
 

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 804 – 811, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Modelling and Constraint Hardness Characterisation of 
the Unique-Path OSPF Weight Setting Problem 

Changyong Zhang and Robert Rodosek 

IC-Parc, Imperial College London, London SW7 2AZ, United Kingdom 
{cz, r.rodosek}@icparc.imperial.ac.uk 

Abstract. Link weight is the primary parameter of OSPF, the most commonly 
used IP routing protocol. The problem of setting link weights optimally for 
unique-path OSPF routing is addressed. A complete formulation with a poly-
nomial number of constraints is introduced and is mathematically proved to 
model the problem correctly. An exact algorithm is thereby proposed to solve 
the problem based on the analysis of the hardness of problem constraints. 

1   Introduction 

Open Shortest Path First (OSPF) [13] is the most widely deployed protocol for IP 
networks. As with most other conventional IP routing protocols [6], OSPF is a short-
est path routing protocol, where traffic flows between origin and destination nodes are 
routed along the shortest paths, based on a shortest path first (SPF) algorithm [5]. 
Given a network topology, the SPF algorithm uses link weights to compute shortest 
paths. The link weights are hence the principal parameters of OSPF. 

A simple way of setting link weights is the hop-count method, assigning the weight 
of each link to one. The length of a path is thereby equal to the number of hops. An-
other default way recommended by Cisco is the inv-cap method, setting the weight of 
a link inversely proportional to its capacity, without taking traffic into consideration. 
More generally, the weight of a link may depend on its transmission capacity and its 
projected traffic load. Accordingly, a task is to find an optimal weight set for OSPF 
routing, given a network topology, a projected traffic matrix [8], and an objective 
function. This is known as the OSPF weight setting problem. 

The problem has two instances, depending on whether multiple shortest paths or 
only a unique one from an origin to a destination is allowed. For the first instance, a 
number of heuristic methods have been developed, based on genetic algorithm [7] and 
local search method [9]. For the second instance, Lagrangian relaxation method [12], 
local search method [15], and sequential method [2] have been proposed to solve the 
problem. With these heuristic methods, the problem is not formulated completely or 
explicitly and so generally is not solved optimally. 

From a management point of view, unique-path routing requires much simpler 
routing mechanisms to deploy and allows for easier monitoring of traffic flows [3]. 
Therefore, this paper focuses on the unique-path instance. The problem is referred as 
the unique-path OSPF weight setting (1-WS) problem. It is a reduction of the NP-
complete integer multicommodity flow problem [16]. 
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With the aim of developing a scalable approach to solve the 1-WS problem opti-
mally, a complete formulation with a polynomial number of constraints is introduced 
and is mathematically proved to model the problem correctly in Section 2. The hard-
ness of problem constraints is studied in Section 3. Based on the analysis of constraint 
hardness, an exact algorithm is proposed in Section 4. Conclusions and further work 
are presented in Section 5. 

2   A Complete Formulation 

2.1   Problem Definition 

The unique-path OSPF weight setting problem is defined as follows. Given 

• A network topology, which is a directed graph structure G=(V, E) where V is a 
finite set of nodes and E is a set of directed links. For each Eji ∈),( , i is the 

starting node, j is the end node, and 0≥ijc  is the capacity of the link. 

• A traffic matrix, which is a set of demands D. For each demand Dk ∈ , 
Vsk ∈  is the origin node, Vtk ∈  is the destination node, and 0≥kd  is the 

demand bandwidth. Accordingly, S is the set of all origin nodes. 
• Lower and upper bounds of link weights, which are positive real numbers 

minw  and maxw , respectively. 

• A pre-specified objective function, e.g., to maximise the residual capacities. 
 Find an optimal weight ijw  for each link Eji ∈),( , subject to 

• Flow conservation constraints. For each demand, at each node, the sum of all 
incoming flows (including demand bandwidth at origin) is equal to the sum of 
all outgoing flows (including demand bandwidth at destination). 

• Link capacity constraints. For each link, the traffic load over the link does not 
exceed the capacity of the link. 

• Path uniqueness constraints. Each demand has only one routing path. 
• Path length constraints. For each demand, the length of each path assigned to 

route the demand is less than that of any other possible and unassigned path to 
route the demand. 

• Link weight constraints. For each link Eji ∈),( , the weight ijw  is within the 

weight bounds, i.e., maxmin www ij ≤≤ . 

2.2   Mathematical Modelling 

According to the requirements of the 1-WS problem, the routing path of a demand is 
the shortest one among all possible paths. For each link, the routing path of a demand 
either traverses it or not. Based on this observation and the relationship between the 
length of a shortest path and the weights of links that it traverses, the problem can be 
formulated by defining one routing decision variable for each link and each demand, 
which results in the following model. 
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Routing decision variables: 

EjiDkxk
ij ∈∀∈∀∈ ),(,},1,0{  (1) 

is equal to 1 if and only if the path assigned to route demand k traverses link (i, j). 

Link weight variables: 

Ejiwwwij ∈∀∈ ),(],,[ maxmin  (2) 

represents routing cost of link (i, j). 

Path length variables: 
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represents the length of the shortest path from origin node s to node i. 

Flow conservation constraints: 
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The above logic constraints can be linearised by introducing appropriate constants 
ε  and M with M<<< ε0 . 
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Objective function: to maximise the residual capacities, alternatively, to minimise the 
throughput: 

∑ ∑∈ ∈Eji Dk

k
ijk xd

),(
min  (7) 

Accordingly, the complete model is presented as follows: 

1-WS 0: Optimise (7) Subject to (4), (5), (6), (1), (2), (3) 
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2.3   Proof of Correctness 

A relaxation of the 1-WS problem is the integer multicommodity flow problem [1], a 
recognised correct model of which is presented as follows: 

1-WS I: Optimise (7) Subject to (4), (5), (1) 

Apparently, the difference between 1-WS 0 and 1-WS I are path length constraints 
(6) and the resulting additional link weight variables (2) as well as path length vari-
ables (3). In order to ensure that 1-WS 0 formulates the 1-WS problem correctly, 
constraints (6) are proved to represent correctly the additional path length as well as 
path uniqueness constraints in the following. As the initial logic constraints are identi-
cal to the linearised constraints (6), the following proof is based on the initial con-
straints (6’). 

Proposition 1. The path length constraints in 1-WS 0 restrict that each routing path is 
a shortest path. 

Proof. Assume for demand k, ),(...),(),( 13221 nnj jjjjjjP −→→→= , knk tjsj == ,1  

is the assigned routing path and ),(...),(),( 13221 mmi iiiiiiP −→→→= , kmk tisi == ,1  is 
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Therefore, 
ij PP ll ≤ . It is proved that path jP  is a shortest path. □ 

Lemma 1. The path uniqueness constraints are satisfied by 1-WS I. 

Proposition 2. The path length constraints in 1-WS 0 restrict that the resulting rout-
ing path of each demand is a unique shortest path. 

Proof. As 1-WS 0 is a reduction of 1-WS I, the solution to routing decision variables 
k
ijx  of 1-WS 0 is a solution to 1-WS I. 

According to Lemma 1, there is only one path to route each demand. Suppose for 
demand k, knknnj tjsjjjjjjjP ==→→→= − ,),,(...),(),( 113221  is the assigned rout-

ing path, and kmkmmi tisiiiiiiiP ==→→→= − ,),,(...),(),( 113221  is one of any other 
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As both iP  and jP  are paths between ks  and kt , they finally merge at one node. 

Assume it is node r and },1,...,3,2{},,1,...,3,2{, mmqnnpijr qp −∈−∈== . Then, 
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Therefore, 
ij PP ll < . It is proved that path jP  is the unique shortest path to route 

demand k.  □ 

3   Constraint Hardness Characterisation 

There are three types of constraints in 1-WS 0, flow conservation constraints, link 
capacity constraints, and path length constraints. Among them, flow conservation 
constraints are the basic and core constraints of the problem. In order to compare the 
hardness of the other two types of constraints, two relaxed problems are studied. 

First, path length constraints are relaxed from the 1-WS problem, which results in 
the integer multicommodity flow problem 1-WS I, as introduced in Section 2.3. 

Second, link capacity constraints are relaxed from the 1-WS problem. This results 
in the un-capacitated unique-path OSPF weight setting problem: 

1-WS II: Optimise (7) Subject to (4), (6), (1), (2), (3) 

Forty-eight data sets with combinations of different parameter scenarios were gen-
erated for empirical study. In Table 1, Nds, Lnks, and Dmnds denote the numbers of 
nodes, links, and demands, respectively. All the three problems 1-WS 0, 1-WS I, and 
1-WS II were implemented in ECLiPSe [11] and solved using CPLEX 6.5 [10] on all 
data sets generated. The timeout was set to be 3600 seconds for each data instance. 
The following analyses are thereby based on the performance of using CPLEX. 

Table 1. Details of data sets tested 

ID Nds Lnks Dmnds ID Nds Lnks Dmnds ID Nds Lnks Dmnds 
1 10 22 3 17 30 78 60 33 50 130 49 
2 10 26 5 18 30 78 375 34 50 128 50 
3 10 24 9 19 30 136 3 35 50 130 100 
4 10 24 10 20 30 144 15 36 50 136 788 
5 10 26 20 21 30 142 29 37 50 238 3 
6 10 24 50 22 30 144 30 38 50 238 25 
7 10 46 3 23 30 142 60 39 50 238 49 
8 10 46 5 24 30 142 450 40 50 242 50 
9 10 46 9 25 30 236 3 41 50 240 100 

10 10 46 10 26 30 234 15 42 50 238 1000 
11 10 48 20 27 30 236 29 43 50 644 3 
12 10 44 50 28 30 234 30 44 50 648 25 
13 30 80 3 29 30 236 60 45 50 642 49 
14 30 78 15 30 30 234 450 46 50 642 50 
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15 30 82 29 31 50 128 3 47 50 646 100 
16 30 76 30 32 50 132 25 48 50 642 1000 

Consider the OSPF weight setting problem, it is shown that routing performances 
resulting from the proposed complete formulation are much better than those from 
using the default methods. The resulting average maximum utilisation is 28.79% of 
that from using the hop-count method and 40.68% of that from using the inv-cap 
method, which demonstrates the significant gains achieved by formulating the prob-
lem completely and solving it optimally. 
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Fig. 1. Solving times of 1-WS 0, 1-WS I, and 1-WS II 

Figure 1 compares the solving times of 1-WS 0 with those of 1-WS I and 1-WS II. 
It can be noted that 1-WS I is solved optimally within 1000 seconds for all instances, 
except the last one, which is detected infeasible in 1191 seconds. Meanwhile, it takes 
more time to solve 1-WS 0 than to solve 1-WS I on all instances. For most large-scale 
instances, it even cannot be solved when timeout. It is thus shown that path length 
constraints are very hard constraints for the 1-WS problem. It can be further seen that, 
although it takes less time to solve 1-WS II than the initial problem on most data 
instances, the difference is not so significant. The relaxed problem still cannot be 
solved when timeout on a few data instances. It is therefore indicated that the link 
capacity constraints are not the hardest constraints. 

In addition, it can be observed that between the two relaxed problems, 1-WS I is 
much easier to solve than 1-WS II. Therefore, path length constraints, which are re-
laxed in 1-WS I, are the hardest constraints for the 1-WS problem. 

In order to investigate further the reason behind the above observations, the con-
straint structure of the 1-WS problem is shown in Figure 2. The first row represents 
link capacity constraints (5), the next four rows correspond to flow conservation con-
straints (4), and the last four rows represent path length constraints (6). As it can be 
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seen, among the three types of constraints, flow conservation constraints and link 
capacity constraints contain only routing decision variables, while path length con-
straints couple routing decision variables with link weight variables and path length 
variables, which makes the problem more complicated than the integer multicom-
modity flow problem. This observation can also be used to explain why path length 
constraints are the hardest constraints for the 1-WS problem, instead of link capacity 
constraints, which are the hardest for the integer multicommodity flow problem [14]. 
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Fig. 2. Constraint structure of 1-WS 0 

4   Proposed Algorithm 

Based on the above study of constraint hardness, a proposed algorithm to solve the 1-
WS problem is Benders decomposition method [4], which decomposes the problem 
into an integer multicommodity flow master problem and a linear programming (LP) 
subproblem. The master problem deals with flow conservation constraints and link 
capacity constraints, and so contains routing decision variables only. Accordingly, the 
LP subproblem deals with the hardest constraints, path length constraints. Compared 
with the initial mixed integer programming (MIP) problem, the resulting master prob-
lem has a much smaller model size. Therefore, instead of solving a larger and more 
complicated MIP problem in one step, the proposed algorithm solves the problem by 
dealing with a smaller and simpler master problem and an LP subproblem iteratively. 
For the integer master problem, Lagrangian relaxation method has been demonstrated 
to be an appealing algorithm [14]. 

It was shown be preliminary results that, for small data instances, MIP solver 
solves the problem slightly faster than Benders decomposition method. However, 
when data instances get larger, the latter takes the advantage. 
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5   Conclusion 

In order to develop a complete solution approach to the unique-path OSPF weight 
setting problem, the problem has been explicitly formulated as a complete model, the 
correctness of which is mathematically proved. The model has three types of con-
straints, flow conservation constraints, link capacity constraints, and path length con-
straints. Among them, path length constraints have been identified to be the hardest 
constraints for the problem. Based on the study of constraint structure of the formula-
tion, Benders decomposition method, embedded with Lagrangian relaxation method 
for the integer master problem, has been proposed to solve the problem. 

Our future work includes developing the proposed algorithm completely and inves-
tigating possible improvements to both model formulation and solution algorithm to 
accelerate the convergence rate of the solution approach. 
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