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Abstract. A Finite Element Method using a C++ code is developed to
study the mechanical wave propagation in saturated porous soils. The
modelization uses the complete Biot theory including the couplings be-
tween the solid and fluid phases. A matrix-free algorithm and a selection
data technique are implemented in the code. Researches are focused on
homogeneous and heterogeneous semi-infinite media in the case of tran-
sient regimes. The time domain results present the displacements over
and within the half-space. In particular, we will see that the fluid wave
front is strongly dependent on the proportion of heterogeneities in the
ground.

1 Introduction

The study of the mechanical wave propagation in porous media is a subject of
great interest in diverse scientific fields ranging from environmental engineering
or vibration isolation to geomechanics. A saturated porous medium is a medium
that presents on the microscopic spatial scale a solid deformable skeleton and
a porous space filled with a viscous fluid. A macroscopic formulation can be
deduced from the microscopic approach by homogenization: in this case, the
medium is considered as a two-phase continuum. Biot’s articles (see [1] and
[2]) and Bourbié et al.’s review [3] are works of reference for the macroscopic
mechanical wave propagation theory. In such a medium, three body waves exist:
the P1 and P2 compressional waves and the S shear wave. The first compressional
wave is a wave said to be quick whereas the second compressional wave is said
to be slow and strongly attenuated. Moreover, for a semi-infinite medium, a
surface wave also exists denoted as the Rayleigh R wave. Theoretical works are
restricted to simple geometries. Consequently, they have to be completed by
numerical approaches such as Finite Element or Boundary Element Methods,
allowing the study of more complex problems to better modelize the ground.
The difficult study of transient regimes has been treated numerically for specific
cases by several authors: Zienkiewicz and Shiomi [4], Simon et al. [5] and Gajo et
al. [6] for instance. In this paper, the authors propose a Finite Element Method
of the whole Biot’s equations in the case of homogeneous and heterogeneous soils.
An efficient and accurate C++ code is developed to deal with this problematic.
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2 Mechanical Model

2.1 Governing Equations

The theoretical approach is formulated using the Biot model: writing ui and Ui

respectively the solid and fluid displacement components, with usual notations,
Biot’s equations can be written as follows

σij,j = (1 − φ)ρsüi + φρf Üi (1)

p,i = − φ
K (U̇i − u̇i) + ρf (a − 1)üi − aρf Üi (2)

σij = λ0vεkkδij + 2µvεij − βpδij (3)
−φ (Uk,k − uk,k) = βuk,k + 1

M p (4)

The soil’s characteristics are: λ0v and µv (drained Lamé constants for the
purely viscoelastic equivalent porous media), ρs and ρf (solid grains and fluid
densities), φ (porosity), K (hydraulic permeability), a (tortuosity), M and β
(Biot coefficients).

(1) and (2) are the motion equations, (3) and (4) are the constitutive rela-
tionships including a physical viscoelastic hysteretic Rayleigh damping of the
soil.

2.2 Finite Element Formulation and Numerical Resolution

In order to obtain a first order time differential system, the solid and fluid par-
ticles’ velocities are introduced: vi = u̇i and Vi = U̇i. Then, some algebraic ma-
nipulations are done to yield in the end a diagonal mass matrix. The weighted
residual method with Galerkin ponderation gives integral forms (5) and (6) de-
fined in the vector space V (f) = [0, T ]×{∂f

∂t ∈ L2(Ω), f ∈ H1(Ω)} where T and
(Ω) are respectively the study time and the study space.

∫
Ω

aσij,jδvidΩ +
∫

Ω

φp,iδvidΩ =
∫

Ω

[a(1 − φ)ρs + φ(a − 1)ρf ] v̇iδvidΩ

+
∫

Ω

−φ2

K
ViδvidΩ +

∫
Ω

φ2

K
viδvidΩ (5)

∫
Ω

ρf (a − 1)σij,jδVidΩ −
∫

Ω

(1 − φ)ρsp,iδVidΩ =
∫

Ω

(1 − φ)ρsφ

K
ViδVidΩ

+
∫

Ω

−(1 − φ)ρsφ

K
viδVidΩ +

∫
Ω

[
ρ2

f (a − 1)φ + ρsρfa(1 − φ)
]
V̇iδVidΩ (6)

The weak formulation is then transformed using the Green theorem that in-
troduces the boundary conditions. Then, for respectively two-dimensional and
three-dimensional problems, triangular and tetrahedral linear isoparametric ele-
ments are used to mesh the (Ω) space. Afterwards, we can get an approximative
solution of the second formulation with analytical discretization of the displace-
ment and velocity components.
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For an elementary space (subscript ()e), the discrete system can be synthe-
sized in the following form

∑
e 〈δWe〉

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

[me] 0 0 0
0 [me] 0 0
0 0 [mse] 0
0 0 0 [mfe]

⎤
⎥⎥⎦ {Ẇe}

⎡
⎢⎢⎣

0 0 −[me] 0
0 0 0 −[me]

[kse] [ksfe] [cse] −[cse]
[kfse] [kfe] [cfe] −[cfe]

⎤
⎥⎥⎦ {We}

⎫⎪⎪⎬
⎪⎪⎭

=
∑

e 〈δWe〉 {Fe}

(7)

where {We} =
〈{ui}n {Ui}n {vi}n {Vi}n

〉t is the elementary vector of the vari-
ables and {Fe} the elementary vector of the load.

The assembling procedure leads to the following global differential system
(superscript ()(G)) with a diagonal global mass matrix

[M ]
d

dt
{W (G)} + [K]{W (G)} = {F (G)} (8)

The time integration algorithm is a backward difference method modified
with an upward time parameter α, and is presented as follows for a k-order, Ψ
being the global residuum

While(tn ≤ tmax)⎧⎨
⎩

{∆W i
n} = ∆tn

∑k−1
j=0 λj

[
M i

n−j

]−1 ×{
Ψn−j({Wn−j} + αj{∆W i−1

n−j}, tn + αj∆tn)
}

i = 1, 2...until ‖ {∆W i
n} − {∆W i−1

n } ‖≤ tolerance

⎫⎬
⎭

{Wn+1} = {Wn} + {∆Wn}
tn+1 = tn + ∆tn
end while

(9)

It requires inner iterations for each time step until the tolerance criterium is
reached.

2.3 Structure of the Code

The Finite Element C++ code is organized in three classes: element, elementary
matrices and building-resolution classes. Thus, three objects connected by a
single heritage are constructed and they form a solver. In practise, we obtain
very low sized solvers (less than 1000 C++ lines).

In this code, the mass and stiffness matrices are never built because a matrix-
free technique is used. As the global mass matrix is diagonal, its inversion is an
easy process. The size of the global vector of unknowns is optimized by the use
of an expert multigrid system called AMS (see [7] and [8]). On the whole, a high
performance level is obtained both in terms of CPU and storage costs.
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3 Results

3.1 Half-Space Model

A vertical impulse (y axis) load acts over the free surface (x axis) of a two-
dimensional half-space. The soil characteristics are relative to a porous stiff
ground: the dimensionless values are given in Table 1. In all the following sec-
tion, the numerical values are dimensionless, using three independent mechanical
quantities. Dirichlet’s conditions corresponding with the zero displacements for
both phases are imposed at depth at the border of the medium. The (Ω) space
is meshed with 50 626 triangular elements and 25 617 eight-degrees-of-freedom
nodes.

Table 1. Dimensionless soil parameters and associated celerity values

λ0 µ Ks Kf M β ρs ρf a K φ η cP1 cP2 cS cR

0.56 0.83 4 0.22 0.53 0.72 1 0.39 1.5 0.26 0.4 0.01 1.9 0.65 1.1 1.05

3.2 Homogeneous Case

Figure 1(a) presents the horizontal solid displacements on the surface of the
half-space (−3 < x < 3, y = 0) versus time variable (0 < t < 2). The P1
(respectively R) contribution is focused on a line the slope of which corresponds
to the P1 (resp. R) celerity. The S wave is lost to the eye due to the dominating
Rayleigh wave: its contribution could be seen when in vertical displacements.
The P2 wave carries very little energy and is mixed with the whole surface
displacement which here prevents us from seeing it. The P1 and R waves give
opposite contributions with a preponderant part to Rayleigh’s. Moreover, in the
case of a vertical sollicitation as studied here, the horizontal displacement is
an odd function of x variable, whereas the vertical displacement is even. Also
note, from the same figure, that the displacement decreases geometrically in
addition to the physical damping. In Figure 1(b), which shows a section of Figure
1(a) for x = 1.5, a visualization of the vertical displacement is added. The
theoretical arrival times are underlined and the contribution of the S wave is
clearly perceptible on the vertical displacement.

Figure 2(a) shows the variation of the fluid vertical displacements in depth
under the load (x = 0) versus time variable. The Rayleigh wave decreases expo-
nentially with depth. Consequently, the displacements underline the two com-
pressional waves P1 and P2. On Figure 2(b), the two theoretical lines relative
to each wave speed are plotted: a good agreement is obtained with the contour
levels.

Figures 3 and 4 are plotted for t = 1.5. The P1 wave front corresponds
to a half-circle the radius of which equals 2.8: this is clearly perceptible on
Figure 3. From the same figure, note that the Rayleigh wave gives a predominant
contribution on the surface: this corresponds to the red areas beginning at x =
1.6. Moreover, with the chosen parameters, the fluid and solid phases are strongly
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Fig. 2. In-depth vertical fluid displacements versus time

uncoupled, thus the S wave exists only in the solid phase (x = 1.7). Due to the
competition between the R and S waves which have neighboring speeds, the S
wave front is more perceptible in depth.

For the fluid phase, Figure 4, red zones are caused by the P1 wave which
presents a more widely spread time wave front. This analysis has been confirmed
by a study of the displacements of time-related individual points positioned
under the load.
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Fig. 3. Solid displacement field for a homogeneous medium at t = 1.5

Fig. 4. Fluid displacement field for a homogeneous medium at t = 1.5

3.3 Heterogeneous Case

The ground is constituted by a mixture of two kinds of media which are dis-
tributed randomly: the main part of this heterogeneous soil has the characteris-
tics defined in Table 1. The second one represents softer inclusions (λ0=0.011,
µ=0.011, M= 0.271, β=0.995, φ=0.6, η=1) and its proportion ranges from 1
percent to 40 percent.

In these cases, the solid wave fronts are on the whole less modified than
the fluid ones, (see Figures 5 and 6). They remain well-ordered up to at least
a 20 percent distribution. For a higher proportion, the solid wave fronts are
dismembered and the contour levels are not concentric any more. Moreover, the
inclusions focus the mechanical deformations over a smaller area in which the
displacement values are higher. The presence of soft elements slows down the
progression of the solid and fluid deformations in comparison with the purely
homogeneous case.

As for the fluid phase, even for a low proportion of inclusions (1 or 5 percent),
the wave fronts are disordered. Some areas present higher deformations due to
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Fig. 5. Solid displacement field for a heterogeneous medium with 40% of inclusions at

t = 1.5

Fig. 6. Fluid displacement field for a heterogeneous medium with 40% of inclusions at

t = 1.5

the higher proportion of fluid in the softer inclusions. Moreover, fluid amplitudes,
which are lower than solid ones in the homogeneous case, become equal if not
higher with the inclusions. In conclusion, a deeper change occurs for the fluid
phase.

4 Conclusion and Further Works

The study of the mechanical wave propagation has been carried out using a finite
element method and a modified backward difference method for the time inte-
gration algorithm. A matrix-free algorithm and a selection data technique are
implemented in the C++ objet-oriented program. Different examples of homoge-
neous and heterogeneous semi-infinite media have been presented. Further works
will include the parallelisation of the code and the study of three-dimensionnal
geometries.
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