
 

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 775 – 782, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Time Delay Dynamic Fuzzy Networks for  
Time Series Prediction 

Yusuf Oysal 

Anadolu University, Computer Engineering Department, Eskisehir, Turkey  
yoysal@anadolu.edu.tr 

Abstract. This paper proposes a Time Delay Dynamic Fuzzy Network 
(TDDFN) that can be used for tracking and prediction of chaotic time series. 
TDDFN considered here has unconstrained connectivity and dynamical ele-
ments in its fuzzy processing units with time delay state feedbacks. The mini-
mization of a quadratic performance index is considered for trajectory tracking 
applications. Gradient with respect to model parameters are calculated based on 
adjoint sensitivity analysis. The computational complexity is significantly less 
than direct method, but it requires a backward integration capability. For updat-
ing model parameters, Broyden-Fletcher-Golfarb-Shanno (BFGS) algorithm 
that is one of the approximate second order algorithms is used. The TDDFN 
network is able to predict the Mackey-Glass chaotic time series and gives good 
results for the nonlinear system identification.   

1   Introduction 

Some of the nonlinear dynamical systems produce chaotic time series outputs that are 
highly depend on initial conditions. If the initial condition does not specified within a 
suitable precision range, it is very difficult to predict the long time future behavior of 
these time series. But the short time behavior can be exactly encapsulated. There are 
various types of evolutionary systems and neural networks with time delays to solve 
time series prediction in short time. For example in [1], an adaptive-network-based 
fuzzy inference system (ANFIS) was used to identify nonlinear components on-line in 
a control system to predict a chaotic time series. In another study, a genetic fuzzy 
predictor ensemble (GFPE) was proposed for the accurate prediction of the future in 
the chaotic or nonstationary time series [2]. Moreover, an evolutionary system, i.e., 
EPNet was used to produce very compact artificial neural networks (ANNs) to predict 
the Mackey-Glass time series prediction with generalization ability in comparison 
with some other algorithms [3] and in [4] a hybrid approach to fuzzy supervised 
learning was applied through software called GEFREX for approximation problems, 
classification problems, and time series prediction.  

Another approach for time series prediction is to provide dynamical neural network 
structures. The typical workaround is the usage of a large parallel input vector con-
sisting of a number of states or past samples of process data. This “tapped delay line” 
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approach has proven successful for chaotic time series prediction ([5],[6]), but it has 
the drawback of the curse of dimensionality: the number of parameters in the units 
increases exponentially and parameters can get larger values. 

This work focuses on modeling and prediction of nonlinear systems with time de-
lay dynamic fuzzy networks (TDDFNs) to overcome these drawbacks. TDDFNs are 
continuous-time recurrent neural networks that contain dynamical elements such as 
integrators in their fuzzy processing units and time delayed feedbacks. Successful 
control and modeling applications of DFNs without time delay elements can be found 
in [7] and [8]. In this study an approximate second order gradient algorithm based on 
adjoint theory [9]-[12] which is faster than the direct method is used for training the 
TDDFNs to obtain the appropriate parameters. Given a desired trajectory, a nonlinear 
optimization problem is solved to determine appropriate values for network parameters. 

2   Time Delay Dynamic Fuzzy Network Architecture 

The dynamic fuzzy network considered here represents the biological neuron that is 
constrained to be feedforward with dynamic elements in its fuzzy processing units, 
and with time delay state feedbacks. The processing unit is called “feuron” (stands for 
fuzzy neuron) [7],[8]. It represents a biological neuron that fires when its inputs are 
significantly excited through a lag dynamics (i.e. Hopfield dynamics). 

The feuron’s activation model which resembles the receptive field units found in 
the visual cortex, in parts of the cerebral cortex and in outer parts of the brain is a 
standard fuzzy system with Gaussian membership functions, singleton fuzzifier, 
product inference engine and a center average defuzzifier [13]. 

The activation function of the ith feuron can be expressed as: 
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where cik is the center and σik is the spread of the kth receptive field unit of the its ith 
feuron. 

The membership functions of the feuron are assumed to be normal and orthogonal 
with the boundary membership functions (the lower and upper membership functions 
of the universe of discourse) represented by hard constraints, i.e., it is assumed that 
membership value is equal one at out of range. 

An example of the computational model for TDDFNs with two-feuron and two-
inputs/two-outputs that is used in this study is shown in Fig.1. 

The general computational model that we have used for TDDFN is summarized in 
the following equations: 
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Fig. 1. The state diagram of  a TDDFN with two-feurons two-inputs/two-outputs 
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where w, p, q, r are the interconnection parameters of a TDDFN with n units and L 
input signals,  T is the time constants and π is the parameter sets (centers c, spreads σ, 
output centers b) corresponding to fuzzy SISO activation functions of the feurons.  

In general, the units have dynamics associated with them, as indicated, and they re-
ceive inputs from themselves and delayed-themselves and all other units. The output 
of a unit yi is a standard fuzzy system φ(xi,πi) of a state variable xi associated with the 
unit. The output of the network is a linear weighted sum of the unit outputs. Weights 
pij are associated with the connections from input signals j to units i, wij with interunit 
connections from j to i, wdij with delay-interunit connections from j to i and qij is the 
output connection weights from jth feuron to ith output. Ti is the dynamic constant, ri 
is the bias (or polarization) term and τi is the time-delay of ith feuron.  

3     Illustrative Examples of Some Dynamical Behaviors of TDDFN 

This model (TDDFN) can be used to approximate many of the behaviors of nonlinear 
dynamical systems with time delay. In this section, examples are given in which 
TDDFN converges to a point attractor, a perodic attractor (limit cycle). For this aim, 
given a set of parameters, initial conditions, and input trajectories, the set of equations 
(2), (3) and (4) can be numerically integrated from t=0 to some desired final time tf. 
This will produce trajectories overtime for the state variables xi (i=1…n). We have 
used Adams-Bashforth predictor method, extended with trapezoidal corrector in some 
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cases. The integration step size has to be commensurate with the temporal scale of 
dynamics, determined by the time constants Ti. In our work, we have specified a 
lower bound on Ti and have used a fixed integration time step of some fraction (e.g., 
1/10) of this bound. 

As a first example, a TDDFN is modeled as a point attractor system by a training 
algorithm whose details will be given in the next section. The interconnection pa-
rameters of the TDDFN given in Fig. 1 after training are found to be: 
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In this case initial conditions are chosen as x(0) = [ 1 1]T. Fig. 2a shows the example 
of zero-input state space trajectories for two-feuron network with time delay (19 sec-
onds) that converges to a point attractor. 

As a second example, a TDDFN is modeled as a periodic attractor system. In this 
case the interconnection parameters of the TDDFN are calculated as: 
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The data for time constants, input centers, spreads and output centers with three mem-
bership functions in each feuron respectively are: 
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(a)                                                            (b) 

Fig. 2. State space trajectory of TDDFN a) Point attractor, b) periodic attractor 
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In this application trajectory tracking performance is excellent with initial conditions 
x(0) = [ 1 1]T. Fig. 2b shows the example of zero-input state space trajectories for 
two-feuron network with time delay (19 seconds). 

4   Training of TDDFN Based on Adjoint Sensitivity Analysis 

In this section, we consider a particular application of the TDDFN: trajectory tracking 
for process modeling. That is, we desire to configure the network so that its output 
and input trajectories have been specified, but all the parameters w, wd, r, τ and π, T 
are adjustable. This is done by minimizing the cost functional. We associate a per-
formance index of the network for this task as given by 
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where  zd(t) and z(t) are actual and modeled process responses respectively.  
Our focus in this paper has been on gradient-based algorithms for solving this 

computational problem. We require the computation of gradients or sensitivities of 
the performance index with respect to the various parameters of the TDDFN: 
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In this study above gradients are calculated by “adjoint” method which is based on 
the use of calculus of variations [9]-[12], [14]. In this method, a set of dynamical 
systems is defined with adjoint state variables λi: 
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The size of the adjoint vector is thus n and is independent of the number of DFN 
parameters. The computation of sensitivities using the adjoint method requires the 
solution of n differential equations. This is a significant savings for real-time applica-
tions. Then, the cost gradients with respect to TDDFN parameters are given by the 
following quadratures; 
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The cost gradients as in [7], [8], [12] can be easily computed. We assume that at 
each iterations, gradients of the performance index with respect to all TDDFN pa-
rameters are computed. Once g is computed several of gradient-based algorithms can 
be used to update parameter values of the TDDFN. Here for updating model parame-
ters, Broyden-Fletcher-Golfarb-Shanno (BFGS) algorithm [15] that is one of the ap-
proximate second order algorithms is used. 

5   Mackey-Glass Time Series Prediction with TDDFNs 

This section deals with a complex problem of approximating a nonlinear dynamical 
time series using TDDFN. Here, a benchmark chaotic time series first investigated by 
Mackey and Glass [16] which is a widely investigated problem in the fuzzy-neural 
literature [1], [2] is considered. The time series is generated by the following differen-
tial equation: 
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As τ in this equation varies, the system can exhibit either fixed point, limit cycle or 
chaotic behavior. For τ = 17 the systems response is chaotic and we attempt the prob-
lem of approximating time series function of (10) for this value. The fifth order 
Runge-Kutta method was used to obtain simulation data with the following initial 
conditions x(0)=1.2 and x(t-τ)=0 for τ<≤ t0 .  

A TDDFN with one feuron was used in the simulations. Time delay of the feuron 
was taken to be the fixed value as the same as the Mackey-Glass, τ=17. The other 
weights are adjusted as presented previously. The first 100 data points were used to 
train the TDDFN. The prediction performance of the TDDFN was tested after 200th 
data points. Fig. 3 shows the result of the test with 200 training points. As seen in Fig. 
4, the neural network prediction capability is excellent. Table 1 compares the per-
formance of TDDFN with various classical models, neural networks, and fuzzy neural 
networks. The comparison is based on normalized root mean square error (NRMSE), 
which is defined as the RMSE divided by the standard deviation of the target series.  

 

Fig. 3. TDDFN prediction result (solid-line: Mackey-Glass, dotted-line: TDDFN output) 
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Note from the Table 1 that both ANFIS [1] and GEFREX [4] outperform all other 
model in terms of NRMSE. However, ANFIS has the drawback that it has less inter-
pretability in terms of learned information, and the implementation of the GEFREX is 
difficult. Excluding ANFIS, GEFREX and EPNet [3], TDDFN performs the best with 
an NRMSE of 0.024. In comparison to other models, the proposed TDDFN model is 
much less complex with easy implementation, and less number of parameters to be 
calculated. These mean that TDDFN can be easily used for real-time applications.   

 

Fig. 4. TDDFN prediction error 

Table 1. Comparison of TDDFN with other models for Mackey-Glass time series prediction 
problem (*: Results adapted from [2]) 

Method NRMSE 
GEFREX [4] 0.0061 
ANFIS [1] 0.0074 
EPNet [3] 0.02 
TDDFN 0.025 
GFPE* 0.026 
6th order polynomial* 0.04 
Cascade Correlation-NN Model* 0.06 
Auto Regressive Model* 0.19 
Linear Predictive Model*  0.55 

6   Conclusion 

The work reported here has concentrated on laying the theoretical and analytic foun-
dations for training of TDDFN. The TDDFN presented in this paper was successfully 
applied to time series prediction. They are to be used in real-time applications with 
process modeling and advanced control. 

The significance of this work is that efficient computational algorithms have been 
developed for parameter identification and training of fully nonlinear dynamical sys-
tems with time delay. The gradients can be computed by adjoint sensitivity analysis 
methods. Another time-delay approach for neural networks should be investigated to 
improve the prediction capability. 
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