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Abstract. We present a new framework for robust 3D tracking, using
a dynamic data driven coupling of continuous and discrete methods to
overcome their limitations. Our method uses primarily the continuous-
based tracking which is replaced by the discrete one, to obtain model
re-initializations when necessary. We use the error in the continuous
tracking to learn off-line, based on SVMs, when the continuous-based
tracking fails and switch between the two methods. We develop a novel
discrete method for 3D shape configuration estimation, which utilizes
both frame and multi-frame features, taking into account the most re-
cent input frames, using a time-window. We therefore overcome the error
accumulation over time, that most continuous methods suffer from and
simultaneously reduce the discrete methods complexity and prevent pos-
sible multiple solutions in shape estimation. We demonstrate the power
of our framework in complex hand tracking sequences with large rota-
tions, articulations, lighting changes and occlusions.

1 Introduction

There are generally two major types of approaches to deformable and articulated
shape and motion estimation: (i) the continuous ones that exploit the static
and the temporal information in images, and (ii) the discrete ones that use
only static information, i.e., they estimate the objects configuration based on
a single frame. Continuous approaches are usually faster and more accurate
than discrete approaches, but when they loose track they cannot easily recover
due to error accumulation. On the other hand, discrete approaches can give a
good approximation of an objects configuration without error accumulation over
time. However, they have high computational cost and are based on searching
in databases with limited number of object configurations.

In this paper, we introduce a new framework for robust 3D object tracking,
to achieve high accuracy and robustness. Focusing on a specific case of tracking,
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i.e., the 3D hand tracking, our approach is based on a dynamic data driven cou-
pling of continuous and discrete methods; when our existing continuous tracking
fails based on an error measure derived from the data, we can obtain efficient
object configuration re-initialization using the discrete method presented in this
work.

This paper is organized as follows. In the next subsection, we give a brief
description of the previous work, including the existing continuous hand track-
ing method we used. In section 2] we describe the proposed discrete tracking
scheme. In section [3lit is explained how the coupling between the two methods
is achieved. In section ] we present our results on the 3D hand tracking, includ-
ing the case of sign language. Finally, section [Bl describes our conclusions and
our future work.

1.1 Previous Work

This paper focuses on hand articulations, where several techniques exist that
treat the hand configuration estimation as a continuous 3D tracking problem [6]
18,5.8]. A possible drawback of some approaches is that they introduce additive
errors over time, leading to the loss of the track, and when this occurs, they
cannot usually recover. This is the reason why some discrete techniques have
been developed in the last few years [3,[0], treating each frame independently
from the previous ones, although they usually require higher computational time.

Both continuous and discrete methods for 3D hand tracking can be divided in
two main classes: (a) the model-based ones [6L12,[4]12], where 3D hand models
are constructed and a matching takes place between the input image features
and the respective features of the model projection onto the image plane, and (b)
the appearance-based approaches [10,[15], which involve mapping of the image
feature space to the hand configuration space. Another problem that is tackled
by some methods [I5L16,[3], is the background complexity, i.e. the discrimination
between the hand and the background edges, when using edges as the visual cues
for hand configuration estimation.

In the last few years, some approaches that use hand configuration databases
have been proposed [13}2] and the 3D hand pose estimation problem is converted
into a database indexing one. The main problem that arises in these methods,
apart from the computational complexity, is that multiple matches between the
input hand image and the database samples may occur.

In the model-based continuous tracking of [6] that we use, 2D edge-driven
forces, optical flow and shading are computed. They are converted into 3D ones
using a perspective camera model, and the results are used to calculate veloc-
ity, acceleration and the new position of the hand. A Lagrangian second order
dynamic hand model is used to predict finger motion between the previous and
the current frame. A model shape refinement process is also used, based on the
error from the cue constraints to improve the fitting of the 3D hand model onto
the input data.
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2 Discrete Tracking

For an input frame of the examined hand sequence, we extract 2D features, which
will be used for describing the current frame, but will also be integrated with the
respective features of a number of past frames to serve as multi-frame descriptors.
Instead of matching between single images, we perform multi-frame matching
between the most recent input frames and the samples from our synthetic hand
database. As will be explained in section[3], the database search is efficient, when
the discrete tracking is used in our integration scheme. We search our database
in two steps: (i) according to general features, we find the most appropriate
cluster, and (ii) using more detailed features we search for the best matching
sample sequence inside the chosen cluster. The last hand configuration is chosen
as the solution for the input frame. In this way, we avoid multiple matches, taking
into account the most recently estimated hand configurations of the input video,
without any additional computation load.

Hand Gestures Database. Our database contains configuration sequence
samples, instead of single configurations as in [2[T3]. Our synthetic hand model
has 20 dof's, as shown in Fig. [l and its advantage is the good skin texture, that
can be used for hand edge extraction.

We created 200 configuration sequences, under 29 views, and each sequence
has Nyjqe = 15 frames, which are enough to include tracking failures in the
overall coupling scheme (for a 30fps input video). For each sample we have
stored the N,,q. joint angle sets corresponding to its successive configurations.
We have also extracted and stored (i) the single frame and (ii) the multi-frame
descriptors of each configuration sequence, as described below.

The database is organized according to which side of the hand is visible
(projection information) in the last frame, and how many fingers are visible in
the first and last frame of each sample sequence. Thus, we have divided our
database into 108 clusters, each one containing 54 samples on average.

2D Hand Features. For every input frame, we use as descriptors both bound-
ary and region-based information of the captured hand.

Single Frame Features. In order to estimate the 3D hand configuration by

searching in our database for the best matching configuration sequence, we use
the following cues. (i) Boundary-based features: For each input frame we ex-

Fig. 1. Our virtual hand and the 20 dofs describing all possible articulations
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tract the contour of the hand and the corresponding curvature function and
Curvature Scale Space (CSS) map [7L[I]. The CSS peaks indicate the most im-
portant zero-crossings Z. of the contour. In this way curvature is an efficient
shape descriptor for shape changes under complex movements and scaling. (i)
Region-based features: We extract the edge map of each input frame, using the
canny edge detector, and we calculate the edge orientation histogram of the
hand, as in [I5,[3], with B = 45 bins. The orientation histogram can provide us
with information about the edges in the interior of the hand. (i) Projection
information: From the currently estimated configuration, we obtain the pose in-
formation for the next frame, i.e. which side of the hand is visible (palm, side or
knobs view), assuming that the hands general pose does not change significantly
in two successive frames. (iv) Finger counting: For each input frame we count
the clearly visible fingers F', by calculating the most important zero-crossings

. ). o ZC
extracted in (i): F' = 5¢.

Multi-frame Features. Instead of searching and matching hand configurations
in the database, we search for configuration sequences, by taking into account
the Nyqe most recent frames of the input sequence. To reduce the computa-
tional complexity, we integrate the extracted 2D single frame features into two
vectors. For P points of an object contour and its curvature (B bins of the edge
orientation histogram), over N,,,, successive frames of the input video segment,
we can assume that we have P points (B points) in an N,,q,-dimensional space,
while we need to have P points (B points) in the 1D space. Thus, the problem is
transformed into a dimensionality reduction task. For the hand tracking appli-
cation, we used the nonlinear local Isomap embeddings proposed by Tenenbaum
et. al. [I4], keeping (P, B) << N. We chose to use Isomap, instead of using a
linear embedding e.g. PCA (Principal Component Analysis), because we have
nonlinear degrees of freedom, and we are interested in a global hand movement
signature, i.e. a globally optimal solution [IT].

Thus, if K = [Ku|ln = 1,...,Npas| and Hy = [Hypln = 1,..., Npag)
are the sets of N4, curvature functions K, and edge orientation histograms
Hy ,, extracted over N,,, frames, the embedded 1D multi-frame descriptors
are respectively,

kE=MNVE), and hy = MNY(Hy), (1)

where M1 represents the Isomap embedding from the N to the 1 dimensional
space. Fig. @illustrates four examples of gesture signature using the embedded
CSS descriptor. Each row represents one of the four illustrated hand movement
cases, whereas the first column shows the respective embedded CSS descriptors.

Matching Between Input Frames and Database Samples. The matching
criterion is the undirected chamfer distance. In general, given two point sets A
and B, their undirected chamfer distance d(A, B) is defined by the forward
df (A, B) and backward d®(A, B) distances:
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1 1
f = . E - b = . E X
d’ (A, B) AT aieAernln la* = V7|, d°(A,B) 5] P rrnr}‘Ha b, (2)

d(A,B) = d’ (A, B) + d°(A, B) (3)

Replacing A and B with the multi-frame descriptors k = [l~ci|z =1,...,P],
ks = [ki|i=1,..., P], we obtain the chamfer distance dj, between the embedded
curvature functions of the input video segment and the database configuration
sequence, respectively. Similarly, replacing A and B with hy = [iﬂg\z =1,...,B],
il975 = [ﬁé Sli=1,...,B], we obtain the respective chamfer distance d;, between
the embedded edge orientation histograms. In Fig. 2] we present four gestures
(four key-frames are shown), where the first one ((bl)-(el)) is completely dif-
ferent from the other three, the second one ((b2)-(e2)) is similar to the last
two, which are the same gesture performed twice. The undirected chamfer dis-
tances between the corresponding embedded curvature functions of Fig. P(al)-
(ad) are d\"(?) = 10.33, d\) (") = 7.87, d\")(*) = 8.54, d{"*)(*) = 6.93,
d,(caz) (as) _ g, 31, and d(a3) (a4) = 1.21, where superscripts indicate the corre-
sponding cases compared It can be seen also numerically that cases (a3) and
(ad) of Fig. 2l are the most similar.

For a given database cluster S € S, where S is the set of all clusters, i.e. the
entire database, and a set of input frames u, the best matching sample § € §
(€ S)is given by,

5= arg rgleagcp(swh(u, s)) - p(sldi(u, s)), (4)

where dy, (u, s) and di(u, s) are the extracted chamfer distances. The two match-
ing probability functions p(s|dp(u,s)) and p(s|di(u,s)) are gaussian distribu-

tions.

(a) (b)) () (@) (el)

(a2) (b2) (c2) (d2) (e2)

(a3)  (b3) (c3) (d3) (e3)

(ad) (b4) (c4) (d4) (e4)

Fig. 2. Embedded CSS descriptors: (al)-(a4) are the 1D embedded CSS, and (b1)-(el),
(b2)-(e2), (b2)-(e2) and (b2)-(e2) are key-frames of the respective sequences
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3 Dynamic Data Driven Coupling of Continuous with
Discrete Tracking

Our approach is based primarily on the continuous tracking method of [6], briefly
described in [[.Jl During each tracked frame we dynamically search in the syn-
thetic hand database and choose the cluster that best matches the corresponding
descriptors of our input sequence segment. In particular, our cluster search is
based on the pose of the hand in the last (current) frame and the number of
fingers visible in the first, and the last frame of the video segment. In this way,
for each time step we know which database cluster best matches with the Ny, qz
most current frames of the input sequence. When there is an indication that the
continuous method is about to loose track, we use the discrete approach, where
we search in the best matching cluster, for the best matching sample sequence,
using the multi-frame descriptors.

For each frame of the input video, the difference between the model projection
onto the image plane, and the tracked hand gives us the indication whether
continuous tracking fails or not. In order to estimate this difference, we use
the undirected chamfer distance d,,qp as in egs. (), (), between the model and
the examined and edges. Thus, what we need to learn is the joint probability of
continuous tracking given the distance d,,qp between the hand and the estimated
model: p(c|dmap)-

We applied continuous tracking off-line, including cases where it fails, and
we concluded that this happens when there are complex hand movements, such
as strong articulations and rotations, i.e. where optical flow estimation fails. We
performed complicated movements and articulations between simple hand move-
ments (translations or rotations parallel to the camera plane), i.e. cases where
it is successively ¢ = {1,0,1} (continuous tracking success-failure-success). We
used five hand sequences, 3,600 frames each, where a hand performed the same
pattern (¢ = {1,0,1}) under many different articulations. The joint probability
p(c|dmap) was then learnt using a a linear two-class SVM [17].

In summary our method is based on the use of two different types of tracking
methods. At each time only one is used based on an error measured defined
by the input data. This approach results in significantly more robust tracking
results as described below.

4 Experimental Results

After learning off-line the probability p(c|dmqp), we automatically estimated the
threshold for d,,qp, under which the continuous tracking can be applied safely,
as T ~ 0.27.

In Fig. [l the upper images of each row illustrate the case of a strong rota-
tion, where fingers get occluded, while the lower images of each row show the
extracted final result based on coupling between continuous and discrete track-
ing. In this case, the hand performs a strong rotation without any significant
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Fig. 3. Tracking results using our coupling framework

finger articulations and continuous tracking is performed in long time intervals
without any significant error.

Fig.BI(b) shows a more difficult case, where the hand performs not only com-
plicated rotations but also finger articulations. In this case, the time intervals
where continuous tracking was successfully applied are smaller, i.e. in the cou-
pling scheme discrete method initializes the hand model in more frames.

In Fig. Bl(c), we illustrate the case of tracking a hand performing sign lan-
guage, including both fingerspelled letters and continuous signs. Most of the
fingerspelled letters of sign language cannot be captured with continuous track-
ing and that is why its coupling with a discrete scheme is crucial. The illustrated
key-frames are taken from the phrase "Who did John see yesterday?’, which in
sign language is said as "John (fingerspelled) - see - who - yesterday (?)’. Our cou-
pling method performs well even in this case, where there are lighting chances and
complicated background, which are handled by the continuous tracking method
of [0].

5 Summary and Conclusions

We have presented a Dynamic Data Driven Application System (DDDAS) for 3D
object tracking in monocular sequences based on a novel coupling of continuous
and discrete tracking methods. We have focused on 3D hand tracking, since it is
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a very challenging task with a wide variety of applications. We have shown how
our approach handles complex articulations, abrupt and large movements and
occlusions. Our aim is to further evolve our method to be used for tracking of a
much larger type of articulated and nonrigid motions. In particular we plan to
further analyze signed languages such as ASL and also use our method in HCI
applications.
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