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Abstract. Analysis of security attacks shows that an attack leaves its imprint or 
signature in the attack packets. Traffic from Distributed Denial of Service 
attacks and rapid worm spreads has the potential to yield signatures. While all 
signatures may not be indicative of attacks, it is useful to extract non-transient 
signatures that are carried by a sufficient number of flows/packets/bytes. The 
number of packets/bytes in the flows carrying the signature may be used for 
rate-limiting the flows, providing for timely and automated response to both 
known and unknown attacks. This paper proposes an efficient algorithm, PISA, 
which clusters flows based on similarity in packet information and extracts 
signatures from high-bandwidth clusters. Extensive experiments on two weeks 
of real attack data of 100 million packets yield about 1744 signatures. 
Additionally, PISA extracted the signature for the Blaster worm connection 
attempts in a mix of traffic from a trans-Pacific backbone link.  
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1   Introduction 

Worms such as Code Red and Slammer [1] are spread by the repeated execution of 
similar pieces of malicious code. Distributed Denial of Service (DDoS) attacks are 
also typically caused by similar pieces of code executing on compromised hosts and 
launching network flows. The code exploits some vulnerability in the OS, an 
application or parts of the TCP/IP protocol and causes network systems to experience 
degradation in performance.  When the same program is responsible for an attack, 
packets belonging to different flows of the attack may share the same values for 
several fields in the packets such as protocol header fields, application level fields and 
packet content. For example, in a SYN attack, the values for packet size, protocol, the 
SYN flag in the TCP header, destination address (if a particular server is being 
targeted), and destination port (if a particular kind of server is being targeted) are the 
same for all flows participating in the attack. The common values in the Code Red 
worm attack were in the following fields: {message size, protocol, destination port} 
[1]. Typically, unsolicited response traffic has common values for packet size and 
error type / code in ICMP packets and TCP flags in TCP packets. Some attacks 
launched by commonly used attack tools [7] have the same header checksum and 
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associated IP options. Additionally, similarity in application-level fields such as 
Subject, Body, and Attachment filenames can be found in SMTP-based email viruses. 

Schemes that investigate packet header fields to protect against security attacks 
include [6], [9] and [3]. In [6], the authors propose a technique called Hop-Count 
Filtering to cluster destination address prefixes based on hop count values. Departures 
from baseline values of the TTL field in the IP header (hop count) are used to identify 
spoofed source addresses. A scheme for using RED-drop history as a way of 
identifying singleton high-bandwidth flows and aggregating these flows based on 
prefixes of destination IP addresses is proposed in [9]. Specialized techniques to 
aggregate flows based on specific fields (source address and port, destination address 
and port, and protocol) are proposed in [3]. Schemes that investigate packet content 
include [8] and [12]. In [8], the authors use a port-scan classifier to first identify 
suspected malicious flows. Next, they use string matches on packet content using 
Rabin fingerprints together with protocol and destination port as a way of identifying 
worm signatures. In [12], the authors use string matches on packet content together 
with destination port as a basis for identifying worm signatures. The above schemes 
are effective for the specific fields they target. However, there exists a need to study 
the problem of aggregating traffic using any subset of fields because, as known 
attacks have shown and unknown attacks may possibly show, characteristics of 
attacks may extend to other fields. Investigating any subset of fields may lead to the 
automatic generation of generalized attack profiles that may form the basis for an 
automated response to unknown attacks. There are, of course, varying degrees of cost 
for retrieving values for different fields in a packet. However, as the severity of 
attacks continue to increase, this cost may be justified.  

The work described in this paper addresses the problem of finding high bandwidth 
aggregates of flows that share similar values for any subset of fields in their packets. 
This subset of fields and their values form signatures. While all signatures may not be 
indicative of attacks, signatures that are carried by a large number of 
flows/packets/bytes and occur frequently in traffic are of high interest to network 
administrators for early detection of possible malicious activity. The paper discusses 
packet signatures and their relevant properties. The paper discusses the Packet Imprint 
in Security Attacks algorithm (PISA). PISA samples incoming packets at a network 
element and groups the flows corresponding to the packets into clusters based on 
similar values in the fields of the packets. A cluster is intensive if it consumes a large 
proportion of the bandwidth as measured by the number of packets/bytes across all 
flows in the cluster. PISA extracts the signatures of intensive clusters from samples of 
data over time and filters out transient signatures. The signatures carry associated 
information such as the number of samples that the signatures appeared in 
(persistence) and the average number of flows (distribution) and packets/bytes 
(intensity) that belong to the signature. PISA provides an aggregated view of the 
traffic that arrives at a network element and the aggregation is not constrained to any 
particular field in the packet. The effectiveness of our approach is shown through 
experiments with an implementation of PISA on real network data, which 
demonstrate that PISA can extract signatures of high value such as those that 
correspond to connection attempts in a worm spread. Additionally, PISA was able to 
aggregate large amounts of real attack data to yield signatures that showed 
distribution of the attacks over a variety of fields. 
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The key contributions of our work are as follows: We define characteristic 
properties of signatures – Dimension, Intensity, Persistence and Distribution. We 
propose PISA, a randomized non-exponential algorithm for clustering traffic flows 
based on any subset of fields in packets to yield signatures. Signatures may carry any 
combination of fields that may be defined for a packet. No pre-computed signatures 
are required. Only a sample of traffic is required to extract significant signatures. In 
the face of extreme performance degradation at a network element, PISA can be used 
as a basis for self-healing of the network element by penalizing traffic that consumes 
the most resource(s). 

The paper is organized as follows. Section 2 discusses signatures and clusters of 
flows. Section 3 describes PISA. Section 4 discusses experiments and results on 
traffic traces. Finally, conclusions are presented in Section 5. 

2   Signatures from Clusters of Network Flows 

Definition: A signature is given by k ordered pairs {(f1, v1), (f2, v2), … (fk, vk)}, where 
k≥1  is the dimension of the signature, fi is a field in a packet and vi is a value for fi, 1≤ 
i ≤ k. 

   A signature S is a subset of another signature T if the ordered pairs in S are 
contained in T. A flow is said to carry a signature if the ordered pairs in the signature 
match with values for the corresponding fields in the packets of the flow. The notion 
of a flow used in this work is a 5-tuple with the following fields: (source address, 
source port, destination address, destination port, protocol). An example of a signature 
is as follows: {(packet_size, 48), (src_port, 80), (src_addr, 10.0.0.1), (type, tcp), (tcp_flag, 
Syn ack), (dest_port, 3072)}. The signature is carried by flows originating from source 
10.0.0.1 and port 80 with SYN ack packets of size 48 bytes to port 3072 of 
destinations. Four properties that characterize signatures are defined as follows: 

1. Dimension: The dimension of a signature is the number of field-value pairs in it. A 
higher dimensional signature contains more information about the type of flows 
carrying the signature. A signature may be useful only if it contains a minimum 
number of fields in it.  

2. Intensity: The intensity of a signature is the average number of packets/bytes that 
carry the signature. Intensity reflects the bandwidth consumption of flows carrying 
the signature.  

3. Persistence: The persistence of a signature is its activity over time. It may be 
represented as a history of the frequency of occurrence of a signature over a time 
interval. 

4. Distribution: The distribution of a signature is the average number of flows 
(alternatively, prefix matches of IP addresses across flows) carrying the signature and 
is useful in determining the spread of the signature. 

The significance of a signature can be defined in terms of its dimensionality, 
intensity, persistence, and distribution. For example, a system may define significant 
signatures to be those that contain at least 4 fields, have a bandwidth consumption of 
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at least 2% (intensive), appear for at least 60 seconds (persistent), and be carried by 
5% of the traffic flows. 

Definition: An m-dimensional cluster Cm is defined as a set of flows in which all 
flows have similar values for each field in a set of m fields. While exact matches are 
discussed in this paper as the basis of similarity, the approach can be extended to 
include approximate matches. The m fields form a signature carried by all flows in the 
cluster. 

The set of flows in a network sample can be grouped into clusters of flows such 
that all flows in a cluster carry a “maximal” signature, where the maximal signature 
for a set of flows is the largest set of similar field-value pairs. A flow can belong to 
more than one cluster. Note the following properties: 

-  An m-dimensional cluster is also an n-dimensional cluster where 1≤ n ≤ m.  
-  For two clusters X,Y with signatures Sx, Sy, X ⊂ Y, ! Sy ⊆ Sx …….(a)  
Each flow in a cluster has a weight given by the number of packets/bytes in that flow. 

The weight of a cluster can be defined as the sum total of the weights of all the flows in 
that cluster as follows:  Weight(cluster C) = Sum of weights of all flows in C  ….. (b) 

 The weight of a cluster is indicative of the bandwidth it consumes. An intensive 
cluster is one whose weight is above a specified threshold. Intensive clusters yield 
intensive signatures. 

3   PISA: Algorithm 

There has been prior work that has looked at identifying singleton flows that are 
intensive [9] [15]. The motivation in this work is to efficiently extract high-
dimensional, intensive, persistent and distributed signatures in network traffic. The 
approach is to scan a sample of the incoming traffic at a network element and group 
the flows in that sample into intensive clusters, which yield intensive signatures. 
Different samples of data (closely spaced in time) yield a history of intensive 
signatures. Transient signatures can be pruned out from this history. The non-transient 
signatures along with related information such as the number of scans in which the 
signature was seen (persistence), the average number of flows (distribution) and the 
average number of packets/bytes (intensity) carrying each signature provides a history 
of aggregated traffic at the network element.  

Clustering techniques can be broadly divided into hierarchical and partitional [2] 
[5]. Hierarchical clustering techniques consist of successively combining smaller 
clusters into larger ones or by splitting larger clusters into smaller ones. Partitional 
clustering techniques decompose the data into a set of disjoint clusters based on the 
optimization of a criterion function. Exhaustive techniques to search for all clusters in 
a data sample using any of the techniques discussed above are expensive [10]. We 
argue that exhaustive techniques are not necessary in this work because persistent and 
distributed signatures should be easily extracted in approximation-based methods. 
PISA repeatedly executes over samples of data across time intervals. Hence, it is not 
necessary to find all intensive signatures in an execution, as persistent signatures that 
are missed in one execution will likely show up in subsequent ones. Randomized 
approaches [4] allow faster extraction of clusters than exhaustive approaches. PISA 
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uses a hierarchical and randomized clustering technique on a lattice structure (which 
is commonly used in clustering methods) of the sampled flows. 

The parameters in PISA are as follows: (i) Sample size or the number of packets 
sampled in each scan phase: N. (ii) The minimum desired dimension of a signature: k 
(iii) Threshold for an intensive cluster: T. (iv) The fields of interest in the sampled 
packets. PISA consists of two parts: (1) A scan phase that extracts a sample of the 
network traffic (2) A signature extraction phase that clusters the flows in the sample 
to generate signatures. 

 In the scan phase, PISA samples a specified number of packets from the packets 
arriving at a network element. It maps the sampled packets to network flows and 
populates a flow table where each entry contains a flow, the number of packets 
belonging to the flow and the fields of interest in the packets and their corresponding 
values.  

In the signature extraction phase, the flows in the flow table are grouped into 
clusters. Let F be the set of flows in the flow table. Consider a lattice of all possible 
subsets of F and referred to as the flow lattice in this paper. The empty set ф is at the 
bottom of the lattice and F is at the top of the lattice. An edge exists between two 
subsets S1 and S2 if S1 is a superset of S2 and | S1| = | S2| + 1. The lattice consists of 
|F|+1 levels where each level i has all the subsets of F with cardinality i (See Fig.1). 
The intensive clusters of F are points on the lattice. The goal is to find intensive 
signatures of dimension greater than or equal to k.  

 

Representative Set 
with P flows

Cluster with 
X flows

Random 
Walk 

Sequential  
Walk 

Level 0: Empty Set 

F

Level 1: All Subsets 
with 1 flow

Level 2: All Subsets 
with 2 flows

 

Fig.1. Lattice of Subsets of Flows and Signature Extraction 

Let h be the number of fields of interest in the packets and k (1 ≤ k ≤ h) be the 
minimum number of fields desired to be similar in a cluster. Consider a path (ф, S1, S2 
…, F) from the bottom of the lattice to its top. Trivially, ф and S1 (consisting of a 
single flow) are h-dimensional clusters. Also, if S is a superset of P and S is an i-
dimensional cluster and P is a j-dimensional cluster, then i ≤ j (follows from property 
(a) in Section 2). Thus, the dimension of a cluster (and the dimension of its associated 
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signature) monotonically decreases up the lattice. This implies that for any 1 ≤ k ≤ h, 
either F is a k-dimensional cluster or there must exist two subsets of F, St, St+1, such 
that St is an i-dimensional cluster, St+1 is a j-dimensional cluster, there is an edge 
between St, and St+1, and j < k ≤ i. St is called a k-dimensional representative set. 
Along the path from the bottom of the lattice to St, there may exist several 
representative sets of dimensions greater than k. The number of paths to a 
representative set is exponential in the number of flows in the representative set.  

The signature extraction phase in PISA attempts to find a path to a representative 
set by randomly picking flows to move up the levels of the flow lattice. It starts at the 
bottom of the lattice by initializing a set S as the empty set ф. It traverses up the 
lattice in a sequence of steps. In each step it randomly chooses a flow from the flow 
table to add to the set S, each time checking if the resulting set is a representative set 
of dimension k or greater. It collects all such representative sets. It stops the traversal 
when the resultant set is a cluster of dimension less than k. This part of the walk will 
be called the random walk. A cluster forms the top of a sub-lattice that contains all 
subsets of the cluster. The more flows there are in the cluster, the larger is this sub-
lattice and the greater the probability of remaining within the sub-lattice during the 
random walk and finding a representative set for the cluster. 

At the end of the random walk, each collected representative set is expanded into a 
cluster by matching the headers of each flow in the flow table against those of the 
representative set. This corresponds to walking the sub-lattice corresponding to the 
cluster by sequentially searching the flow table. This part of the walk is called the 
sequential walk. The set resulting from the growth of the representative set is a cluster 
of flows that share common values for at least k fields. This cluster will yield an 
intensive signature if the weight of the cluster is greater than the specified threshold T.  

Each walk through the lattice (random + sequential) will be referred to as a lattice 
traversal. Lattice traversals can be repeatedly executed to discover an increasing 
number of the intensive clusters in the lattice. The limit on the number of lattice 
traversals can be set through a parameter as discussed later. Note that PISA does not 
construct the entire lattice. It constructs sets of flows as it encounters them along the 
lattice traversals. PISA adds the signatures of discovered intensive clusters to a 
signatures table, which stores the fields and values for each signature. Additional 
information for each signature is the number of samples in which it was seen, the 
average number of flows and packets/bytes carrying the signature. A Time To Live 
(TTL) field associated with the signatures flushes out signatures not seen over many 
samples. A signature can be logged before it is flushed out. 

Consider the four parameters in PISA: N, T, k and the fields of interest in the 
packets. N is the number of packets sampled in the scan phase. Larger values of N 
will typically increase the size of the flow lattice and may yield more signatures. 
However, reasonably sized values for N should be sufficient for finding intensive and 
persistent signatures. This claim is supported by experiments presented in Section 4. T 
(threshold for the weight of an intensive cluster) can be specified as a percentage of 
the traffic. Low values of T may yield many signatures and high values may yield 
fewer signatures.  k is the minimum dimension of a signature. If it is set to low values 
such as 1 or 2, the number of detected signatures may be very high and many of them 
may be meaningless. If k is set to too high a value, few or no signatures may be 
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detected. The fields of interest in a packet may include protocol header fields, 
application level fields and fields that may be defined on the packet content. 

Two approaches to determine the number of lattice traversals I are: (1) Static: 
I=L*N, where L is a constant called the lattice factor (2) Dynamic: Use a constant 
called the exit factor, which is the maximum number of consecutive lattice traversals 
where no new intensive clusters (or, a few) are seen. Since signatures that are carried 
by a large number of flows should have a large number of representative sets, they 
should be found quickly and it may be necessary to traverse only a small percentage 
of the paths in the lattice to detect them.   

3.1   Analysis of PISA 

Assume that the number of packets in a scan is N, the number of flows in a scan is f, 
and the number of fields of interest is h. In each lattice traversal, representative sets 
are collected and each representative set is grown against the flow table. Any path in 
the lattice is of length f. At every node in the path taken by a lattice traversal, at most 
h comparisons are made between fields of the cluster at the previous node in the path 
and the newly added flow. The maximum number of representative sets along a path 
is (h-k+1). The time taken to grow a representative set is proportional to f. If there are 
I lattice traversals, the upper bound on the time taken for PISA is O(I * ( f * h + (h-
k+1) * f * h) ). Since h, k are constants and N is an upper bound on f, the time 
complexity can be expressed as O(I*N). If the lattice factor is used to determine I, the 
time complexity is O(N2). If the exit factor is used, I is directly proportional to the 
number of intensive clusters in the sample and the time complexity of the algorithm is 
O(Number of intensive clusters * N). 

The space requirements of the algorithm are dominated by the size of the flow 
table: O(N) and the size of the signatures table: O(Number of Signatures*k). k is a 
small constant. The number of signatures can be controlled through T and the TTL for 
each signature.   

PISA does not report any signature that does not belong to a cluster of flows in a 
sample. Hence, there are no false positives. The probability of finding a signature S 
in a sample is proportional to the number of flows carrying the signature. This can be 
estimated, but is not presented here for brevity. The likelihood of missing signatures 
that are carried by a large number of flows is low. 

4   Experimental Setups and Results 

An implementation of PISA, referred to as the PISA system, repeatedly executes the 
scan and signature extraction phases. Extracted signatures are stored in the table of 
signatures that are logged after a fixed number of executions, referred to as a scan set. 
In our experiments, there are 500 executions in a scan set. All signatures fall into two 
categories: transient and non-transient. A signature is transient if it occurs in fewer 
than 50 scan phases at the end of each scan set. Non-transient signatures can be 
divided into two categories - persistent and non-persistent. A signature is persistent if 
it occurs in at least 500 scan phases. A signature is non-persistent if it is non-transient 
and occurs in less than 500 scan phases. The frequency of a signature is a measure of 
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its occurrence in a scan set. The results reported in this paper consider non-transient 
signatures only. The value for the TTL field was 500. Significant signatures are 
defined to be those that have at least 4 dimensions (dimensionality), have a bandwidth 
consumption of at least 10% (intensity), and occur for at least 500 scans (persistence). 

Two kinds of data were used in our experiments1: (1) Traces from CAIDA [14] 
provided a testbed of DDoS attacks and (2) data from the WIDE backbone [13] in the 
week of Blaster worm outbreak served as a testbed to identify worm spread signature 
in a mix of traffic. 

4.1   CAIDA Trace Data and Results  

CAIDA traces contain a wide variety and number (~8000) of attacks and have been 
analyzed by independent measurements [11]. CAIDA traces are useful in 
understanding the depth of information that can be captured by the PISA system and 
served as a useful test-bed to reveal different properties of PISA. The CAIDA trace 
used in our experiments consisted primarily of backscatter data from nearly two 
weeks (denoted by Week-I-II). Backscatter packets are defined as unsolicited 
response packets that include ICMP (host unreachable, port unreachable, time 
exceeded etc.) or TCP packets (syn-ack and reset flows). Details of the experimental 
setup to capture traces on the /8 network can be obtained in [11]. Since there is a 
strong correlation between attack packets and backscatter packets, PISA applied to 
backscatter packets extracts signatures that can be correlated to the signatures for 
attack flows. For example, if a signature for backscatter flows contains the value 
SYN-ACK for the TCP flag, the signature in the attack flows will contain the value 
SYN for the same TCP flag.  

The values of the parameters in our experiments (unless otherwise specified) are as 
follows: k = 4, T=10% of N, L = 20, N = 50. TCP/ICMP/UDP and IP header fields are 
considered for inclusion in packet signatures. The criterion for transient signatures (50 
scans) in the PISA system approximately corresponds to the criteria (attacks lasting 
for less than a minute) for signatures ignored in [11]. Unless stated otherwise, only 
persistent signatures were considered for analysis. The purpose of the experiments 
was to study (a) the effect of different parameters on PISA. (b) the total number, 
duration and type of attacks observed over Week-I-II. In (a), the use of several values 
for each parameter in experiments necessitated working with a smaller data sample 
than Week-I-II. A 21.6 hour long data sample was chosen without bias. This is a 
sufficiently large data sample to mitigate short-term perturbations in traffic. 

To study the effect of varying the number of lattice traversals, I was set to a 
constant  (lattice factor) times the number of flows N. Fig. 2 compares the total 
number of distinct signatures when lattice factors of 5, 10, 20, and 50 are used for a 
sample size of 50. Similar results were obtained for sample sizes of 25, 40 and 75 
packets. The total number of signatures does not increase significantly for lattice 
factors of 10, 20 or 50, showing the low rate of false negatives. While the number of 
signatures is reported here, the actual signatures too did not vary as the lattice factor 

                                                           
1  The authors acknowledge the Senior Staff at CAIDA for the availability of the traces [14] 

from their work [11] and MAWI working group [13] for making traces from the WIDE 
backbone available to us. 
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was increased. An analysis of the signatures showed that frequency of occurrence of 
persistent signatures (not shown here) did not change significantly (low rate of false 
negatives) as the lattice factor varied between 5-50. For example, as the lattice factor 
is varied between values of 5-50, the frequencies of occurrence of a highly persistent 
signature were observed to vary between 94-96%. The frequencies of occurrence of 
another lesser persistent signature were observed to vary between 66-77%, again 
demonstrating the low rate of false negatives for persistent signatures. 

 

 

Table 1. Frequency of non-persistent 
signatures as a percentage of scan set (500 
scans) for varying N 

Frequency 
" 

10-
25% 

25-
50% 

50-
75% 

>75% 

N=10pkts   24    1    1    0 
N=25pkts   39    1    1    1 
N=50pkts   53    1    1    1 
N=75pkts   53    1    1    1 

Table 2. Variation in the number of 
persistent signatures with different values 
of threshold, T 

Threshold 
Value of T 

Number of 
persistent 
signatures 

5% 33 
10% 28 
20% 24  

Table 3. Distribution of signatures by TCP and 
ICMP Protocols 

Table 4. Distribution of Signatures by 
response protocol  

Table1 shows the number of non-persistent signatures after every scan set.  The 
signatures that occurred in more than 25% of the scans did not change significantly as 
N varied. As N increases, the number of signatures that occur between 10-25% of the 
scans increases but is the same for N=50, 75. An examination of the signatures 
showed that the same signatures are extracted as N varies between 10-75. Similar 

Fig. 2. Number of signatures for various lattice 
factors 

Sig. 
Type 

Total 
50-
120 
scans 

120-
500 
scans 

500-
10K 
scans 

>10K 
scans 

TCP 1210 283 661 192 19 

ICMP 534 250 12 197 30 

Total 1744 533 673 489 49 

 

19 

Protocol Type Number of signatures 
TCP (total) 321 
TCP (RST, RST ACK) 273 
TCP SYN ACK 31 
TCP Other 17 
ICMP (total) 110 
Host Unreachable 57 
TTL Exceeded 51 
Parameter Problem 1 
UDP 1 
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results were observed for persistent signatures. The results support our earlier 
assertion that N need not be very large to extract the intensive signatures. In Section 
4.2, results using higher values of N are presented. 

Table 2 shows how T can be used to control the number of signatures. As the value 
of T increases from 5% to 20%, the number of signatures decreases since fewer 
clusters of flows will have a weight greater than T. 

Having shown the effect of varying values of parameters in PISA, we present 
results from the execution of PISA on Week-I-II.  

Signatures of dimensions between 4-6 were detected in our experiments. About 
65% of the signatures are 4-dimensional, about 25% are 5-dimensional and about 
10% of the signatures are 6-dimensional. Consider a source sending SYN requests to 
multiple destinations of which two destinations are prominent. Sample observed 
signatures are presented below. The values for each field are represented by a, b, c, d, 
x, and y. 

S(5): 5-dimensional, {(packet_size, a), (src_port, b), (src_addr, c), (type, d), (tcp_flag,  
               SYN)} 

S(4):  4-dimensional, {(src_port, b), (src_addr, c), (type, d), (dest_addr_1, x)} 
S1(6): 6-dimensional, {(packet_size, a), (src_port, b), (src_addr, c), (type, d), (tcp_flag,  

                SYN), (dest_addr_1, x)}  
S2(6): 6-dimensional, {(packet_size, a), (src_port, b), (src_addr, c), (type, d), (tcp_flag,  

               SYN), (dest_addr_2, y)} 

S(4) ⊂ S1(6) and S(5) ⊂ S1(6) and S(5) ⊂ S2(6). A comparison of signatures shows: 
(1) S(4) occurs very infrequently and contains a slightly larger number of flows 
compared to S1(6). S(5) occurs more frequently than S1(6) and S2(6). (2) The average 
number of flows / packets in S(5) is more than twice that of either S1(6) or S2(6).  

For reasons of ease, signatures with the protocol field value of TCP/ICMP will be 
referred to as TCP/ICMP signatures, respectively. Table 3 shows the frequency of 
TCP and ICMP signatures. Signatures occurring between 50-500 scans (non-
persistent) correspond to attack durations of about 2-20 minutes. Signatures that occur 
between 500-10,000 scans correspond to attacks that last between 20 minutes-several 
hours. Signatures occurring in more than 10,000 scans correspond to attacks lasting 
over several hours and up to several days. The results are consistent with [11], which 
states that 50% of the attacks are less than 10 minutes in duration, 80% are less than 
30 minutes, 90% last less than an hour and the rest span from several hours to a few 
days.  

Distribution of signatures by response protocol is presented in Table 4. ICMP 
signatures with the error code “TTL Exceeded” occur in about 50% of all ICMP 
signatures. About 80% of TCP signatures contain the RST/RST ACK flag in the TCP 
flag field. The total number of TCP signatures is about three times the number of 
ICMP signatures. This agrees with attacks classified on the response protocol in [11]. 

Fig. 3 shows plots for the total number of persistent signatures and the number of 
persistent TCP signatures. ICMP signatures make up the difference between the two 
plots. 

It is difficult to directly compare the number of signatures from the PISA system to 
the ones reported in [11] because the approach in [11] models the attacks as 
emanating from groups of flows where each group contains flows all destined to the 
same IP address. Thus, similar flows to different destination IP addresses are not 
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classified into the same attack. An examination of the signatures from our 
experiments shows that 85% of the signatures collected by the PISA system did not 
have destination IP address as a field in the signature because PISA clustered flows to 
different destinations based on other fields in the packets. This explains why the 
signatures identified by PISA is about one-fourth of the number seen in [11]. This is 
significant because PISA enables multiple simultaneous attacks that share similar 
characteristics (in fields) to be represented by a single signature. 

Results may be summarized as follows: (1) 100 million packets in Week-I-II 
yielded about 1744 signatures. (2) The threshold (T) controls the number of intensive 
signatures.  (3) A variety of fields appear in the signatures including protocol, packet 
size, source address, source port, ICMP error types, TCP flags, destination address 
and destination port. (4) Intensive signatures can be extracted from small samples of 
data, thus enabling signatures to be detected quickly. (5) A large number of lattice 
traversals are not required to detect signatures. (6) Signatures with dimensions 
varying from 4-6 were extracted from the data. This shows that varying levels of 
information may be gathered in attacks. (7) The duration and the type of signatures 
are comparable to those reported in [11]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2   Experience with the Blaster Worm 

This section discusses the effect of executing PISA on traffic gathered in the week of 
the Blaster [1] worm outbreak. Details of the Blaster worm spread and attack phase 
can be found in [1]. While the worm was active on multiple ports, TCP/port 135 is 
considered for brevity. Traffic collected during a 15-minute intervals for 2 weeks (9-
21 Aug 2003) from the WIDE [13] backbone are analyzed. The attack traffic 
contributed less than 5% of the bytes over the measured interval.  

The following values were used for the PISA parameters: T=9%, k=4. About 25% 
of the traffic was sampled, which corresponded to 120-250 packets per scan.  

Significant TCP/135 signa TCP/135 signature 

Fig. 3. Total number of persistent signatures 
and number of persistent TCP signatures 
every 1.6 million packets 

Fig. 4. Persistence (secondary y-axis) & 
average number of flows (primary y-axis) of 
the signature of Blaster connection request 
to TCP/135 
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Fig. 4 shows the number of significant signatures per scan set and the average number 
of flows carrying the signature corresponding to attempts to connect to TCP port 135. 
The connection attempt, that shows up as a persistent and intensive signature was 
identified as {(packet_size, 48), (dest_port, 135), (type, TCP), (tcp_flag, SYN)}. Non-
persistent signatures that are supersets of this persistent signature and of the form 
{(packet_size, 48), (dest_port 135), (type, TCP), (tcp_flag, SYN), (src_addr, [IP1, IP2 
… IPn])}, where IP1, IP2 … IPn denote different IP addresses, were observed 
frequently. The figure also shows persistent signatures on 21 and 22 August for RSTP 
data transfers and ICMP/92 (echo requests with a packet size of 92 bytes). ICMP/92 
corresponds to the ping sweep of the Welchia.A [1] worm. Other non-persistent 
signatures observed corresponded to NNTP and FTP data transfer, and connection 
requests to web servers. When T was reduced to 7%, additional persistent signatures 
corresponding to RSTP, connect requests to web servers and ICMP/92 (from 19 
August onwards) were observed. 

5   Conclusions 

Signatures represent aggregated characteristics of network flows that is the hallmark 
of many DDoS attacks and worm spreads. This paper defines characteristic properties 
of signatures such as dimensionality, intensity, persistence, and distribution, which 
help define significant signatures that may be of interest while analyzing network 
traffic. The paper proposes PISA, an efficient algorithm to extract significant 
signatures from samples of traffic. The fields in the signatures enable filters to be 
designed to isolate flows suspected of belonging to attacks and the persistence and 
intensity of signatures can form the basis for rate-limiting the isolated flows. The 
paper presents experimental results for real network traces that show that PISA works 
very effectively in extracting signatures for a wide range of attack scenarios. PISA 
abstracts about 100 million packets participating in denial of service attacks to 1,744 
significant signatures. In addition, the results show that PISA effectively extracts the 
signature for the connection requests corresponding to the Blaster worm in a mix of 
traffic from a backbone link.  
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