, M.R., Zyda, M.J.: A taxonomy for networked virtual environments.
IEEE MultiMedia 4 (1997) 48-56

3. Matijasevic, M.: A review of networked multi-user virtual environments. Techni-
cal report tr97-8-1, Center for Advanced Computer Studies, Virtual Reality and
Multimedia Laboratory, University of Southwestern Lousiana, USA (1997)

4. Rohlf, J., Helman, J.: IRIS Performer: A high performance multiprocessing toolkit
for real-time 3D graphics. In: SIGGRAPH, ACM Press (1994) 381-394

5. Reiners, D.: OpenSG: A scene graph system for flexible and efficient realtime
rendering for virtual and augmented reality applications. PhD thesis, Technische
Universitdt Darmstadt (2002)

6. Bowman, D.A., Koller, D., Hodges, L.F.: Travel in immersive virtual environments:
An evaluation of viewpoint motion control techniques. In: VRAIS (1997) 45-52

7. Badler, N.I., Phillips, C.B., Webber, B.L.: Simulating Humans: Computer Graphics
Animation and Control. Oxford University Press, New York, NY, USA (1992)

8. Cruz-Neira, C., Sandin, D.J., Defanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE:
Audio Visual Experience automatic virtual environment. Communications of the
ACM 35 (1992) 64-72

9. VRCO website. http://www.vrco.com/ (2004)

10. Bierbaum, A.D.: VRJuggler: A virtual platform for virtual reality application
development. Master’s thesis, Iowa State University, Ames, Iowa (2000)

11. Anthes, C., Heinzlreiter, P., Volkert, J.: An adaptive network architecture for close-
coupled collaboration in distributed virtual environments. In: VRCAI, Singapore
(2004) 382-385

358

12.

13.

A. Haffegee et al.

Anthes, C., Heinzlreiter, P., Kurka, G., Volkert, J.: Navigation models for a flexible,
multi-mode VR navigation framework. In: VRCAI, Singapore (2004) 476-479

Hluchy, L., Habala, O., Tran, V.D., Simo, B., Astalos, J., Dobrucky, M.: Infras-
tructure for grid-based virtual organizations. In: Proceedings of the International

Conference on Computational Science, Part III, LNCS 3038, Springer Verlag (2004)
124-131

	Introduction
	Related Work
	The CAVE Scene Manager (CSM)
	Configuration
	Internal Scenegraph Representation
	Display Walls
	Client/Server Clustering Windows

	Additional Functionality
	Applications
	Flooding Visualisation
	Virtual House Application

	Conclusion
	References

