
Fast Expression Templates

Object- riented High Performance Computing

Jochen Härdtlein, Alexander Linke, and Christoph Pflaum

University of Erlangen, Department of Computer Science 10,
System Simulation Group, Cauerstr. 6, D-91058 Erlangen, Germany

Abstract. Expression templates (ET) can significantly reduce the im-
plementation effort of mathematical software. For some compilers, es-
pecially for those of supercomputers, however, it can be observed that
classical ET implementations do not deliver the expected performance.
This is because aliasing of pointers in combination with the complicated
ET constructs becomes much more difficult. Therefore, we introduced
the concept of enumerated variables, which are provided with an addi-
tional integer template parameter. Based on this new implementation
of ET we obtain a C++ code whose performance is very close to the
handcrafted C code. The performance results of these so-called Fast ET
are presented for the Hitachi SR8000 supercomputer and the NEC SX6,
both with automatic vectorization and parallelization. Additionally we
studied the combination of Fast ET and OpenMP on a high performance
Opteron cluster.

1 Introduction

While object-oriented programming is being embraced in industry, its accep-
tance by the High Performing Computing Community is still very low, mainly
because of supposed performance losses. Indeed, introducing abstract data types
and operator overloading empowers the software engineer to forge interfaces very
close to problem-specific notation, which can be understood by C++-compilers.
However, there are no language features in C++ which are designed to inform
the compiler about allowed transformations of mathematical expressions involv-
ing user-defined abstract data types. Therefore, though such user-defined mathe-
matical expressions can be compiled by C++-compilers, they often perform very
poorly. The first solution to overcome these performance problems was repre-
sented by the use of ET in C++, whose development we will summarize in the
following.

Veldhuizen and Vandervoorde concurrently recognized the potential of tem-
plates in C++ and, in 1995 and 1996, Veldhuizen published his first articles about
template meta programming [10] and ET [11]. ET were proposed to overcome
performance problems which arise from simple operator overloading in mathe-
matical expressions. Unnecessary temporaries are avoided by performing some
kind of expression-dependent inlining within a single loop. Therefore, less data

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 1055–1063, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

O



1056 J. Härdtlein, A. Linke, and C. Pflaum

is pumped through the memory hierarchy during the evaluation, thus enhanc-
ing code performance. For many systems the efficiency of ET implementations
competes with their Fortran counterparts [12].

Soon, there was a rapid development of powerful mathematical packages
based on ET; e.g., Blitz++ by Veldhuizen [13] and the Generative Matrix Com-
putation Library (GMCL) described in [3]. Further important software frame-
works are PETE [7] and POOMA [9], which represent two projects started at the
Los Alamos National Laboratory. PETE is a tool for implementing ET for var-
ious applications. POOMA supports the implementation of mathematical algo-
rithms for solving partial differential equations. Users of POOMA write sequen-
tial source code similar to FORTRAN 90 and benefit from getting automatic
parallelization on various platforms just by using compiler switches. Some aims
of the POOMA project are shared by the EXPDE project [8]. EXPDE eases the
implementation of parallel 3D finite element codes by providing finite element
and multigrid operators on arbitrarily shaped domains. Mathematical algorithms
can be formulated with EXPDE in a language very close to the mathematical
language. Furthermore, ET enable automatic parallelization.

Performance problems with ET were discovered for the first time by Bassetti,
Davis, and Quinlan in 1997, see [1] and [2]. They studied the register spillage of
ET codes and figured out the downsides of these implementations. Additionally
to that paper one can observe thoroughgoing problems using ET on computers
that enable automatic parallelization; e.g., vector machines or multiprocessor
machines using OpenMP. Analyzing these problems, we developed, via the con-
cept of enumerated variables, an implementation technique to assist the compiler
overcoming these problems.

In the next section we will demonstrate how classical ET work and show the
problems from which they suffer. After that we will present our implementation
of Fast ET. In section 4 we will provide some examples comparing the described
implementations of ET with C code computing the same problems. Section 5
concludes the paper.

2 Classical Expression Templates

For the sake of simplicity, we will focus on a minimal classical ET implementa-
tion for vectors with component-wise multiplication, as suggested in [14]. The
mathematical operator Times is encapsulated by:

struct Times{

static inline double apply(double a, double b) {return a*b;}

};

The expression class is then implemented as follows:

template<typename Left, typename Op, typename Right>

struct Expr {

const Left &left_; const Right &right_;

Expr(const Left &t1, const Right &t2):left_(t1),right_(t2){}



Fast Expression Templates 1057

double Give(int i) const {

return Op::apply(left_.Give(i), right_.Give(i));}

};

Here is a simple vector class:

class Vector {

double * data_;

const int N_;

public:

Vector(int N, double val);

double Give(int i) const { return data_[i]; }

template<typename Left, typename Op, typename Right>

void operator= (const Expr<Left, Op, Right> &expr){

for(int i=0; i < N_; ++i)

data_[i] = expr.Give(i);

}

};

Finally, the operator* is implemented as follows. The idea is to create a type
that stores the information for the evaluation.

template<typename Left>

Expr<Left,Times, Vector>

operator*(const Left &a,const Vector &b){

return Expr<Left,Times, Vector>(a, b);

}

We will now explain how ET work. Consider the line c = a*b*a. The type
inference mechanism of the compiler can be represented as:

c = a*b*a;

= Expr<Vector,Times,Vector>(a,b)*a;

= Expr<Expr<Vector,Times,Vector>,Times,Vector>(

Expr<Vector,Times,Vector>(a,b),a);

=: expr;

The call of c.operator= looks as follows:

c.operator=<Expr<Expr<Vector,Times,Vector>,Times,Vector> >(expr){

for(int i=0; i < N_; ++i) data_[i] = expr.Give(i);}

Now expr.Give(i) can be expanded by inlining Give(i) from each node of
the expression tree:

data_[i] = expr.Give(i);

= Times::apply(expr.left_.Give(i),expr.right_.Give(i));

= Times::apply(Times::apply(expr.left_.left_.Give(i),

expr.left_.right_.Give(i)),expr.right_.Give(i));

= Times::apply(Times::apply(expr.left_.left_.data_[i],

expr.left_.right_.data_[i]),expr.right_.data_[i]);

= expr.left_.left_.data_[i] * expr.left_.right_.data_[i]

* expr.right_.data_[i];



1058 J. Härdtlein, A. Linke, and C. Pflaum

If operator= is inlined and the aliasing for the pointers works, a C++ com-
piler can, in principle, optimize the expression such that it correspond to the
following code fragment:

for(int i=0; i < N; ++i)

c.data_[i] = a.data_[i] * b.data_[i] * a.data_[i];

This is just the code a C programmer would naturally write. Indeed, to
reach this stage a compiler must have good optimization facilities. Since not all
compilers are capable of C++-specific optimization facilities, the resulting pro-
grams based on classical ET can suffer from a variety of performance problems.
Although component-wise multiplication of three vectors is a very trivial appli-
cation of ET, the intermediate C++ code inlined by ET is quite complex. More
difficult applications such as ET for discretized differential operators in 3D yield
much more complex intermediate code.

The main problems of ET are discussed in [1] and [2]. For a better understand-
ing of the performance lacks we focus again on the example presented above. The
pointers expr.left_.left_.data_ and expr.right_.data_ represent the same
data array. The aliasing concept of the C++ compiler must be able to resolve
this to the pointers they denote. Otherwise there will be two different pointers
that represent the same data. During the evaluation loads are issued, even if the
data has already been loaded into the CPU core. This obviously causes perfor-
mance lacks. Moreover, as aliasing is even more important on vector machines
the solution of this problem can significantly reduce the performance problems
in object-oriented high performance computing.

3 Fast Expression Templates

After this short discussion of classical ET and their problems, we present an
alternative approach based the concept of enumerated variables. The idea is to
equip the Vector class with an additional integer parameter which is unique for
each vector variable. The aim is to communicate to the compiler if the variables
differ or not. Our second idea is to derive an expression object from an expression
whose information is completely accessible at compile time. This allows more
intelligent inlining and guarantees enhanced C++ performance.

template <class A, class B>

struct Times : public Expr<Times<A,B> > {

static inline double Give(int i){return A::Give(i)*B::Give(i);}

};

template <class A, class B>

inline Times<A,B> operator*(const Expr<A>& a, const Expr<B>& b){

return Times<A,B>();

}

Moreover, the Give function for the Vector class has to be static as well.
However, the vector components and even the vector size is still unknown at
compile time. We solve this problem by introducing a static data pointer. This is



Fast Expression Templates 1059

reasonable because different variables have different types. Consider the following
implementation of the Vector class:

template<int num>

class Vector : public Expr<Vector<num> >{

static double* data_;

const int N_;

public:

...

template<class A>

inline void operator=(const Expr<A>& a) const {

for(int i = 0; i < N_; ++i) data_[i] = A::Give(i);

}

static inline double Give(int i) {return data_[i];}

};

template<int num> double* Vector<num>::data_;

Last but not least, the excerpt from the main program looks as follows:

Vector<0> a(N, 1.); Vector<1> b(N, 3.); Vector<2> c(N, 0.);

c = a*b*a;

We will now explain how this new approach differs from classical ET. To this
end, we focus again on the expression c=a*b*a, whose expression object has the
following type:

Times<Times<Vector<0>,Vector<1>>,Vector<0>>

Since this expression type contains the complete information about the ex-
pression c=a*b*a, more efficient inlining is possible. The expression is evaluated
as:

c.operator=

Times<Times<Vector<0>,Vector<1>>,Vector<0>>(expr){

for(int i = 0; i < N; ++i)

c.data_[i] = Times<Times<Vector<0>,Vector<1>>,Vector<0>>::Give(i);

}

Now we demonstrate how the static Give(i) function can be inlined:

Vector<2>::data_[i] =

= Times<Times<Vector<0>,Vector<1>>,Vector<0>>::Give(i);

= Times<Vector<0>,Vector<1>>::Give(i) * Vector<0>::Give(i);

= Vector<0>::Give(i) * Vector<1>::Give(i) * Vector<0>::Give(i);

= Vector<0>::data_[i]*Vector<1>::data_[i]*Vector<0>::data_[i];

This inlined source code corresponds to the code a programmer would naively
write. In comparison to classical ET where the pointers expr.right_.data_
and expr.left_.left_.data_ represent the same data array, here the pointer
Vector<0>::data_ occurs twice. Hence, Fast ET support the compiler in aliasing
identical data arrays.

Working only with the type of an expression means using only that informa-
tion which is really needed to build the evaluation. Enumerating is just the base



1060 J. Härdtlein, A. Linke, and C. Pflaum

for reaching this goal. In general the enumeration concept with static data joins
two ideas of programming. On one hand, it introduces the use of global variables
that are easier to optimize for compilers, because there are less aliasing conflicts
than in pure object-oriented codes. On the other hand, enumerated variables
enable data encapsulation in the object-oriented sense. And joining all in Fast
ET we apply well performing operator overloading.

4 Performance Results

After the discussions of classical ET (CET) and Fast ET (FET) we present some
performance results. The two implementations are compared with a C code that
uses no ET (NET) but computes the same problem. In addition to the multipli-
cation we implemented component-wise sum of vectors in the same manner. As
we are interested in the effort of ET in high performance computing we tested
these implementations to this aspects. We analyzed two types of expressions, at
first the vector triad a = b + c ∗ d that does not suffer from the aliasing problem
because each vector only occurs once. The second expression is a =

∑7
i=1 ai. Ob-

viously the efficiency of its implementation is highly dependent on the compiler’s
capabilities to detect array aliasing.

The results are presented for three platforms. At first the NEC SX-6/48M6
at the HLRS in Stuttgart, which is a shared memory vector system. We started
the computation on one node with automatic vectorization. The sxc++ com-
piler enables the vectorization. The second platform is the Hitachi SR8000 su-
percomputer at the LRZ Munich. A single node is equipped with eight RISC
processors and each processor can perform vector operations with floating point
numbers, see [4]. On the Hitachi SR8000 we used the optimizing C++ compiler
sCC by Hitachi, because it is the only C++ compiler which can vectorize C++
programs on this platform. At last we demonstrate the performance tests on a

10
2

10
3

10
4

10
5

10
6

10
7

Vector Length

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

T
im

e 
pe

r 
It

er
at

io
n

NET
CET
FET

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Vector Length

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

T
im

e 
pe

r 
It

er
at

io
n

NET
CET
FET

Fig. 1. Performance results on the Nec SX-6/48M6. On the left side the graph for the

vector triad where only small vector lengths show the improvement by FET. The right

figure presents the performance of the expression a =
∑7

i=1
ai. FET run more than

ten times faster than CET even for large vectors



Fast Expression Templates 1061

10
1

10
2

10
3

10
4

10
5

10
6

Vector Length 

10
-5

10
-4

10
-3

T
im

e 
pe

r 
It

er
at

io
n

10
1

10
2

10
3

10
4

10
5

10
6

10
-5

10
-4

10
-3

NET
CET
FET

10
2

10
3

10
4

10
5

10
6

Vector Length

10
-5

10
-4

10
-3

10
-2

T
im

e 
pe

r 
It

er
at

io
n

NET
CET
FET

Fig. 2. a = b + c ∗ d and a =
∑7

i=1
ai on the Hitachi SR8000 supercomputer. The first

example points out a small improvement by FET in comparison to CET mainly for

small vector sizes. The right figure demonstrates the performance enhancement by the

FET implementation

AMD Opteron Cluster with dual-nodes and quad-nodes. On this platform the
implementations are translated by the Intel C++ compiler, version 8.1, and the
evaluation is started on a dual node.

The results of the two examples are presented below. We measured the time
per iteration over the vector length. At first, the vector triad does not suffer from
lacks in aliasing. Only for small vector sizes the FET work faster than CET. This
is reasonable because, unlike CET, the FET implementations do not store the
expression members in the operating classes. However, this effect is compiler-
dependent; e.g., the Intel C++ compiler optimizes all the nested function calls
through the classical ET constructs in the expected way (see Fig. 3). Hence, there
are also no differences in the performance for small vector lengths. The second
example shows the real improvements by FET. In the majority of cases, they

10
3

10
4

10
5

10
6

10
7

Vector Length

10
-5

10
-4

10
-3

10
-2

T
im

e 
pe

r 
It

er
at

io
n

NET
CET
FET

10
3

10
4

10
5

10
6

10
7

Vector Length 

10
-5

10
-4

10
-3

10
-2

10
-1

T
im

e 
pe

r 
It

er
at

io
n

NET
CET
FET

Fig. 3. The Opteron Cluster using Open MP and the Intel C++ compiler does not

arise performance differences for the vector triad. This is due to the good optimizing

facilities of the Intel compiler. However, the big expression in the right graph confirms

the improvements resulting from the application of FET



1062 J. Härdtlein, A. Linke, and C. Pflaum

work as well as the C code does. Only some small oscillations can be observed.
The CET implementation suffers from the lacks in aliasing. The compiler does
not recognize the repeated occurrence of the data pointer of the vector a. Hence,
during the evaluation loads are issued even though the data has already been
loaded into the CPU core. already in cache. This causes the performance lacks
that slow down the implementation more than ten times compared to the other
ones.

5 Conclusions and Perspectives

While ET have been in use for about eight years now, their problems discussed
by Bassetti, Davis, and Quinlan led to a break in the euphoria. Recognizing
the lacks of classical implementations, we introduced a concept to avoid these
problems. Our new implementation of ET supports the compiler in solving the
aliasing problems. Of course, there is an extra effort in organizing FET. Every
template integer of an enumerated variable has to be unique within the whole
program code, because they work, in principle, like global variables. Using FET
in a library yields the enumeration of the variables to the user. A simple solution
is the use of the __LINE__ macro and defining every vector in a different line.

The performance that could be reached by using FET instead of the classical
implementations is near to the C code performance. Hence, FET potentiates the
ideas of a user-friendly interface and a well performing code.

References

1. Bassetti, F, Davis, K, and Quinlan, D: Towards Fortran 77 Performance from
Object-Oriented C++ Scientific Framework: HPC ‘98 April 5-9, 1998.

2. Bassetti, F, Davis, K, and Quinlan, D: C++ Expression Templates Performance
Issues in Scientific Computing. CRPC-TR97705-S, October 1997.

3. Czarnecki, K, and Eisenecker, U: Generative Programming : Methods, Tools, and
Applications. Addison-Wesley, Boston, 2000.

4. Leibniz-Rechenzentrum München: The Hitachi SR8000-F1, System Description.
http://www.lrz-muenchen.de/services/compute/hlrb/system-en

5. High Performance Computing Center Stuttgart: The NEC SX-6 Cluster Documen-
tation. http://www.hlrs.de/hw-access/platforms/sx6/user doc

6. Department of Computer Science 10, System Simulation, Erlangen: HPC Cluster
http://www10.informatik.uni-erlangen.de/Cluster/hpc.shtml

7. Los Alamos National Laboratories: PETE - Portable Expression Templates Engine.
http://www.acl.lanl.gov/pete/html/introduction.html

8. Pflaum, C: Expression Templates for Partial Differential Equations. Comput. Vi-
sual. Sci. 4, 1–8, (2001).

9. Los Alamos National Laboratories: POOMA: www.acl.lanl.gov/pooma
10. Veldhuizen, T: Using C++ Template Metaprograms. C++ Report Vol. 7 No 4.

(May 1995), pp. 36–43.
11. Veldhuizen, T: Expression Templates. C++ Report 7 (5), 26–31 (1995).



Fast Expression Templates 1063

12. Veldhuizen, T: Will C++ be faster than Fortran? Proceedings of the 1st In-
ternational Scientific Computing in Object-Oriented Parallel Environments (IS-
COPE’97).

13. Veldhuizen, T: Blitz++. http://oonumerics.org/blitz/index.html
14. Veldhuizen, T: Techniques for Scientific C++. Indiana University Computer Sci-

ence Technical Report No 542, Version 0.4, August 2000.


	Introduction
	Classical Expression Templates
	Fast Expression Templates
	Performance Results
	Conclusions and Perspectives



