
Providing Interoperability for Java-Oriented
Monitoring Tools with JINEXT

W�lodzimierz Funika and Arkadiusz Janik

Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
funika@uci.agh.edu.pl

Abstract. While Java is getting an increasingly widely used program-
ming language, Java Virtual Machine has become an important platform
for networking and distributed computing. Due to the increasing com-
plexity of programs, the demand for monitoring tool support (debuggers,
performance analyzers etc.) for efficient computing is growing as well.
A special, open interface J-OMIS, which provides an efficient support
for monitoring distributed Java programs, is derived from the On-line
Monitoring Interface Specification (OMIS) that enables to use multiple
monitoring tools simultaneously. OMIS has been developed with inter-
operability in mind but not all structural and logical conflicts have been
solved. Addressing the missing aspects of interoperability support within
J-OMIS is intended to increase the simplicity of developing the monitor-
ing tools which will synergetically support each other. In the paper we
present the concept of JINEXT, an extension to OMIS, which is aimed
to provide interoperability between monitoring tools.

1 Introduction

In the world of nowadays’ computer science creating new applications has be-
come a very complicated, difficult, often long-term process. The software systems
become larger because the complexity of problems solved with them grows up. In
order to simplify, accelerate as well as to minimize the number of errors and bugs
done during developing process, it is necessary to use monitoring tools support-
ing this process. Interoperability is the ability of two or more software systems
to cooperate with each other. However, using tools from different vendors may
not accelerate the developing process but even disrupt it, unless a special co-
ordinating facility, like monitoring system provides a kind of interoperability
support.

In this paper we present some issues of adding an interoperability-oriented
extension to Online Monitoring Interface Specification (OMIS), which solves
structural and logical interoperability conflicts not handled by OMIS. In Section
2, we focus on the mediator interoperability model. In Section 3, we address
the common problems connected with the issue of interoperability . Section 4
presents JINEXT, an extension to the OMIS specification and in Section 5 we
present a practical example of using JINEXT. In Section 6 we discuss the on-
going work on JINEXT and further research.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 158–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Providing Interoperability for Java-Oriented Monitoring Tools with JINEXT 159

2 Related Work

There are a number of different concepts of interoperability [10]. In the paper we
address interoperability in the context of monitoring tools, as a kind of cooper-
ation between them on the semantical level where interpretation of actions and
events provided by each cooperating tool must be guaranteed.

A number of different interoperability models can be found in literature.
In the ToolTalk system [1] a tools’ interaction can be described independently
from the underlying communication mechanism. However, debugging tools which
use ToolTalk, as well as difficult deadlock analysis are big disadvantages of it.
The Eureka Software Factory (ESF) and Purtillo [1] based on the hardware
metaphore model use a special language to describe mappings between logical
modules (tools) of the system. These systems solve interoperability problems on
the control level, so the semantical issues are out of their interests. There is also
a model based on the solution where tools are interpreted as the agent systems.
An example is LARKS [6]. There is a specialized layer (called matchmarker),
used as an intermediator between the tools. The Agents Capability Description
Language (ACDL) [6] is a language used to describe services provided by different
tools. A description involves both, semantical and structural aspects of a service,
but conflicts due to the issue of interoperability are still not solved.

The mediator model stresses the separation between a behavior and tools
which implement this behavior [3]. A behavioral relationship term is used to
describe a relation between different tools, which is a connection between two
behaviors of two different tools. Each behavior in the mediator model is realized
by a proper abstract behavioral type (ABT) [2]. For instance, an editor behavior
is realized by Editor ABT with an operation to save a file and an event Saved().
This event is raised whenever a file is saved. A behavioral relationship is realized
by the mediator. Having registered the UponSave() operation with this event,
it is invoked whenever the event is raised. Note that the mediator is external to
the objects whose behaviors are integrated. The editor is viewed as an object
which provides the Save() action and generates Saved() event. A notification
about saving a file is done by the broadcast message. The Mediator ”captures”
this message and calls the compiler’s Compile() method.

The mediator solution promotes software modularization and is resistant to
a behavior evolution. For example, if we would like to improve the behavior of
compiler so it recompiles a modified file only when CPU load is low, only the
behavioral relationship can be changed. The editor and compiler do not have to
be changed. The only modification is an update of the mediator object. Moreover,
if we want to send the modified file to a remote backup directory whenever it is
modified, we can introduce an additional tool, e.g. a backup manager. A way to
improve the behavioral model is to add another relation between the improved
backup manager and the editor. To implement this change, we have to add
a backup manager object and the mediator realizing the relation between the
manager and the editor [3].

160 W. Funika and A. Janik

3 Common Aspects of the Issue of Interoperability

When considering interoperability as the ability of two or more applications
to cooperate, we will concentrate on a special case of software systems, called
monitoring tools, as run-time applications which are used to observe and/or ma-
nipulate the execution of a software system. Monitoring tools need a monitoring
system to be able to work in a proper way based on monitoring data. The mon-
itoring system is part of the tool infrastructure responsible for observing and
manipulating the target system, which provides the monitoring functionality for
tools, based on some interface. OMIS specifies an interface between a monitoring
system and tools [4].

In this context, interoperability is the ability of applying two or more tools to
the same software system, at the same time. In order to provide these features
some common problems have to be solved.

Structural Conflicts. The first problem is to run the tools concurrently, which
means to allow them to work at the same time being attached to the same soft-
ware system. The monitoring system should provide a mechanism for the concur-
rent operation of monitoring tools, for sharing the common resources (hardware,
processes, threads, classes, objects, memory). Without a common monitoring
system the tools may access a target system in a completely uncoordinated
manner [2].

Logical Conflicts. Logical conflicts are connected with semantical issues. As
long as logical conflicts are not solved tools cannot co-exist consistently. It means
that when manipulating on the target system, tools cannot preserve a consistent
view of this system, e.g. when a profiler measures the time of a process execution
while this process is suspended by a debugger. More formally, the consistency
problem can be described as a read/write access conflict [2].

4 OMIS Versus the Interoperability of Tools

OMIS and the OCM monitoring system, its reference implementation, are in-
tended to provide a kind of interoperability for tools relating to structural con-
flicts and conflicts on exclusive objects [5]. All tools that share an object use
the same controlling monitor process that coordinates accesses to the monitored
objects. Therefore, tools are enabled to coexist. However, the transparency prob-
lem was not resolved yet. The support for avoiding logical conflicts in OMIS is
incomplete.

The concept of OMIS allowed to extend OMIS and the OCM by monitor-
ing support for Java distributed applications, known as J-OMIS and J-OCM,
respectively [7]. To provide a wide interoperability for Java-oriented tools, we
designed Java INteroperability EXTension (JINEXT) as an extension to OMIS
(see Fig. 1).

Providing Interoperability for Java-Oriented Monitoring Tools with JINEXT 161

(monitor extension)

monitor/program interface

monitoring system
 (OMIS)

 JINEXT

target application

Tool A Tool B Tool C

tool/JINEXT interface

Fig. 1. The overview on JINEXT architecture

In order to be interoperable some conditions have to be met:

– the tools communicate with the JINEXT extension only, instead of calling
the monitoring system directly;

– a component implementing the JINEXT specification (a.k.a. JINEXT com-
pliant system) is responsible for passing requests to the monitoring system
and for synchronization between different tools, as well as for choosing target
monitoring tools to be informed about changes due to request;

– each tool must implement a single interface (events and actions) which is
used to emphasize that the behavior and functionality provided by each tool
is the same for all the tools of a given type (e.g. there can be four different
debuggers, developed by different providers, in different languages, all of
them sharing a common interface).

The Mediators. The mediators in JINEXT follow the mediator interoperability
model [3]. A mediator is a connection between the event generated by a tool and
the action which should be executed by another tool whenever the event occurs.
In JINEXT each mediator is used to describe one behavioral relation between
an event and an action. If the developer wants to introduce a tool implementing
a new tool type, she/he has to provide mediators which are responsible for
interoperability between the new tool type and all other tool types.

The Mediator Function. While the mediator in JINEXT refers to an abstract
behavioral relation only, the mediator function implements this relation. A me-
diator defines that if tool A raises event X then tool B should execute action Y
while a mediator function is responsible for translating the parameters of event
X into parameters of action Y.

The important advantage of the model used in JINEXT is the ease of adding
a new relation between the monitoring tools while their implementation stays

162 W. Funika and A. Janik

unmodified. Moreover, the mediator function makes it possible to change the
behavior of tool B (used in above example) while the mediator remains the same.
It means that monitoring tool’s behavior can be flexibly changed by providing
new mediator functions, while the very mediators remain untouched, after they
have been once well defined.

There are two different modes of tools’ cooperative in JINEXT:non-cooperative
mode and cooperative mode.

– non-cooperative mode - it is defined w.r.t. a pair of monitoring tools what
means that these two tools can work in the non-cooperative mode when
considering this particular pair but any of these tools can work in the co-
operative mode with some other tool. In the non-cooperative mode tools
working with the JINEXT compliant system do not have to know that there
are other monitoring tools connected to the system, which are monitoring
the target application. JINEXT takes care of tools’ synchronization.

– cooperative mode - two tools work in this mode if they know about each
other. Each of them can request another tool for an action execution. It
means that the functionality provided by the first tool can be used by the
second one, e.g. to extend the functionality of monitoring tools and to build
a complex toolset consisting of smaller components, like the IDE (Integrated
Developer’s Environment).

5 Use Case

In order to verify the features of JINEXT we have developed its prototype im-
plementation, called JINTOP. We have also developed four example monitoring
tools: an editor, a compiler, a debugger and a profiler. A sample scenario of
interoperability between tools is as follows:

1. the user changes the source file of the application App
2. the editor saves the changes;
3. the compiler recompiles the code and generates the new binary file;
4. the simultaneously used debugger restarts the debugged application with

a new code;
5. during the restart of the application profiler pauses and resumes the pre-

viously defined performance measurements.

The sequence diagram for this scenario explaining the role of JINTOP is
presented in Fig. 2.

The editor notifies JINTOP about event source code saved and JINTOP uses
mediators to obtain information on the attached tools which are interested in
this event. Each event is checked in the context of calling tool so two events e.g.
Debugger.process stopped and Profiler.process stopped will be handled by differ-
ent mediators and may trigger different actions. After having checked events,
callback method jinext action() is used to execute a tool’s action (e.g. recom-
pile source code). This causes raising the binary code modified event. If a tool

Providing Interoperability for Java-Oriented Monitoring Tools with JINEXT 163

Fig. 2. The sequence diagram for the save() operation

requests OMIS/J-OMIS service (e.g. a debugger requesting the stop process ser-
vice) JINTOP executes this request and hooks zero or more events (Debug-
ger.process stopped) which trigger (via mediators) zero or more actions (Perfor-
mancer.pause measurements). As one can see, events can be hooked directly by
tools (jinext notify event) or by JINTOP as a result of executing an OMIS/J-
OMIS service. JINTOP takes care of consistency after having executed the
OMIS/J-OMIS service by the tool. Moreover, JINTOP do not bother any tools
which are not attached to the tokens (threads, processes, classes, objects etc.)
connected with the notified event.

Overhead Due to Using JINTOP. We have carried out experiments to mea-
sure the overhead induced due to using JINTOP instead of direct calls to the
OCM. The results of our experiment are presented in Fig. 3. The experiment
was done on AMD Athlon 2000+ 1,8GHz with 1GB of RAM, under Linux 2.23
OS.

The first observation is that the execution time of processing a request is
longer if there are more processes the request refers to. The second conclusion
is that the overhead introduced by JINTOP increases if there are more moni-
toring tools registered by JINTOP. However, it is always less than ca 22% and
can be further reduced by changing the internal data structures of JINEXT
implementation.

164 W. Funika and A. Janik

Fig. 3. The execution time of an example request in function of the number of threads

attached to the monitoring system

6 Conclusion and Future Work

JINEXT, as an extension to OMIS for tools’ interoperability, is designed to
enable different monitoring tools to run concurrently, via solving logical and
structural conflicts. It enables simultaneous operation of different monitoring
tool types, without system failures. The mediator interoperability model used in
JINEXT guarantees that an evolution of a behavior of monitoring tools can be
done seamlessly from the viewpoint of interoperability.

The first version of JINEXT has been released. However, some useful ser-
vices should also be added to JINEXT, e.g. these ones which enable dynamic
addition of a new tool type allowing the developer to describe the monitoring
tool type in an external XML file. The next step in further research is to extend
JINEXT to be compatible with OCM-G [8]. Providing the interoperability of
monitoring tools working in a grid environment is necessary if we want to allow
more than a single user to work on the same target object from within different
nodes or sites. Let us consider the situation when one user on node A is doing
some performance measurement on an application whereas another user on node
B is debugging this application. If these monitoring tools are not interoperable
the first user will receive false measurement results. A solution would be to add
a special interoperability agent on each node of the grid. The agent analyzes
requests and recognizes whether they are coming from a local or remote node
of the grid. In the second case, the agent will do all necessary token transla-
tions. The agent can also support an additional interoperability-related security
policy.

Providing Interoperability for Java-Oriented Monitoring Tools with JINEXT 165

Acknowledgements. Our thanks go to Prof. Roland Wismüller for valuable
discussions. This research was partially supported by the KBN grant 4 T11C
032 23.

References

1. Bergstra, J. A., Klint P.: The ToolBus - a component interconnection architecture,
Programming Research Group, University of Amsterdam, Meeting, Band 1697 aus
Lecture Notes in Computer Science, page 51–58, Barcelona, Spain, September 1999.
ftp://info.mcs.anl.gov/pub/techreports/reports/P754.ps.Z

2. Roland Wismüller: Interoperable Laufzeit-Werkzeuge für parallele und verteilte Sys-
teme, Habilitationsschrift, Institut für Informatik, Technische Universität München,
2001

3. K. J. Sullivan. Mediators: Easing the Design and Evolution of Integrated Systems.
PhD. thesis, Dept. of Computer Sciences and Engineering, Univ. of Washington,
USA, 1994. Technical Report 94-08-01.
ftp://ftp.cs.washington.edu/tr/1994/08/UW-CSE-94-08-01.PS.Z

4. Ludwig, T., Wismüller, R., Sunderam, V., and Bode, A.: OMIS – On-line Monitor-
ing Interface Specification (Version 2.0). Shaker Verlag, Aachen, vol. 9, LRR-TUM
Research Report Series, (1997)
http://wwwbode.in.tum.de/~omis/OMIS/Version-2.0/version-2.0.ps.gz

5. Roland Wismüller: Interoperability Support in the Distributed Monitoring System
OCM, In: R. Wyrzykowski et al., (eds.), Proc. 3rd International Conference on
Parallel Processing and Applied Mathematics - PPAM’99, pages 77-91, Kazimierz
Dolny, Poland, September 1999, Technical University of Czestochowa, Poland. In-
vited Paper.

6. Katia Sycara, Jianguo Lu, Matthias Klusch: Interoperability among Heterogenous
Software Agents on the Internet, The Robotics Institute Carnegie Mellon University,
Pittsburgh, USA, October 1998

7. M. Bubak, W. Funika, M.Smȩtek, Z. Kiliański, and R. Wismüller: Architecture of
Monitoring System for Distributed Java Applications. In: Dongarra, J., Laforenza,
D., Orlando, S. (Eds.), Proceedings of 10th European PVM/MPI Users’ Group
Meeting, Venice, Italy, September 29 - October 2, 2003, LNCS 2840, Springer, 2003

8. Balís, B., Bubak, M., Funika, W., Szepieniec, T., and Wismüller, R.: An Infras-
tructure for Grid Application Monitoring. In: Kranzlmüller, D. and Kacsuk, P. and
Dongarra, J. and Volkert, J. (Eds.), Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 9th European PVM/MPI Users’ Group Meeting,
September - October 2002, Linz, Austria, 2474, Lecture Notes in Computer Sci-
ence, 41-49, Springer-Verlag, 2002

9. Günther Rackl: Monitoring Globus Components with MIMO, Institut für Infor-
matik, PhD Thesis, Technische Universität München, March 2000

10. Peter Wegner: Tutorial Notes: Models and Paradigms of Interaction. Technical
Report CS-95-21, Department of Computer Science, Brown University, Providence
Rhode Island 02912, USA, September 1995
http://www.cs.brown.edu/publications/techreports/reports/CS-95-21.html

	Introduction
	Related Work
	Common Aspects of the Issue of Interoperability
	OMIS Versus the Interoperability of Tools
	Use Case
	Conclusion and Future Work

