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Abstract. Techniques for generating data structures for isotropic vector
matrix grids (or face-centered cubic lattices) are presented. Grid basics
and some background mathematical foundations are also provided.

1 Introduction

An Isotropic Vector Matrix (IVM) grid, also known as the face-centered cu-
bic (FCC) lattice, has the property that all neighbor nodes of every vertex are
equally spaced therefrom1. There are 12 nearest neighbor nodes for each inte-
rior vertex in an IVM grid/FCC lattice arrangement. Compare now a three-
dimensional Cartesian orientation of nodes where every vertex has exactly 26
neighbors; 6 of which are nearest neighbor nodes, 12 of which are next-nearest
nodes, and the remaining 8 can be considered furthest neighbor nodes.

Herein we describe two techniques for constructing IVM grids. Section II
gives an overview of the Vector Equilibrium (VE) cell and an algorithm[2] for
generalized IVM grid construction. Section III encodes two overlapping IVM
grids within a Cartesian-orientation of nodes. The Discussion includes ideas for
simulations we plan to implement on IVM grids, and the Appendix describes
the IVMCEM solver and the omni-directional curl operator.

2 IVM Basics and Generalized Grid Construction

The VE cell, also known as a cuboctahedron, is comprised of a central vertex
surrounded by 12 nearest neighbor nodes. Figure 1 shows a VE cell and the
six-element IVM vector basis. To distinguish the 12 exterior vertexes of the VE,
we use [+1] to represent the point at the tip of the IVM basis vector e1 (see Fig.
1), [0] to designate the center of the VE cell, and [-6] to represent the vertex
in the −e6 direction. The VE cell contains four hexagonal planes, each plane
composed of 6 exterior vertexes and the center vertex. (The color rendering of
Fig. 1 shows the a-plane in magenta, the b-plane in red, the c-plane in green,
and the d -plane in aqua). The exterior vertexes of each hexagonal plane are:

1 Herein we adopt R. Buckminster Fuller’s[1] use of the term Isotropic Vector Matrix
when referring to grids that utilize this specific geometrical arrangement of vertexes.
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Fig. 1. VE cell and the IVM basis vectors e1 - e6

a-plane: [+1][-2][+6][-1][+2][-6]; b-plane: [+1][+4][+5][-1][-4][-5];
c-plane: [-2][+4][+3][+2][-4][-3]; d -plane: [-5][-3][+6][+5][+3][-6].

One way to build an IVM grid is to start with a VE and commence to make
the exterior cells of the VE the center of its own VE cell. Each time we add
new layer of VE to the outer shell of an IVM we create a higher frequency IVM
grid. For each layer we add to an IVM grid, the number of nodes increases by
10F 2 + 2; where F is the frequency of the new grid. For example, the first layer
around the nuclear/center node has 12 nodes (and thus creates the VE cell).
The second layer has 42 nodes, the third layer 92 nodes, and so on.

In [2] an algorithm which uses this process to build IVM grids is described
in detail. The majority of the computation time for this generalized grid con-
struction is occupied by a search into the node list for whether or not a node we
are to add is in fact already in the node list. If we use a linear search technique,
we obtain an O

(
n2

)
grid construction algorithm. We have implemented a binary

search algorithm[3] to obtain an O(n log n) algorithm and a hashing algorithm2

to produce an O(n) grid construction algorithm.

3 The IVM Grids Within a Cartesian Grid

The algorithm described briefly in §2 creates a data structure for an IVM grid
whereupon simulations can be built. Embedded in the data structure is infor-
mation to access nearest neighbor vertexes; which is required, for example, to
implement the omni-directional curl operator (see [2, 4, 5] and the Appendix) or
generic finite difference stencils. We have developed another IVM grid genera-
tion technique3 wherein nearest neighbor information is not stored, but instead
is calculated using a simple index scheme. We overlay two IVM grids onto a

2 This hashing technique was proposed and implemented by P.I. Wilson at Texas A&M
University - Corpus Christi while working on a grant funded by a United States of
America National Science Foundation grant # NSF MII 03-30822.

3 R.W. Gray suggested this type of organization to one of the authors (JFN) quite a
long time ago.
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Fig. 2. Placement of VE cell vertexes and ghosts on Cartesian grid

three-dimensional Cartesian grid. Here we use the same orientation of lattice
structure as is found in the common salt crystal, NaCl (see, for example, [6]).
For salt, the Na atoms are arranged in a FCC lattice (i.e., an IVM grid) that
interpenetrates a FCC lattice of Cl atoms. We will only be using one of the two
IVM grids embedded within the Cartesian grid. The vertexes of the IVM grid
not used are hereafter called ghost nodes.

The placement of IVM vertexes onto a Cartesian grid is shown in Fig. 2. We
use a hexagon shape to indicate ghost nodes. Here we show the center and 12
exterior vertexes of a single VE cell. We maintain the same addressing notation
as given in §2. The [0] node is shown on Fig. 2 as a solid triangle at the z = k
level, vertexes [+1] through [+6] are shown with a solid circle, and [-1] through
[-6] are shown with a solid square.

Let the center of the VE cell, [0], be located at a Cartesian index of {i,j,k}.
Following the coordinate frame orientation in Fig. 2, the 12 exterior vertexes of
the VE cell are then located with the following indexing scheme:

[+1] = {i+1,j,k-1} [+2] = {i,j-1,k+1} [+3] = {i+1,j,k+1}
[-1] = {i-1,j,k+1} [-2] = {i,j+1,k-1} [-3] = {i-1,j,k-1}

[+4] = {i+1,j+1,k} [+5] = {i,j+1,k+1} [+6] = {i-1,j+1,k}
[-4] = {i-1,j-1,k} [-5] = {i,j-1,k-1} [-6] = {i+1,j-1,k}

Using this indexing scheme it is trivial to write the IVM basis vectors e1 through
e6 in terms of the Cartesian basis vectors.

4 Discussion

We have presented two disparate techniques for generating IVM grids. The first
technique can produce IVM grids of generalized orientation. The second tech-
nique fixes the orientation of the IVM grid within a Cartesian framework.

There are many trade-offs associated with each choice of grid generation. The
biggest difference we see relates to the parallel implementation of simulations
that utilize IVM grids. The data structure created by generalized construction
does not easily map to modern processor features such as caching, and can not
be easily partitioned onto a multiprocessor cluster (like a Beowulf cluster), while
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Cartesian placement method has access to all the latest parallelization research
for Cartesian-based data structures.

We have used an IVM grid to construct a computational electromagnetic
solver (see the Appendix). We also plan to investigate other application areas
on IVM grids, including cell population dynamics, a lattice Boltzmann method
(D3Q13), and cellular automata systems (including implementing ideas from the
computational cosmography [5]).
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Appendix

The IVMCEM solver[2, 3, 4, 5] is a fully-discrete time-domain computational
electromagnetic solver. This solver uses the omni-directional curl operator for
the spatial part (of the Maxwell equations) and a Runge-Kutta fourth-order in-
tegrator (RK4) for the temporal advancement of a solution. In the IVMCEM
solver we collocate field quantities at the grid locations using 12 doubled-valued
components (6 for the electric field and 6 for the magnetic field).

The omni-directional curl operator calculates the vector curl for fields ex-
pressed in terms of the IVM basis vectors e1 through e6. For example, vector
fields S and T can be written thusly:

S = S1e1 + S2e2 + S3e3 + S4e4 + S5e5 + S6e6 ,

T = T1e1 + T2e2 + T3e3 + T4e4 + T5e5 + T6e6 .

Let a′, b′, c′, and d′ be plane variables, each evaluated as a contour integrals on
the hexagonal planes of the VE cell (see §2). The omni-directional curl operator
calculates S = ∇ × T for S at the center of the VE cell based on values of T on
the 12 exterior vertexes of the VE cell. Each of the six vector components of S
depends on the contour integrals around two separate hexagonal planes.
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