
Multiresolution Reconstruction of Pipe-Shaped
Objects from Contours

Kyungha Min1 and In-Kwon Lee2,�

1 Center for Computer Graphics and Virtual Reality,
Ewha Womans Univ., Seoul, Korea

minkh@cs.rutgers.edu
2 Dept. of Computer Science,
Yonsei Univ., Seoul, Korea

iklee@yonsei.ac.kr

Abstract. We reconstruct pipe-shaped objects from a set of contours,
each of which is extracted from an image representing a slice sampled
from 3D volume data. The contours are formed by connecting the inter-
section points between rays cast from a central pixel of an image slice
and the boundary of the shape. The edges on the contours are classified
into several types, which are exploited in triangulating the contours, thus
eliminating most of the floating-point computation from the tiling. Ini-
tially, contours of lowest resolution are extracted to reconstruct a lowest-
resolution object, which is refined by adding points to the contours.

1 Introduction

Reconstruction of a pipe-shaped object from contours is an important problem
in many fields, such as medical imaging, computer-aided design, and reverse
engineering. The reconstruction problem is composed of three subproblems [11]:
the correspondence problem, the branch problem, and the tiling problem. In this
paper, we concentrate on the tiling problem.

We propose a multiresolution approach that yields a polygonal surface from
a set of contours sampled from 3D volume data. The proposed algorithm is
outlined in Fig. ??. Contours of the lowest resolution are extracted on image
slices sampled from the 3D volume data, and an initial pipe-shaped object is
reconstructed by tiling the contours. This object is brought to a higher resolution
through refinement of the contours.

Our first key idea is a search algorithm for corresponding pairs of points
or edges on the successive contours that does not require floating-point com-
putations, except for a few degenerate cases. Note that the conventional tiling
algorithms search the corresponding pairs by means of geometric tests that would

� This work was supported (in part) by the Ministry of Information & Communica-
tions, Korea, under ther Information Technology Research Center (ITRC) Support
Program at Ewha Womans Univ. and Yonsei Univ.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 916–924, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multiresolution Reconstruction of Pipe-Shaped Objects from Contours 917

Fig. 1. Overview of the proposed algorithm

involve floating-point operations. The second key idea of this paper is the recon-
struction of objects by a stepwise refinement. An object is refined by refinement
of its constituent contours, which is achieved by casting additional rays, which
increases the number of points on the contours in a stepwise fashion.

In Section 2, we review related works on the reconstruction of pipe-shaped
objects from contours. We provide a scheme for extracting contours in Section
3, and a tiling algorithm in Section 4. In Section 5, we provide details of our
implementation and results. Finally, in Section 6, we draw the conclusions and
suggest future work.

2 Related Works

Keppel [9] originally proposed a scheme for reconstructing a surface from 2D
contours. He built a toroidal graph between points on the contours and proposed
a search using the graph that would generate polygons from the points. Many
researchers improved Keppel’s work by a divide and conquer approach [7], a
greedy search algorithm [3], Delaun y triangulation [2], decomposing non-convex
contours into convex sub-contours [5], tiling using ellipses [11], approximating
the contours using discrete field functions [8], a constraint-based approach [1], a
generalized Voronoi diagram [13], solving PDE [4], and a morphological dilation
operators [10]. Some researchers have developed multiresolutional approaches for
tiling surface from contours using wavelets [12], medial axis and simplification
[15], and a combined scheme of wavelet and dynamic programming [6].

3 Extraction of Contours

Extracting Contours. Our reconstruction process starts with the extraction
of a contour from an image slice. Fig. 2 illustrates the three steps of the ex-

a

918 K. Min and I.-K. Lee

Fig. 2. Extraction of a contour from an image slice

traction: (i) Casting rays from a central pixel (left column), (ii) Computing
intersection points between the rays and the boundaries of the object (mid-
dle column), and (iii) Connecting the intersection points to build a contour
(right column). Depending on the relationship between the ray and the bound-
ary of the object, we can classify an intersection point into two types: either
IN-OUT (ray passing out of the object) or OUT-IN (ray coming in the object).
In order to connect the intersection points, we apply the well-known chain code
algorithm [14] to traverse the boundary pixels in counterclockwise order. The
algorithm is slightly modified to traverse the border edges of the boundary
pixels.

Classifying Edges. We classify edges of the contours into the following cate-
gories: Forward (F), Backward (B), Down (D), and Up (U). A D edge is further
classified into Down and In (DI) and Down and Out (DO), while a U edge is
into Up and In (UI), and Up and Out (UO). The classification is based on the
following three factors:

i. The relation between the ray and the endpoints. An F edge is an
edge with a start point is determined by the x-th ray and end point by the
(x + 1)-th ray, A B edge has its start point determined by the (x + 1)-th ray
and its endpoint by the x-th ray. Note that the start and end points of the
U and D edges lie on the same ray.

ii. The direction of the edge and of the ray. We distinguish a U edge
from a D edge based on the direction of the edges. The direction of U edge
is identical to the ray, while the direction of D edge is reverse to the ray.

Fig. 3. Types of edges

Multiresolution Reconstruction of Pipe-Shaped Objects from Contours 919

iii. The types of the endpoints of an edge. DI and UI edges connect IN-
OUT and OUT-IN endpoints, while DO and UO edges connect OUT-IN and
IN-OUT endpoints.

Fig. 3 illustrates the types of the edges on a contour.

4 Tiling Algorithm

4.1 Building a Contour Tree

Description of a Contour Tree. A contour tree represents a contour based
on the types of the edges in that contour. It is composed of three types of nodes.

Root node. Initially, the root node of a contour tree has n0 child nodes, where
n0 denotes the number of initial rays.

Level-1 node. A level-1 node is a child of a root node. The x-th level-1 node
contains an F edge determined by the x-th ray and the (x + 1)-th ray.

Edge node. An edge node is a node that contains one of the edge types.

Note that the leaf nodes and level-1 nodes contain the information about the
edges of the contour.

Building Rules. A contour is unambiguous if n rays create exactly n edges
of type F. If n rays determine more F edges, then the contour is said to be
ambiguous. The rules for building a contour tree for an unambiguous contour
are listed as follows:

[Building rule for level-1 nodes]

[1] An x-th level-1 node stores the F edge determined by the x-th ray and the
(x + 1)-th ray.

[2] A D edge node is attached to the right child of a level-1 node and a U edge
node to the left child.

[Building rule for leaf nodes]

[3] For all non-F edges, we build edge nodes that contain the geometry of the
edge. These edge nodes are the leaf nodes of a contour tree.

[Building rule for edge nodes]

[4] If a DI (DO) edge and a DO (DI) edge are incident, we build a new D (DR)
internal node and assign the nodes as the child nodes of the new node.

[5] If a UO (UI) edge and a UI (UO) edge are incident, we build a new U (UR)
internal node and assign the nodes as the child nodes of the new node.

[6] If two D (U) internal nodes are incident, we build a new D (U) internal node
and assign both of the D (U)-typed nodes as the child node of the new node.

[7] If a D internal node and a U internal node are incident, we build a new D
(or U) internal node and assign both of the nodes as child nodes of the new
internal node.

920 K. Min and I.-K. Lee

Fig. 4. Examples of the building rules

Fig. 5. An example of an unambiguous contour tree: (a) illustrates an example contour

and its edges, and (b) illustrates the corresponding contour tree. The string in (b)

denotes the edges represented its types in the counterclockwise order

[8] If DI (UO) and UR (DR) and DO (UI) internal nodes are incident, then we
build a new D (U) internal node and assign three internal nodes are the child
nodes of the new node.

[9] For DI (DO, UI, or UO) edge, which is encapsulated by F edge and B edge, we
build a new internal node of the identical type and assign the three internal
nodes that contain the three edges as child nodes.

Fig. 4 illustrates the examples of the building rules [1] - [9]. Fig. 5 illustrates
an example of a contour tree for an unambiguous contour.

An ambiguous contour can correspond to more than two contour trees, each
of which is defined from a contour. In this case, we choose a contour tree based
on the tree of the neighboring contour. In case that a contour is ambiguous,
more than two contour trees can be derived from a contour. Among the contour
trees, we select one tree based on the contour tree of a neighboring contour. The

Multiresolution Reconstruction of Pipe-Shaped Objects from Contours 921

building rule [1] is rewritten for the level-1 node. Other building rules for an
unambiguous case can be applied for the ambiguous case.

[1’] There are t edges of type F determined by x-th ray and (x + 1)-th ray,
where t > 1. We choose one of them and store it in the x-th level-1 node.
The F edge to will be stored in the level-1 node should be the one that is
geometrically closest to the F edge stored in the x-th level-1 node of the
corresponding contour tree.

4.2 Tiling by Traversing Contour Trees

The tiling step generates triangles between contours by searching corresponding
edges and vertices on the contours. We determine corresponding pairs on the
contours by traversing their contour trees simultaneously. The rules for traversal
are described as follows:

1. At the root nodes
From the root nodes, the level-1 nodes at the same position on each tree

are visited simultaneously.
2. At level-1 nodes

Child nodes of the same type are traversed simultaneously.
3. At the internal edge nodes, we have three different cases (See Fig. 6):

Case 1. Both of the nodes have an identical set of child nodes. All
the child nodes of the same type on each tree are traversed simultaneously.

Case 2. Both of the nodes have at least one child node. The same-
typed child nodes on each of the tree are traversed simultaneously. If
more than two child nodes are of the same type with a child node in the
corresponding tree, we choose one of them arbitrarily.

Case 3. The nodes have no children of the same type. The child
node whose type is identical to the parent node is traversed, while the
edge node without a child of the same type is not traversed.

4. At the leaf edge nodes, the edges stored in the nodes become corresponding
edges to each other, and the basis of tile pairs.

Fig. 6. Traversing rules for D-typed edge node. Note that the child nodes of the iden-

tical colors are traversed simultaneously

922 K. Min and I.-K. Lee

4.3 Refinement

We refine a contour by casting new rays between the existing rays. The new
intersection points sampled on the boundary of the object are inserted into the
existing contour. The contour tree follows the refinement of its contour as follows:

Refinement of a level-1 node. Suppose a new ray is cast between the x-th
ray and the (x + 1)-th ray. The x-th level-1 node is divided into two level-1
nodes, and new F edges determined by the new ray are stored in the new
level-1 nodes.

Refinement of an edge node. All the existing edges interrupted by new
intersection points are removed. Consequently, the nodes that store these
edges are removed from the contour tree recursively. To add the new edges
to the contour, we apply the building rules described in Section 3 to build a
contour tree, and attach the resulting fragment as a child of a level-1 node.

5 Implementation and Results

We implemented our algorithm on an 800 MHz Pentium III CPU PC with 256
MB of RAMs. For testing, we used a phantom object and an artery at the
neck. Both of the objects are 3-D volume with 256 X 256 X 512 resolutions. To
capture the volume from the source object, we exploited 3-D ultrasonic scanner
developed for medical purpose. Fig. 7 (a) illustrates four levels of detail for the
phantom object, and Fig. 7 (b) illustrates the artery at four levels of details.
For comparison, we also implemented the well-known toroidal search algorithm
[2, 3, 7]. The resulting computation time, number of triangles are itemized in
Table 1.

Fig. 7. Reconstruction of pipe-shaped objects in four resolutions (from left to right)

Multiresolution Reconstruction of Pipe-Shaped Objects from Contours 923

Table 1. Comparison of the proposed scheme to the conventional scheme

Resolution Applied Time No. of Size of data
Algorithm (sec) Triangles (Kbytes)

1 Toroidal search 0.340 444 6.384
Proposed 0.241 412 2.684

2 Toroidal search 0.761 1,061 15.126
Proposed 0.550 867 6.054

3 Toroidal search 1.442 2,424 34.032
Proposed 0.992 1,754 12.652

4 Toroidal search 2.904 4,791 136.178
Proposed 2.062 3,392 50.354

6 Conclusion and Future Work

We have presented a new multiresolution scheme to reconstruct a pipe-shaped
object from contours, which are extracted from a set of image slices by connect-
ing the intersection points between the rays cast from a central pixel and the
boundary of the shape. The edges on the contour are classified into several types,
and this classification is exploited in searching for correspondence between ad-
jacent contours. Efficiency is improved by eliminating most of the floating-point
computations from the tiling process. A pipe-shaped object at the lowest resolu-
tion is refined in a stepwise way by refinement of the contours, which is achieved
by casting new rays on the image slices.

We aim to develop a reconstruction scheme that addresses the branching
problem based on the approach reported in this paper. We also intend to apply
our scheme in areas such as medical imaging.

References

1. Bajaj, C. L., Coyle, E. J., and Lin, K. N., “Arbitrary Topology shape reconstruction
from planar cross sections,”, GMIP, 58(6), pp. 524-543, 1996.

2. Boissonnat, J. D., “Shape reconstruction from planar cross sections,” CVGIP, 44,
pp. 1-29, 1988.

3. Christiansen, H. N. and Sederberg, T. W., “Conversion of complex contour line
definitions into polygonal element mosaics,” SIGGRAPH 78, pp. 187-192, 1978.

4. Cong, G. and Parvin, B., “An algebraic solution to surface recovery from cross-
sectional contours,” GMIP, 61(4), pp. 222-243, 1999.

5. Ekoule, A. B., Peyrin, F. C., and Odet, C., L., “A triangulation algorithm from
arbitrary shaped multiple planar contours,” ACM ToG, 10(2), pp. 182-199, 1991.

6. Fix, J. D. and Ladner, R. E., “Multiresolution based refinement to accelerate
surface reconstruction from polygons,” Computational Geometry, 13(1), pp. 49-
64, 1999.

7. Fuchs, H., Kedem, Z. M., and Uselton, S. P., “Optimal surface reconstruction from
planar contours,” Communications of ACM, 20(10), pp. 693-702, 1977.

8. Jones, M. W. and Chen, M., “A new approach to the construction of surfaces from
contour data,” Computer Graphics Forum, 13(3), pp. 75-84, 1994.

924 K. Min and I.-K. Lee

9. Keppel, E., “Approximating complex surfaces by triangulation of contour lines,”
IBM Journal of Res. Dev. 19, pp. 2-11, 1975.

10. Marsan, A. L. and Dutta, D., “Computational techniques for automatically tiling
and skinning branched objects,” Computers & Graphics, 23(1), pp. 111-126, 1999.

11. Meyers, D., Skinner, S., and Sloan, K., “Surfaces from contours,” ACM ToG,
11(3), pp. 228-258, 1992.

12. Meyers, D., “Multiresolution tiling,” Computer Graphics Forum, 13(5), pp. 325-
340, 1994.

13. Oliva, J. M., Perrin, M., and Coquillart, S., “3D reconstruction of complex polyhe-
dral shapes from contours using a simplified generalized Voronoi diagram,” Com-
puter Graphics Forum, 15(2), pp. 397-408, 1996.

14. Pitas, I., Digital Image Processing Algorithms, Prentice Hall, 1993.
15. Schilling, A. and Klein, R., “Fast generation of multiresolution surfaces from

contours,” Eurographics Workshop on Visualization, pp. 35-46, 1998.

	Introduction
	Related Works
	Extraction of Contours
	Tiling Algorithm
	Building a Contour Tree
	Tiling by Traversing Contour Trees
	Refinement

	Implementation and Results
	Conclusion and Future Work

