
Two Fundamental Concepts
in Skeletal Parallel Programming

Anne Benoit and Murray Cole

School of Informatics, The University of Edinburgh, James Clerk Maxwell Building,
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

{abenoit1, mic}@inf.ed.ac.uk
http://homepages.inf.ed.ac.uk/mic/Skeletons

Abstract. We define the concepts of nesting mode and interaction mode
as they arise in the description of skeletal parallel programming systems.
We suggest that these new concepts encapsulate fundamental design is-
sues and may play a useful role in defining and distinguishing between
the capabilities of competing systems. We present the decisions taken in
our own Edinburgh Skeleton Library eSkel, and review the approaches
chosen by a selection of other skeleton libraries.

1 Introduction

The skeletal approach to parallel programming is well documented in the re-
search literature (see [1, 2, 3, 4] for surveys). It observes that many parallel al-
gorithms can be characterised and classified by their adherence to one or more
of a number of generic patterns of computation and interaction. For instance,
a variety of applications in image and signal processing are naturally expressed
as process pipelines, with parallelism both between pipeline stages, and within
each stage by replication and/or more traditional data parallelism [5].

Skeletal programming proposes that such patterns be abstracted and pro-
vided as a programmer’s toolkit, with specifications which transcend architec-
tural variations but implementations which recognise these to enhance perfor-
mance. This level of abstraction makes it easier for the disciplined programmer
to experiment with a variety of parallel structurings for a given application, by
enabling a clean separation between structural aspects and the application spe-
cific details. Meanwhile, the explicit structural information provided by the use
of skeletons enables static and dynamic optimisations of the underlying imple-
mentation.

In the eSkel (Edinburgh Skeleton Library) project [6, 7, 8], motivated by our
observations [2] on previous attempts to implement these ideas, we have begun
to define a generic set of skeletons as a library of C functions on top of MPI. This
work has caused us to identify two issues which we believe to be fundamental to
the definition of any skeletal parallel programming system, but which have been
addressed only implicitly in previous work.

The main contribution of this paper, in Section 2, is to present these un-
derlying concepts explicitly. Section 3 outlines the approach we take in eSkel,

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 764–771, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://homepages.inf.ed.ac.uk/mic/Skeletons


Two Fundamental Concepts in Skeletal Parallel Programming 765

comparing this in Section 4 with the main characteristics of a number of previous
projects. Our conclusions are in Section 5.

2 Fundamental Concepts

The concepts highlighted by this paper may usefully be labelled nesting mode
and interaction mode. In order to present these clearly and concisely, we begin
by introducing some generic terminology for other important aspects of skeletal
programming. We will then introduce the new concepts. In doing so, we will pro-
vide simple examples, which involve multiple uses of only one actual skeleton, the
pipeline. This simplification allows us to focus precisely on the underlying issues,
which might be obscured by the use of further skeletons and real applications.

2.1 Skeleton Terminology

The purpose of any skeleton, irrespective of the language framework within which
it is embedded, is to abstract a pattern of activities and their interactions (where
the activities might be processes or threads, and the interactions might be mes-
sage based communications or exchanges through shared variables). Activities
might themselves be internally parallel.

It is helpful to further distinguish internal and external interactions. Internal
interactions occur between two or more activities, whereas external interactions
occur between activities and the enclosing context. For example, in a pipeline,
an interaction between two stages is internal, but an interaction between the
first stage and the source of pipeline inputs (which might be a data buffer, or
some other thread or process, or even another skeleton) is external.

The definition of a particular skeleton constrains the ways in which its con-
stituent activities may interact. In general such constraints have two aspects.
For a given activity, spatial constraints determine the activities with which it
may interact and the directions these interactions may take. We will call these
the partner activities. For example, in a pipeline, activities correspond to stages
and for a given stage its partners are the preceding and succeeding stages (where
these exist), with the data restricted to flow from the predecessor to the succes-
sor. Meanwhile, temporal constraints determine the allowable orderings of inter-
actions between partners. For example, in a particularly strict form of pipeline,
we may require that a stage interacts first with its predecessor then its successor,
in strict alternation.

2.2 Fundamental Concept: Nesting Mode

Conceptually, skeletons may be nested in two ways. In the discussion that follows
we will refer to outer and inner levels to indicate what might be respectively
thought of as the “calling” and “called” skeleton instances in a nesting. In a
multiple level nesting, all but the outermost and innermost skeleton instances
will play both roles.



766 A. Benoit and M. Cole

Transient Nesting. In a transient nesting, an activity may decide to invoke
another skeleton in order to process some locally available data, or to perform
some other self-contained computation. For example, a pipeline stage with sev-
eral internal processes may receive an input datum, partition it into a collection
of sub-data, and process these independently with an internal pipeline, before
reconstituting a single outer level result datum from the collected inner level
results. This is then transmitted to the subsequent outer level stage. Each in-
vocation of the nested pipeline is initiated by the outer level activity, between,
and so independently of, interactions at the outer level. A transient nesting is
therefore really no more than a conventional function call, albeit one invoked
concurrently by all members of the outer level activity.

Persistent Nesting. In contrast, in a persistent nesting an activity at
the outer level handles a complete sequence of enclosing level interactions in
a skeletally structured fashion. From the perspective of the inner skeleton, its
external interactions become bound to interactions (which may be internal or
external depending upon context) at the outer level. For example, a pipeline
stage (at the outer level) could choose to invoke a persistent pipeline as its inner
level. Each request for a datum by the first stage of the inner level would be
(conceptually at least) mapped to a request for a datum by the enclosing activity
(ie the outer level pipeline stage). The inner skeleton invocation persists for the
duration of the outer skeleton invocation. In particular it persists across outer
level interactions, and indeed subsumes responsibility for dealing with these.

Example & Discussion. We now illustrate the nesting modes with a simple
example. The example is deliberately artificial, since our intention is to contrast
the essence of the modes without application specific clutter. For the same rea-
son, we use only the pipeline skeleton, since we wish to focus on the interaction
and nesting mechanisms, rather than the particular patterns encapsulated.

Consider a four stage pipeline, in which each stage (outer level activity) is
assigned three processors. The pipeline processes 100 inputs, where each input
is a block of 10 integers. Thus, each outer level activity performs 100 input and
100 output interactions. Now consider some possible nested structures for the
second stage.

We could choose to design a second stage as follows. Upon receipt of each
new input, the datum is decomposed into a sequence of 10 individual integers,
which are then passed through a three stage inner level pipeline formed by
the processors responsible for this outer level stage. Having processed the ten
integers, the inner pipeline is dissolved (its call terminates) and the ten results
are reconstituted into a single outer level datum, for forwarding to the third
stage at the outer level. The process repeats with the next outer level datum.
For each invocation of the inner level pipeline, each processor within the second
outer level stage processes a stream of 10 inputs in its role as an inner level
pipeline stage. Since there will be 100 such invocations, each processor processes
1000 inputs (each a single integer) in total. This is a transient nesting.

In a different application but with the same data types and structure at the
outer level, the second outer level stage might choose to use its three processors



Two Fundamental Concepts in Skeletal Parallel Programming 767

as a nested persistent pipeline. In this case, a request for a new datum by the
first stage at the inner level corresponds directly to a request for an input datum
by the second stage at the outer level. The nested skeleton is invoked once for
the entire computation. Now each of the three second (outer) stage processors
processes 100 inputs (each a block of 10 integers) in total during its role as an
inner level pipeline stage. It is interesting to note that in this artificial example,
the structure is operationally equivalent to that which could have been obtained
by expressing the structure as a single level, six (NB not seven) stage pipeline.
This is entirely natural, and serves to highlight the distinction between persistent
and transient nesting (since this equivalence does not hold in the transient case).

2.3 Fundamental Concept: Interaction Mode

The concept of interaction mode concerns the extent to which a skeleton con-
strains temporal, as well as spatial interaction. In general, it is reasonable to
consider that this property may vary from one invocation of the same skeleton
to another, and even between the constituent activities of one invocation. Thus,
interaction mode is a property of an activity.

Implicit Interactions. An activity using implicit interaction mode makes
interactions which are constrained both spatially and temporally by the skeleton.

Explicit Interactions. An activity using explicit interaction mode makes
interactions which are constrained spatially by the skeleton but which are uncon-
strained temporally, being triggered explicitly instead by actions in the activity
code.

Examples & Discussion. Consider a stage in an image processing pipeline,
which is producing one transformed output image for every input image. We
might think of this as the “normal” behaviour for a pipeline. It can be com-
pletely encapsulated by the constraints of the implicit mode for a pipeline stage
activity. Another pipeline might contain a stage activity which is behaving as
a filter: some inputs are accepted and passed on (perhaps after processing) to
the subsequent stage, while others are removed from the stream. In this case
some explicit action is required of the activity to trigger each input interaction.
Consequently the activity has explicit interaction mode. Finally, imagine a stage
which is generating several output interactions for each input interaction (or
indeed without any input interactions at all, as occurs for example in the “gen-
erator” stage of the well known “prime sieve” pipeline). Again, some explicit
trigger would be required to indicate availability of a new output. In general, we
can imagine that a fully flexible skeleton should allow the programmer to specify
the interaction mode for each activity.

3 Nesting and Interaction in eSkel

The eSkel library [8] provides the C/MPI programmer with a set of skeletal col-
lective operations. We now explain how version 2 of the library addresses the



768 A. Benoit and M. Cole

fundamental issues discussed in the previous section. As before, to avoid clutter
we will not discuss eSkel’s specific collection of skeletons, since these are orthog-
onal to the handling of modes. Activities in eSkel are defined as C functions, to
be called in SPMD style by all processes participating in the activity, and passed
to the skeleton call as function pointers.

Nesting Mode. eSkel allows both transient and persistent nesting in order to
maximize flexibility. In concrete terms, the nesting mode is actually expressed
through what eSkel calls the “data mode” parameter to a skeleton call. This
determines whether the data which will be processed by the skeleton invocation
is present in a (possibly distributed) buffer, provided by the calling processes
as a further parameter to the call (so called “buffer mode” data) or that it will
flow into the skeleton from the activities (and indirectly, the buffer) of some
enclosing skeleton call (so called “stream mode” data). Thus, a skeleton called
in buffer mode effectively carries or creates its own data, and so is transiently
nested with respect to any enclosing skeleton call. In contrast, a skeleton called
with stream data mode is by necessity (and implication) persistently nested. As
an aside, we note that the outermost skeleton call in any eSkel program must
have buffer mode data (because there is nowhere else for data to come from),
and so is effectively transiently nested within any enclosing (non-skeletal) code.

Interaction Mode. In eSkel, a distinct interaction mode is associated with
each activity in a skeleton instantiation by setting corresponding parameters to
the skeleton call. For non-nested skeletons this involves a simple choice between
the two standard modes, implicit or explicit, as discussed above. In the case of
nested skeletons, we allow a further level of flexibility, in that a skeleton call may
devolve its choice of interaction mode for any of its activities to be determined
by a further skeleton, nested within that activity’s code. This is achieved by
specifying that the outer level activity has devolved activity mode. This process
can be repeated arbitrarily many times within a hierarchy of nestings, to be
ultimately resolved by the “leaf” activities, which must have one of the two
fundamental interaction modes.

An implicit mode activity has no control over its interactions, so is described
in eSkel as a function from input data items to output data items. In general, a
single interaction may involve several inputs and/or several outputs, to various
partner activities (for example, consider the “stencil” interaction at the heart
of a typical two dimensional iterative relaxation algorithm). The implicit mode
activity function is invoked every time a new collection of inputs arrives (under
the control of the library implementation of the skeleton, which is taking care
of the interactions). The semantics of the interactions are specified in terms of
eDM, the eSkel Data Model. The unit of transfer during the interactions is an
eDM molecule, which consists of a collection of eDM atoms (each containing
the data relating to a distinct partner activity). The type of the data is defined
using standard MPI datatypes. Full details of the eSkel data model are presented
in [2].

By contrast, an activity with explicit interaction mode is invoked only once
per skeleton call. Its interactions are triggered directly in the activity code, by



Two Fundamental Concepts in Skeletal Parallel Programming 769

calling the functions Take and Give. These have a generic interface, but seman-
tics defined for each skeleton (embodying the skeleton’s spatial constraints). For
example, calling Give in an explicit mode pipeline stage indicates that the data
given as a parameter is ready for transfer to the successor stage.

4 The Fundamental Concepts in Other Skeleton
Libraries

We now briefly introduce a selection of existing skeleton languages and libraries
and consider their handling of nesting and interaction. The results are sum-
marized in the following table, which should be read in conjunction with the
discussion below, particularly for the cases annotated with *.

Library Interaction mode Nesting mode
Explicit Implicit Persistent Transient

P3L No Yes Yes No
Lithium No Yes Yes No*
ASSIST Yes Yes No* No*
Kuchen Yes* Yes Yes Yes*
Eden Yes Yes* Yes* Yes*

P3L. The Pisa Parallel Programming Language (P3L) [3, 9] was designed to
help the design of parallel applications by providing skeletons as new language
constructs (rather than a library) which co-ordinate fragments of sequential code
written in C. The Anacleto [10] compiler for P3L generates C and MPI. P3L
inspired industrial collaboration, leading to SkIE [11], a heterogeneous environ-
ment for high performance computing applications. SkIE includes a graphical
editor, allowing fast and intuitive design of the parallel components of an appli-
cation. Interaction within P3L skeletons is via streams of data, which are inter-
faced to the sequential code through parameter lists and manipulated through
ordinary C types and operations. No choice is given for the interaction mode -
all interactions are implicitly defined by the skeleton. All nesting of skeletons is
persistent, being defined within the P3L layer, which is syntactically separated
from the sequential code defining the activities. Transient nesting is therefore
not possible.

P3L-based Libraries. One of the first attempts to provide a skeleton pro-
gramming environment via a plain C library was achieved with SKElib [12],
which was based on the P3L conceptual (but not syntactic) model. Similarly,
Lithium [13] is a more recently developed library which takes a correspond-
ing approach on top of Java. These libraries inherit their interaction modes
from P3L. In Lithium, skeletons and skeleton nestings are constructed as ob-
jects which are then executed by invoking a parDo method. This form of nesting
is persistent. The concept of transient nesting is not explicitly addressed, and



770 A. Benoit and M. Cole

while not syntactically forbidden, it appears that the current implementation
does not support it.

ASSIST. More recently, the programming environment ASSIST [14] (A Soft-
ware development System based upon Integrated Skeleton Technology) is being
developed in Pisa. It allows more flexibility than the original P3L approaches.
It proposes a generic skeleton, parmod, which has few constraints but includes
the classical P3L style skeletons. The interactions can be either implicit and
constrained by a skeleton, or can be explicitly defined by the user. No nesting
of skeletons is allowed - complex structures must be expressed directly through
the flexibility afforded by parmod.

Kuchen’s Skeleton Library. Herbert Kuchen has proposed a skeleton li-
brary [15] on top of C++. This library proposes polymorphic higher-order func-
tions which are efficiently implemented in parallel. It offers data parallel and
task parallel skeletons, and a two level model in which data parallel skeletons
may be invoked from within task parallel skeleton nests. Most interactions have
implicit mode, but explicit mode is also supported for task parallel skeletons.
Nesting of task parallel skeletons is persistent since, like Lithium, the task par-
allel process topology is fixed at construction. The data parallel skeletons allow
more flexibility with transient nesting performed via direct calls to the functions.

Eden. The parallel functional language Eden [16] provides a model which is ex-
plicit about processes and their incoming and outgoing data, but abstracts from
the detailed transfers and synchronisation. An Eden program defines a system
of processes exchanging data on communication channels which are visible to
the programmer as lazy lists. Explicit interactions are invoked by explicit ma-
nipulations of these lists. A number of skeletons have been defined on top of the
Eden model [4, 17]. The examples presented leave the programmer with explicit
control of interaction, but it would be simple to define further skeletons which
abstract to implicit mode. Nesting issues are not addressed but it is clear that
transient nesting can be achieved by calling a skeleton function at any time in the
inner code of a skeleton, while persistent nesting can be achieved by appropriate
use of Eden’s process composition.

5 Summary and Conclusions

We have introduced the concepts of nesting mode and interaction mode as aspects
of the design of skeletal parallel programming frameworks. We have examined
several existing skeletal systems and have observed that design decisions related
to these concepts are often made implicitly, and perhaps even as side-effects of
other design decisions. We argue that these issues should be addressed explicitly
in a design, and in its specification. We believe that the conceptual basis estab-
lished here will help future designers to clarify and justify their decisions. We
are attempting to follow this philosophy in the ongoing design and development
of the eSkel library.



Two Fundamental Concepts in Skeletal Parallel Programming 771

References

1. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press & Pitman, ISBN 0-262-53086-4 (1989)

2. Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing 30 (2004) 389–406

3. Pelagatti, S.: Structured Development of Parallel Programs. Taylor & Francis,
London (1998)

4. Rabhi, F., Gorlatch, S., eds.: Patterns and Skeletons for Parallel and Distributed
Computing. Springer Verlag, ISBN 1-85233-506-8 (2003)

5. Subhlok, J., O’Hallaron, D., Gross, T., Dinda, P., Webb, J.: Communication and
memory requirements as the basis for mapping task and data parallel programs.
In: Proceedings of Supercomputing ’94, Washington, DC (1994) 330–339

6. Cole, M.: eSkel: The edinburgh Skeleton library. Tutorial Introduction. Internal
Paper, School of Informatics, University of Edinburgh (2002)

7. Cole, M.: eSkel: The edinburgh Skeleton library Version 2.0 – Draft API reference
manual. Internal Paper, School of Informatics, University of Edinburgh (2003)

8. Benoit, A., Cole, M.: eSkel’s web page.
(2005) http://homepages.inf.ed.ac.uk/mic/eSkel.

9. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P3L: A struc-
tured high level programming language and its structured support. Concurrency:
Practice and Experience 7 (1995) 225–255

10. Ciarpaglini, S., Danelutto, M., Folchi, L., Manconi, C., Pelagatti, S.: ANA-
CLETO: a template-based P3L compiler. In: Proceedings of the PCW’97, Cam-
berra,Australia (1997)

11. Bacci, B., Danelutto, M., Pelagatti, S., Vanneschi, M.: SkIE: a heterogeneous
environment for HPC applications. Parallel Computing 25 (1999) 1827–1852

12. Danelutto, M., Stigliani, M.: SKElib: parallel programming with skeletons in C.
In: Proceedings of EuroPar2000. Number 1900 in LNCS, Springer-Verlag (2000)

13. Aldinucci, M., Danelutto, M., Teti, P.: An advanced environment supporting struc-
tured parallel programming in Java. Future Generation Computer Systems 19
(2003) 611–626

14. Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M., Zoccolo, C.: ASSIST
as a Research Framework for High-performance Grid Programming Environments.
In Cunha, J.C., Rana, O.F., eds.: Grid Computing: Software environments and
Tools, Springer Verlag (2004)

15. Kuchen, H.: A skeleton library. In: Proceedings of the 8th International Euro-Par
Conference on Parallel Processing, Springer-Verlag (2002) 620–629

16. Breitinger, S., Loogen, R., Ortega-Mallén, Y., Peña, R.: Eden: Language Definition
and Operational Semantics. Technical Report 10, Philipps-University of Marburg
(1996)

17. Galán, L.A., Pareja, C., Pena, R.: Functional Skeletons Generate Process Topolo-
gies in Eden. In: Proc. of the 8th International Symposium on Program-
ming Languages: Implementations, Logics, and Programs, Springer-Verlag (1996)
289–303

http://homepages.inf.ed.ac.uk/mic/eSkel

	Introduction
	Fundamental Concepts
	Skeleton Terminology
	Fundamental Concept: Nesting Mode
	Fundamental Concept: Interaction Mode

	Nesting and Interaction in eSkel
	The Fundamental Concepts in Other Skeleton Libraries
	Summary and Conclusions



