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Abstract. A new kernel has been developed for vectors derived from a
coding scheme of the tri-peptide composition for protein sequences. This
kernel defines the sequence similarity through a mapping that transforms
a tri-peptide coding vector into a new vector based on a matrix formed
by the high BLOSUM scores associated with pairs of tri-peptides. In
conjunction with the use of support vector machines, the effectiveness of
the new kernel is evaluated against the conventional coding schemes of
k-peptide (k ≤ 3) for the prediction of subcellular localizations of pro-
teins in Gram-negative bacteria. It is demonstrated that the new method
outperforms all the other methods in a 5-fold cross-validation.
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1 Introduction

Advances in proteomics and genome sequencing are generating enormous num-
bers of genes and proteins. The development of automated systems for the anno-
tation of protein structure and function has become extremely important. Since
many cellular functions are compartmentalized in specific regions of the cell, sub-
cellular localization of a protein is biologically highlighted as a key element in
understanding its function. Specific knowledge of subcellular location can direct
further experimental study of proteins.

Methods and systems have been developed during the last decade for the
predictive task of protein localization. Machine learning methods such as Artifi-
cial Neural Networks, the k-nearest neighbor method, and Support Vector Ma-
chines (SVM) have been utilized in conjunction with various methods of feature
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extraction from protein sequences. Most of the early approaches employed the
amino acid composition and the di-peptide composition [7, 11, 20] to represent se-
quences. This method may miss the information on sequence order and the inter-
relationships between the amino acids. In order to overcome this shortcoming,
it has been shown that motifs, frequent-subsequences, and functional domains,
which are obtained from various databases (SMART, InterPro, PROSITE) or
extracted using Hidden Markov Models and data mining techniques, can be used
for the representation of protein sequences for the prediction of subcellular lo-
calizations [2, 3, 6, 21, 22]. Methods have also been developed based on the use
of the N-terminal sorting signals [1, 5, 9, 15, 17, 18, 19] and sequence homology
searching [16].

Most robust methods adopt an integrative approach by combining several
methods, each of which may be a suitable predictor for a specific localization or
a generic predictor for all localizations. PSORT is an example of such a successful
system. Developed by Nakai and Kanehisa [18], PSORT, recently upgraded to
PSORT II [10, 17], is an expert system that can distinguish between different
subcellular localizations in eukaryotic cells. It also has a dedicated subsystem
PSORT-B for bacterial sequences [8].

Several recent studies [14, 23], however, have indicated that a predicting sys-
tem based on the use of generalized k-peptide compositions or sequence ho-
mology could obtain similar or better performance compared to that of the
integrated system PSORT-B. The outcome from our work also supports these
findings.

In this study, a new similarity measurement for protein sequences has been
developed based on the use of a matrix derived from high-scored pairs of tri-
peptides. Each protein sequence is first coded by its tri-peptide composition.
Since the repeating of the same tri-peptide is relatively lower comparing to that
of di-peptides, the tri-peptide coding is more faithful in retaining the order of
amino acids. Each pair of tri-peptides is then assigned with a score based on a
BLOSUM matrix. A small portion of pairs with high scores is selected to retain
their original scores in order to reduce noise and the computational time. The
rest of pairs are given zero scores. The reassigned score associated with each pair
of tri-peptides is then considered as an entry of an imaginary matrix D, which is
named as the matrix of high-scored pairs of tri-peptides. It is obvious that pairs
with more than two amino acids in common or sharing residues with high BLO-
SUM scores usually receive higher scores. Then each tri-peptide coding vector
x is mapped to another vector Dx, and the similarity between the sequences is
measured by those mapped vectors. That is, the kernel is defined based on these
mapped vectors.

The new method is evaluated against the coding schemes of k-peptide (k ≤ 3)
compositions for the prediction of subcellular localizations for proteins obtained
from Gram-negative bacteria [8]. It is demonstrated by the result of a 5-fold
cross-validation that the new method outperforms the coding methods based on
the k-peptide compositions.
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2 Method

This section introduces the new kernel for the coding vectors derived from the
tri-peptide compositions for protein sequences. The coding scheme based on the
tri-peptide composition has been used in protein fold recognition [13], but has
never been evaluated for the prediction of subcellular localizations. First a short
description of support vector machines, the machine learning method used in
this study will be presented.

2.1 Support Vector Machines

Suppose that a set of m training points xi (1 ≤ i ≤ m) in an n-dimensional
space is given. Each point xi is labeled by yi ∈ {1,−1} denoting the member-
ship of the point. An SVM is a learning method for binary classification. Using
a nonlinear transformation φ, it maps the data to a high dimensional feature
space in which a linear classification is performed. It is equivalent to solving the
quadratic optimization problem:

min
w,b,ξ1,...,ξm

1
2
w · w + C

m∑

i=1

ξi

subject to yi(φ(xi) · w + b) ≥ 1 − ξi (i = 1, ...,m),
ξi ≥ 0 (i = 1, ...,m),

where C is a parameter. The decision function is defined as f(x) = sign(φ(x) ·
w + b), where w =

∑m
i=1 αiφ(xi) and αi (i = 1, ...,m) are constants determined

by the dual problem of the optimization defined above. Define a dot product
k(xi,xj) for any pair of mappings φ(xi) and φ(xj), i.e., k(xi,xj) = φ(xi)·φ(xj).
This is called kernel function. The matrix Kij = k(xi,xj) is called kernel matrix.
The decision function can be represented as f(x) = sign(

∑m
i=1 αiφ(xi) · φ(x) +

b) = sign(
∑m

i=1 αik(xi,x) + b). The typical kernel functions are, for example,
polynomial kernel (xi · xj)d (d ≥ 1) and Gaussian kernel exp(−γ‖xi − xj‖2).
For other details of SVMs refer to [4].

2.2 Sequence Coding Schemes and a New Kernel Based on
High-Scored Pairs of Tri-Peptides

The coding schemes of protein sequences based on k-peptide compositions or
their variations have been demonstrated effective in the predictions of protein
folds and subcellular localizations, in conjunction with the use of machine learn-
ing tools such as neural networks and support vector machines [16, 23]. If k = 1,
then the k-peptide composition reduces to the amino acid composition, and if
k = 2, the k-peptide composition gives the di-peptide composition. When k
becomes larger, the k-peptide compositions will cover more global sequence in-
formation, but at the same time, such a coding scheme becomes less attractive
from a computational viewpoint.

In order to code a sequence, a window with a length of k is moved along the
sequence from the first amino acid to the kth amino acid from the end. Every
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k-letter pattern that appears in the window is recorded with increment of 1 in
the corresponding entry of the vector. Upon the termination of this procedure,
the vector provides the k-peptide composition of the sequence. The final vector
is normalized by dividing the number of window positions associated with that
sequence. Since the symbol “X” may appear in some sequences, it is added to the
set of the original 20 symbols of the amino acids to give a total of 21. Therefore,
vectors of 21, 212 = 441 and 213 = 9261 dimensions are required respectively
for k = 1, 2, and 3 in this coding scheme. Each entry of the vector is associated
with a possible permutation of k amino acids.

Since there is only a small collection of the possible 3-letter patterns ap-
pearing in each protein sequence, the dot product (xi · xj) in the linear kernel
for the tri-peptide composition calculates a value proportional to the number of
tri-peptides coincide in two sequences xi and xj . The efficacy of the tri-peptide
coding scheme in prediction of protein folds and subcellular localization is es-
sentially due to the successful capture of local similarity by the coding scheme.

However, a more sensitive and biologically realistic coding method would al-
low some degree of mismatching in the tri-peptide representation. That is, the
similarity should be large if the two sequences share many similar tri-peptides.
This idea has been proposed and explored by Leslie et al. [13] for protein ho-
mology detection, and a set of spectral kernels was developed. In this work, the
concept of mismatch kernel is explored in an implicit and different way. Here
the discussion is restricted to case k = 3 for the simplicity of presentation, but
the idea can be generalized to cases k > 3. In order to define the new kernel,
we introduce a matrix in which each entry corresponds to the pairwise score
of any two tri-peptides. For example, 12 for AAA-AAA pair, 11 for AAY-ACY
pair, and 6 for TVW-TVR pair, if the BLOSUM62 matrix is used. The size of
the matrix is 9261 × 9261, however, the matrix is only for the description and
is never explicitly used in computation. Since majority of these pairs are associ-
ated with lower scores, the elimination of those pairs can reduce noise that may
hinder the prediction. In addition, this also reduces training time. Accordingly,
only a very small portion of the entries corresponding to high-scored pairs are
kept, and other entries are replaced by 0 in the matrix. The matrix is called the
matrix of high-scored pairs of tri-peptides, and is denoted as D. The new kernel
k(·, ·) is defined as

k(xi,xj) = exp(−γ‖Dxi − Dxj‖2).

The term ‖Dxi −Dxj‖2 can be considered as a new sequence similarity for the
two coding vectors of tri-peptide compositions. The similarity is measured be-
tween the transformed vectors Dxi and Dxj , instead of the similarity between
the original tri-peptide coding vectors xi and xj . The example in Fig. 1 de-
scribes the coding vectors x1 and x2 based on tri-peptide compositions and the
transformed vectors Dx1 and Dx2 for the two short sequences of amino acids
AAACY and ADCCY.

The selection of the high-scored pairs of tri-peptides is virtually filtering the
tri-peptides sharing more than two residues in common. The concept of the mis-
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Coding a sequence AAACY using the tri-peptide composition and BLOSUM62 matrix

ACY  0    0    0    0          11          0  
AAC  8   17    0    0           0          0 
AAA  12   8    0    0           0          0
    AAA  AAC  AAD  AAE  ...... AAY ...... YYY

The transformed coding vector of x1 is 
1:6.67 2:8.33 6:2.67 16:3.00 17:2.67 18:2.67 21:3.67 22:6.33 
23:8.00 24:3.33 25:3.67 26:5.33 27:3.33 28:5.00 29:4.00...

The transformed coding vector of x2 is
2:3.67 3:4.67 4:3.33 12:3.00 14:2.67 16:2.67 23:3.33 24:3.33 
26:3.33 28:3.00 40:3.00 42:4.67 43:3.33 44:6.33 45:2.67 47:2.67...

Tri-peptide encodings 
AAACY 
x1 1:1  2:1  42:1
ADCCY
x2 44:1  483:1 905:1

6.67 8.33  0    0   ...... 3.67......  0

BLOSUM scores for 
pairs of tri-peptides 

Fig. 1. The coding vectors for sequences AAACY and ADCCY based on the tri-peptide

compositions and the transformed vectors based on the matrix of high-scored pairs of

tri-peptides. The representation of coding vectors follows the sparse format of SVM-

Light [12], i.e., the numbers appeared in the format of vector index : score. The

shared elements between x1 and x2 are boldfaced

match string is explored, since only those mis-matched tri-peptides can yield
high scores and survive the selection.

3 Experimental Results and Discussion

We employed the SVMs in conjunction with the coding vectors extracted by the
method described above for training and testing. The evaluation of the methods
was conducted on the following dataset.

Dataset. The set of proteins from Gram-negative bacteria used in the evalu-
ation of PSORT-B [8] was considered (available at http://www.psort.org/)
in this experiment. It consists of 1443 proteins with experimentally determined
localizations. The dataset comprises 1302 proteins resident at a single local-
ization site: 248 cytoplasmic, 268 inner membrane, 244 periplasmic, 352 outer
membrane, and 190 extra cellular; it additionally contains a set of 141 proteins
resident at multiple localization sites: 14 cytoplasmic/inner membrane, 50 inner
membrane/periplasmic, and 77 outer membrane/extracellular. In our experi-
ment, we considered only the 1302 proteins possessing a single localization.

Experiment and Results. We have compared the performance of the new
kernel with that of the coding schemes based on the conventional k-peptide
compositions using the above data set. The pairs of tri-peptides with scores
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greater than a cut-off value 8 were selected to form the nonzero entries the
matrix D of high-scored pairs of tri-peptides. This accounts for about 1.3% of
the entries in matrix D. To ease the computational burden, the 2000 top scored
entries from a transformed vector were further selected to form the input vector
for SVMs. The cut-off value 8 and the number 2000 were determined empirically
from the preliminary study to achieve the good predicting performance and fast
training. The BLOSUM62 matrix was used for the assignment of scores to pairs
of tri-peptides.

The experiment was carried out using a 5-fold cross-validation for each spe-
cific localization. Each time, the relevant dataset consisting of the proteins with
the specific localizations was designated as the positive set; and the remain-
der of the proteins was denoted as the negative set. The radial basis function
was chosen as the kernel function for the SVMs, since a preliminary experiment
indicated that this kernel exhibited better performance.

As the sizes of the positive and negative sets are substantially different, the
performance of SVMs was evaluated for precision (or sensitivity), defined as
tp/(tp + fp), and recall (or positive prediction value), defined as tp/(tp + fn),
where tp, tn, fp, and fn are the numbers of predicted true positive, true negative,
false positive and false negative, respectively. The F-score combining the preci-
sion and recall was also provided: F-score=2*precision*recall/(precision+recall).
The precision, recall, and F-score of the 5-fold cross-validation was computed re-
spectively as the average of the values from 5 folds.

The generalization performance of an SVM is controlled by the following
parameters:

(1) C : the trade-off between the training error and class separation;
(2) γ : the parameter in the radial basis function exp(−γ‖Dxi − Dxj‖2);
(3) J : the biased penalty for errors from positive and negative training points.
The penalty term C

∑m
i=1 ξi in SVM is splitted into two terms:

C
m∑

i=1

ξi ⇒ C
∑

{i:yi=1}
ξi + CJ

∑

{i:yi=−1}
ξi.

The choices of the parameters in this experiment are given as follows:
for the new kernel
C: from 1 to 40 with an incremental size of 3;
γ: from 0.001 to 1 with an incremental size of 0.003;
J : from 0.1 to 3.0 with an incremental size of 0.4;
and for the rest of the methods
C: from 1 to 150 with an incremental size of 10;
γ: from 1 to 100 with an incremental size of 10;
J : from 0.1 to 3.0 with an incremental size of 0.2.

The SVMLight package was used as the SVM solver [12]. The values of
precision and recall of a 5-fold cross-validation are computed for each triplet
(C, γ, J). The best values of precision, recall and the corresponding F-score for
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Table 1. Results obtained from four different methods for the proteins from Gram-

negative bacteria

Method composition di-peptide tri-peptide new method
Localization P R F P R F P R F P R F

Cytoplasmic 80.09 70.77 74.66 81.12 57.69 66.09 83.43 45.00 55.09 77.38 73.48 75.38
Inner membrane 98.52 82.27 89.54 98.15 81.51 88.80 99.52 80.75 89.01 97.29 85.27 90.88
Periplasmic 94.12 55.17 68.38 91.80 54.14 65.77 90.37 50.34 63.11 85.98 68.45 76.22
Outer membrane 87.86 84.23 85.74 90.12 79.76 84.00 93.15 83.29 87.79 96.25 86.73 91.24
Extra cellular 88.38 53.68 66.05 89.71 53.68 66.27 92.57 50.53 64.63 92.11 64.86 76.12
Average 89.79 69.23 76.87 90.18 65.36 74.18 93.17 64.80 74.62 89.80 75.76 81.97

Composition, di-peptide and tri-peptide represents the method using the coding vector of the amino

acid composition, di-peptide composition and tri-peptide composition, respectively. The symbols P,

R and F stand respectively for precision, recall and F-score.

each method are given in Table 1. The new kernel based method demonstrated
superior performance over the other three methods. The recall is improved sub-
stantially to a level of 75.76, from 69.23 (Composition), 65.36 (di-peptide), and
64.80 (tri-peptide).

The performance of the new kernel method also compares favorably with
SCL-BLAST [16], a BLAST search based predictor for all localizations. The
new method improves recall from 60.40 to 75.76 and F-score from 74.36 to 81.97,
while having a lower precision (89.80) compared to that 96.70 of SCL-BLAST.

It is worth noting that the new method yields a similar overall performance
comparing with PSORT-B, which gives precision 95.88, recall 73.20 and F-score
82.59. The PSORT-B comprises six modules designed for the prediction of spe-
cific localization sites. It is surprising that our single module can match the
performance of this integrative predictor.

4 Conclusions

This work has introduced a novel kernel based on a matrix formed by the BLO-
SUM scores assigned to pairs of mis-matched tri-peptides of protein sequences.
This kernel has been used in support vector machines for the prediction of subcel-
lular localizations. The performance of the new kernel was empirically evaluated
on a set of proteins with experimentally determined localizations from Gram-
negative bacteria. Compared with the other coding systems using k-peptide com-
positions, the experimental results demonstrated that the new kernel exhibited
superior overall performance for the prediction. The method also achieved a sim-
ilar level of overall performance comparing with that of the integrated system
PSORT-B.

References

1. Bannai, H., Tamada, Y., Maruyama, O., Nakai, K., Miyano, S.: Extensive feature
detection of N-terminal protein sorting signals. Bioinformatics 18 (2002) 298–305



910 Z. Lei and Y. Dai

2. Cai, Y.D., Chou, K.C.: Predicting subcellular localization of proteins in a hy-
bridization space. Bioinformatics 20 (2003) 1151–1156

3. Chou, K.C., Cai, Y.D.: Using Functional Domain Composition and Support Vector
Machines for Prediction of Protein Subcellular Location. J. Biol. Chem. 277 (2002)
45765–4576

4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines,
Cambridge University Press (2000)

5. Emanuelsson,O., Nielsen,H., Brunak,S., von Heijne, G.: Predicting subcellular lo-
calization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol.
300 (2000) 1005–1016

6. Emanuelsson, O.: Predicting protein subcellular localisation from amino acid se-
quence information. Brief. Bioinform. 3 (2002) 361–376

7. Feng, Z.P.: Prediction of the subcellular location of prokaryotic proteins based on a
new representation of the amino acid composition. Biopolymers 58 (2001) 491–499

8. Gardy, J.L. et al.: PSORT-B: improving protein subcellular localization prediction
for Gram-negative bacteria. Nucleic Acids Res. 31 (2003) 3613–3617.

9. von Heijne, G.: Signals for protein targeting into and across membranes. Subcell.
Biochem. 22 (1994) 1–19

10. Horton, P., Nakai, K.: PSORT: a program for detecting sorting signals in proteins
and predicting their subcellular localization. Trends Biochem. Sci. 24 (1999) 34–36

11. Hua, S., Sun, Z.: Support vector machine approach for protein subcellular local-
ization prediction. Bioinformatics 17 (2001) 721–728

12. Joachims, T.: Making Large Scale SVM Learning Practical. Advances in Kernel
Methods-Support vector learning. MIT Press, Cambridge (1999)

13. Leslie, C., Eskin, E., Cohen, A., Weston, J., Noble, W.: Mismatch string kernels
for discriminative protein classification. Bioinformatics 20 (2004) 467–476

14. Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D.S, Poulin, B., Anvik, J., Mac-
donell, C., Eisner, R.: Predicting subcellular localization of proteins using machine-
learned classifiers. Bioinformatics 20 (2004) 547–556

15. Menne, K. M. L., Hermjakob, H., Apweiler, R.: A comparison of signal sequence
prediction methods using a test set of signal peptides. Bioinformatics 16 (2000)
741–742

16. Nair, R., Rost, B.: Sequence conserved for subcellular localization. Protein Sci.
11 (2002) 2836–2847

17. Nakai,K. (2000) Protein sorting signals and prediction of subcellular localization.
Adv. Protein. Chem., 54, 277-344

18. Nakai, K., Kanehisa, M.: Expert system for predicting protein localization sites in
Gram-negative bacteria. Proteins, 11 (1991) 95–110

19. Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G.: A neural network method
for identification of prokaryotic and eukaryotic signal peptides and prediction of
their cleavage sites. Int. J. Neural Syst. 8 (1997) 581–599

20. Reinhardt, A., Hubbard, T.: Using neural networks for prediction of the subcellular
location of proteins. Nucleic Acids Res. 26 (1998) 2230–2236

21. Tusnady, G.E., Simon, I.: Principles governing amino acid composition of integral
membrane proteins: application to topology prediction. J. Mol. Biol. 283 (1998)
489–506

22. Tusnady, G.E., Simon, I.: The HMMTOP transmembrane topology prediction
server. Bioinformatics 17 (2001) 849–850

23. Yu, C.S., Lin, C.J., Hwang, J.K.: Predicting subcellular localization of proteins for
Gram-negative bacteria by support vector machines based on n-peptide composi-
tions. Protein Sci. 13 (2004) 1402–1406


	Introduction
	Method
	Support Vector Machines
	Sequence Coding Schemes and a New Kernel Based on High-Scored Pairs of Tri-Peptides

	Experimental Results and Discussion
	Conclusions



