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Abstract. In this paper, we consider large-scale high-bandwidth on-demand me-
dia streaming in a dynamic and heterogeneous environment. We present MetaS-
tream, a scalable and distributed content discovery protocol that enables clients
across the Internet to self-organize into a topology-aware overlay network, in
which they can “cache and relay” a stream among nearby peers. We present the
design and implementation of MetaStream and show experimental results ob-
tained in a large-scale emulated environment. Our evaluation shows that MetaS-
tream distributes relaying load among the clients in a topology-aware manner,
imposing low link cost to the underlying network and low streaming load on the
media server. MetaStream is also highly resilient to node or network failures and
is capable of quickly recovering the streaming quality at clients even at high fail-
ure rates.

Keywords: Peer-to-peer, on-demand streaming, overlay networks, topology-
awareness.

1 Introduction

In this paper, we consider the problem of on-demand media streaming to a large set of
clients spread across the Internet. Compared to real-time media streaming or simultane-
ous file downloading, on-demand streaming is distinct in two aspects: (1) asynchrony,
as clients may request for the media at different times; and (2) non-sequentiality, as
different clients may access the media starting at different parts of the media object.

There exist two approaches to on-demand streaming. The first approach adopts IP
multicast to serve multiple requests by a single stream. Due to the synchronous nature of
multicast, clients either wait for the next scheduled multicast session at the cost of some
start-up delay [9, 12], or participate in more than one sessions simultaneously [15, 8].
The second approach exploits caching of media objects at the proxies [20, 3, 21], or at
the clients [23, 7, 14, 5, 6]. The media can be retrieved from the caches instead of from
the streaming server.

The client-side “cache and relay” scheme has several major advantages. First, it is an
application-level solution without any assumptions about the underlying network (i.e.,
IP multicast), and it does not require the deployment of specialized proxies. Receivers
cache a small portion of the media content after playback and they collectively form a
cooperative overlay network by streaming from each other’s cache. Second, the capacity
of the streaming overlay scales with the population of clients. It has been shown that
this “grassroot” approach can defeat IP-multicast-based solutions in terms of server-
side bandwidth saving [5]. Since clients also contribute streaming bandwidth to the
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streaming overlay, it has the self-scaling property of peer-to-peer file sharing systems.
Third, each client can select the streaming source based on various QoS requirements.
When there exist more than one candidates in the overlay network, the client can choose
the one with the best performance metric, e.g., the lowest delivery delay.

A key challenge for the client-side “cache and relay” approach is how to locate
available streaming sources in the overlay network, given that clients may be widely
dispersed over the Internet and they can leave or fail at any time. This calls for a con-
tent discovery service for streaming information update and lookup. A straightforward
solution is to deploy a centralized server that keeps track of all the streaming sessions.
Obviously this solution suffers from the bottleneck and single point of failure at the
centralized server. In [5], the content discovery service is implemented by a number
of clients acting as discovery servers. Specifically, each streaming session is registered
with the content discovery service by contacting a subset of discovery servers. Like-
wise, each request is also mapped to a subset of the discovery servers. A client can
find eligible streaming sources by querying the content discovery service. However,
the mapping between streaming sessions or requests to discovery servers is performed
through inconsistent hashing, i.e., the mapping is dependent on the number of available
servers.

In this paper, we propose MetaStream, a fully decentralized and adaptive protocol
for content discovery in large-scale high-bandwidth streaming. Since the volume and
the physical distribution of streaming requests are usually beyond estimation, it is dif-
ficult to pre-determine the scale and the deployment of a content discovery service.
In MetaStream, all clients participate in the content discovery service and take on the
responsibility of finding and choosing streaming sources without any requirement for
external configuration or management. MetaStream is also adaptive to client popula-
tion and network condition dynamics, and streaming paths can be refined over time
to maintain and improve the streaming quality at clients. When a failure happens at a
client or in the network, MetaStream can relocate the streaming source and restore the
streaming session quickly. Moreover, MetaStream is oblivious to the encoding of the
media object. MetaStream can be used with any data encoding schemes such as lay-
ered encoding [21] or multiple descriptor encoding (MDC) [10] to address the resource
heterogeneity of streaming clients.

In addition, MetaStream also aims to minimize the streaming cost at the backbone
network. Due to the high streaming rates of media objects, the streaming overlay should
be network bandwidth efficient, and should avoid long streaming paths between clients.
For the content discovery service, this translates into topology-awareness: for each
streaming request, if there are multiple candidates capable of providing the media ob-
ject, the one that is closest in terms of network distance should be chosen. MetaStream
has inherent topology-awareness by clustering clients based on the network distances
between them, and a streaming request is always satisfied by a nearby source, if it exists.
Topology-awareness also contributes to the scalability of MetaStream.

In summary, MetaStream provides an efficient distributed content discovery ser-
vice that allows clients to locate streaming sources in a topology-aware manner. As a
result, clients organize themselves into a topology-aware overlay network. We have de-
veloped a prototype implementation of MetaStream and have performed an extensive
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evaluation of MetaStream running over 1,000 clients in an emulated Internet topology
consisting of 5,050 routers. The experimental results show that MetaStream can satisfy
client streaming requests with only minimal server-side bandwidth consumption and at
the same time incurs low network link cost.

The rest of the paper is organized as follows. Section 2 gives a brief background
on the “cache and relay” approach to on-demand streaming. Section 3 presents MetaS-
tream, a topology-aware content discovery protocol for media streaming. Section 4 dis-
cusses the methodology for evaluating MetaStream and Section 5 provides detailed
evaluation results obtained from a large-sale emulated environment. Finally, Section 6
reviews related work and Section 7 draws concluding remarks.

2 Preliminaries

In the following, we give a brief overview of the client-side “cache and relay” scheme [5,
6, 14] for on-demand streaming.

For generality, we assume that the media object consists of one or more stripes,
depending on if data encoding is applied. The object is originally provided by server C0.
The request from client Ci(i = 0, . . . , n) is characterized by the time Ti that Ci starts
streaming and the offset Si in the stream where the streaming begins. The achievable
streaming quality at Ci is bounded by the input bandwidth. Each client also maintains a
small cache of the media after playback and we denote the cache length as Wi. A later
client Cj can stream from client Ci if their requests satisfy the following condition:
(Ti − Si) < (Tj − Sj) < (Ti − Si) + Wi. The amount of stripes that a client Ci

can relay to others is limited by its own output bandwidth. Any stripes that cannot be
provided by the caches of other clients can be retrieved from the original server C0.

A simple example of “cache and relay” is shown in Figure 1 where a stream is
encoded into 3 stripes. Suppose that each client maintains a cache of 5 minutes and each
starts the streaming from the beginning. The first client C1 receives 2 stripes directly
from the server C0. The second client C2 can retrieve the first 2 stripes from client C1,
but the third stripe has to be streamed from the server. When the third client C3 arrives,
its streaming request can be satisfied by client C2.

Figure 2 gives an example of “topology-awareness” by showing a simplified net-
work of routers connecting the streaming server and clients in Figure 1. If we assume
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client C3 arrives 2 minutes after client C2 and 4 minutes after client C1, it is able to
stream the first two stripes from either C1 or C2. However, it is more beneficial from
the perspective of network bandwidth consumption to select C2 since C2 is only 2 hops
away and C1 is at least 3 hops away.

3 MetaStream

In this section, we present the design of MetaStream, a content discovery protocol for
topology-aware on-demand streaming.

3.1 Topology-Based Clustering

In MetaStream, clients choose streaming sources based on the network distance. For
this suppose, they self-organize into a dynamic hierarchy of clusters based on the net-
work topology. In principle, any protocol for constructing a topology-aware hierarchy
can be used. We use the NICE protocol [1] for the following reasons: (1) The source
code is publicly available; (2) The hierarchy can be built and maintained with very low
overhead; (3) The hierarchy is adaptable to membership and network condition changes.

Due to page limitation, we omit the details of the NICE protocol. An example hierar-
chy of topology-based clusters as can be built using NICE is shown in Figure 3. Cluster
leaders (i.e., cluster centers) of each level join the next higher level clusters, e.g., C1,
C2 and C3 of level-0 join level-1. By using a hierarchy of clusters, MetaStream can
scale to a large number of clients.

3.2 Topology-Aware Content Discovery

To facilitate discovering nearby available streaming sources, a content discovery service
is built on top of the topology-aware hierarchy.

Streaming State Registration and Aggregation. First, streaming clients with avail-
able output bandwidth register with the content discovery service. Specifically, each
client sends the information about the stripes being received and thus cached locally to
its bottom level cluster leader. After aggregating the information from all the clients in
the cluster, the bottom cluster leader sends a summary registration to the next higher
level cluster leader. This registration process ends at the hierarchy root, which is the
leader of the top level cluster.

The information presented to cluster leaders during registration is light-weight. Re-
call from Section 2 that client Cj can stream from client Ci if their requests satisfy
(Ti −Si) < (Tj −Sj) < (Ti −Si) + Wi. Therefore, it suffices for client Ci to provide
a range (Ti − Si, Ti − Si + Wi) in the registration. Aggregation within each cluster is
simply performed as a disjunction of all received registrations

⋃
i(Ti−Si, Ti−Si+Wi).

An example of aggregation is shown in Figure 3. Each stripe of the stream is regis-
tered and aggregated separately. For clarity, only the aggregation for one stripe is shown
in Figure 3. As a client may belong to multiple levels in the hierarchy, it may be respon-
sible for receiving registrations and performing aggregations at each of these levels. If
the hierarchy is created using the NICE protocol, each client maintains no more than
O(log N) registrations from other clients.
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Buffer registration is performed periodically and asynchronously by each client.
Registration information is maintained as soft-state. The soft-state approach keeps reg-
istrations up-to-date as the hierarchy is undergoing all kinds of possible changes, such
as when clients join and leave, clusters split or merge, and clients crash without no-
tifying other members. In addition, MetaStream also invokes on-demand registration
to react to changes in the composition of the stripes in a client’s cache and its output
bandwidth availability.

Resolving Request for a Single Stripe. A client request for a streaming stripe is re-
solved by querying the content discovery service. Only the timing of the request, in the
form of (Tj − Sj), needs to be presented. At each step of resolving the request, poten-
tial streaming sources are identified by checking (Tj −Sj) against the aggregated cache
registration

⋃
i(Ti − Si, Ti − Si + Wi).

Figure 4 shows an example of resolving a streaming request based on the aggrega-
tion example in Figure 3. Suppose that a new client C11 wants to find a streaming source
for stripe x. A request is first sent to the level-0 cluster leader C2 (step 1). Generally,
a request is forwarded up the hierarchy until it receives a successful response (step 2).
Since higher levels have a wider view of the network, the request is more likely to be
resolved. A successful response includes those next lower level cluster members that
can further resolve the request. If the request is received at the root and the root is not
aware of any other clients that can relay stripe x from their caches, server C0 can accept
the request and open a streaming session for the requested stripe.

After receiving one successful reply, the resolving process starts traversing the hi-
erarchy downward (step 3), as it zooms in towards the closest streaming source. When
the resolving process arrives at the bottom level and the closest candidate is determined,
e.g., to be client C7, client C7 accepts the request if it confirms that it has enough output
bandwidth remaining to relay stripe x to C11; at this point the request is fully resolved.

Due to propagation delay along the hierarchy and the fact that aggregation partially
relies on periodical refreshments, at some point in resolving the request, it may happen
that client C1 does not contain any matching record or client C7 does not have enough
remaining output bandwidth to accept C11’s streaming request. When the closest candi-
date fails to further resolve the request, clients can continue to contact the next closest
candidate. MetaStream also enables clients to back-trace to the previous levels of the
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hierarchy. This can be made possible by bookkeeping (e.g., using a stack) the results at
each step of resolving the request.

Resolving Requests for Multiple Stripes. In the descriptions of the content discov-
ery service above, we consider only one stripe of the stream and make no assumption
about the actual encoding scheme. Whether multiple description [10] or layered en-
coding [21] is used, the stripes can be resolved sequentially. As soon as one stripe is
resolved, the stream is renderable at the client; the streaming quality improves as more
stripes are available. In multiple description encoding, clients can choose from differ-
ent combinations given the total number of stripes. In fact, clients just need to specify
the desired number of stripes without defining which stripes. In contrast, in layered en-
coding, the order of the stripes to be resolved is fixed. Therefore, under comparable
circumstances, multiple description coding allows more flexibility in satisfying clients’
desired streaming quality.

It is worth noting that the NICE hierarchy is only used for propagating control mes-
sages during streaming state registration and streaming source discovery, and it is not
involved in the data streaming process once the streaming source is located.

3.3 Handling Failures

The NICE hierarchy is adaptive to node failures or network partitions through automatic
reconfiguration. Similarly, MetaStream handles a streaming session failure due to the
above reasons by relocating the streaming source, using the same content discovery
protocol described in this section. If a failed client is able to continue relaying the
stream from its cache, it can sustain the streaming until the cache is depleted, while
those downstream clients re-locate alternative sources. Even if the failed client stops
relaying immediately, it is unlikely to disrupt the entire streaming of downstream clients
if multiple-stripe encoding is used; they would only experience temporary deterioration
of the streaming quality.

3.4 Refining and Adapting the Streaming Overlay

The streaming overlay is dynamic as clients join and depart. This raises opportunities
for optimizing streaming paths. If a stripe is currently provided by the server, the server
load will be reduced if the stripe can be switched to another client. In addition, the
streaming efficiency of the overlay can also be improved by attaching a stripe to a closer
available streaming source. Both situations can be exploited by periodically attempting
to re-attach selected stripes in a controlled manner, e.g., by querying an appropriate
number of levels up the content discovery hierarchy.

So far MetaStream has only considered bandwidth constraints at the edge of the
network, i.e., at the server and clients. In practice, internal links in the underlying net-
work might become the bottleneck. MetaStream can be modified to take the available
bandwidth of the streaming paths into consideration. For instance, the client can select
the top few closest candidates during the content discovery, measure the throughput to
each of them, and choose the one with the highest throughput. During the streaming, the
network may not be able to deliver the throughput required at the client. The client can
adapt by dropping the current connection and re-attaching to an alternative streaming
source.
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4 Experimental Methodology

In this section, we describe the experimental methodology for evaluating MetaStream.

4.1 MetaStream Implementation

We have implemented MetaStream as a stand-alone application in C++, on top of
the NICE code (http://www.cs.umd.edu/ suman/research/myns/index.html). The NICE
code exports an API that can be used to build applications on top of the NICE hierarchy.
We also modified the core API to allow for socket communication. This modification is
transparent to applications built on top of the core API. In total, our implementation of
MetaStream consists of about 5500 lines of code.

4.2 ModelNet Emulator

We evaluated our MetaStream implementation in the ModelNet [24] IP emulation frame-
work. Our ModelNet setup consisted of four machines, each with a 3.0GHz Pentium IV
processor and 512MB RAM, interconnected with a Gigabit Ethernet switch. Two of
these machines ran Free BSD 4.7, and served as the ModelNet core cluster, while the
remaining two ran RedHat 9.0 and served to support the virtual nodes. A network topol-
ogy generated by GT-ITM described below was emulated by the core routers and used
to connect 1000 virtual nodes.

4.3 Network Model

The experiments are conducted using a network topology with 5050 routers generated
by the GT-ITM [25] graph generator using the transit-stub model. The streaming server
and 1000 clients are randomly attached to the stub routers.

To model the heterogeneity of the capacities of client nodes in the Internet, we cat-
egorize clients into 3 groups according to their bandwidth similarly as in [6]: (1) 50%
clients have maximum total bandwidth of 128Kbps and they represent Modem/ISDN
users; (2) 35% clients have maximum total bandwidth of 1Mbps and they have Cable
Modem/DSL connections; (3) the rest 15% clients have maximum total bandwidth of
10Mbps and they have Ethernet connections. The inbound and outbound bandwidth
are allocated from the total available bandwidth. We control the allocation using out-
bound/inbound bandwidth ratio r. The larger the ratio, the more bandwidth is con-
tributed to streaming to other clients.

4.4 Data Model

The media object is encoded into 50 stripes using layered encoding, similarly as in [6].
All stripes are assumed to have an identical rate of 20Kbps, although in practice stripes
can be encoded using different streaming rates. The total streaming rate is 1Mbps. The
full length of the stream is 20 minutes (1200 seconds) and each client caches 100 sec-
onds of received stripes after playback.

Streaming clients arrive according to the Poisson process and the average inter-
arrival time is 10 seconds. Each client leaves after finishing the 20-minute streaming,
and the simulation stops when the last client finishes streaming.
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4.5 Protocols Evaluated

MetaStream considers both the server load and the network link cost. These two goals
can conflict with each other. We are interested in whether the server load has to be
compromised to achieve lower link cost. The problem of optimizing server load alone
for layer-encoded on-demand streaming is NP-complete under client output bandwidth
constraints [6]. In [6], a greedy algorithm is proposed and it can maximize the num-
ber of stripes that a new client can get from other clients at the moment of joining the
streaming overlay. We term this greedy algorithm “Greedy:ServerLoad” and it repre-
sents the best effort towards minimizing server load to our knowledge. We implemented
the “Greedy:ServerLoad” algorithm to run on the same emulator.

For comparison, we have also implemented a unicast-based on-demand streaming
approach, in which each client simply streams all desired stripes from the server. Al-
though this approach has obvious drawbacks such as overloading the server and the
network links close to the server, it is widely used in the Internet today.

The NICE hierarchy used by MetaStream is maintained by HeartBeat messages
within clusters and the default heartbeat interval is set to 3 seconds. We also set the
interval for refreshing streaming cache state to 3 seconds for both MetaStream and the
“Greedy:ServerLoad” scheme.

4.6 Performance Metrics

We compare the performance of various solutions using the following metrics: (1) Path
length measures the average number of network-layer routing hops of the streaming
paths. (2) Link stress measures the data traffic at the network links, averaged over all
the links that have through data traffic. Together, link stress and path length give a
complete picture of the network link cost of streaming. (3) Server load measures the
bandwidth consumption at the streaming server. It reflects the effectiveness of the pro-
tocol in locating client-side streaming sources. (4) Discovery delay refers to the latency
for a client to locate/relocate the streaming sources. (5) Control overhead comes from
two sources in MetaStream: the overhead in constructing and maintaining the topology-
aware hierarchy, and the overhead in updating and querying streaming information. All
the control messages exchanged are counted in measuring the control overhead.

5 Experiment Results

We present the results from extensive experiments in this section. We first evaluate
MetaStream in a typical setting and then study the effects of various system parameters.

5.1 Representative Scenario

As a representative scenario, the outbound/inbound bandwidth ratio is set to 1.0. This
models the peer-to-peer spirit which requires each node to contribute as much output
bandwidth as its input bandwidth consumption.

Path Length. Figure 5 shows the CDF of the average path length of all the layers re-
ceived by each client. The diameter of the network topology is 20 hops. In MetaStream,
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on average all the layers received at each client travel at most 10 hops (half of the
network diameter) for about 58.3% of the clients, but for only about 42.8% clients
using the “Greedy:ServerLoad” algorithm. In addition, for each layer, MetaStream re-
duces the average streaming path length by more than one hop, compared with the
“Greedy:ServerLoad” algorithm (the result is not shown due to page limitation).

Link Stress. Shorter path length translates into potentially lower link stress on the un-
derlying network, and this is confirmed in Figure 6, which shows the average streaming
traffic over network links during the experiment. MetaStream induces about 10-20%
less link stress compared with the “Greedy:ServerLoad” algorithm. The unicast ap-
proach generates much higher link stress than both the “Greedy:ServerLoad” algorithm
and MetaStream, which can be explained by the high bandwidth consumption near the
streaming server. The results on the streaming path length and network link stress show
that by taking network topology into account, MetaStream can effectively reduce the
streaming cost on the backbone network.

Server Load. Figure 7 shows the server load measured by the number of layers that the
server has to stream. First, the “cache and relay” approach can significantly reduce the
bandwidth demand at the streaming server. By using “cache and relay”, MetaStream and
the “Greedy:Server Load” algorithm bring server load down to below 1% of the total
bandwidth demand by clients. The peak bandwidth consumption is only about 4Mbps
(200 layers) at the server, which is equivalent to 4 clients with full quality streams.
Even a desktop computer with Ethernet connection can sustain the server load in this
scenario. Second, MetaStream achieves almost the same amount of server load as the
“Greedy:ServerLoad” algorithm, which is originally designed for the purpose of min-
imizing server side bandwidth. This implies that MetaStream does not sacrifice server
load for lower network cost and the “cache and relay” approach itself can effectively
limit the server-side load. We have run both algorithms under various combinations
of parameters and in all the situations that we have investigated, MetaStream achieves
comparable server bandwidth savings as the “Greedy:ServerLoad” algorithm.

Discovery Delay. Figure 8 shows the CDF of the startup delay at the clients. The link
delay generated by GT-ITM is used in calculating the delay in resolving streaming
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requests. Over 99% of clients experience less than 1 second delay in locating the first
stripe and over 90% experience less than 2 seconds delay in locating all the stripes. The
maximum delay is under 10 seconds for both data curves.

Control Overhead. The control overhead of MetaStream at clients is depicted in Fig-
ure 9. The overhead bandwidth accounts for both the incoming and outgoing control
traffic at clients. The volume of control traffic from streaming related activities and from
the NICE protocol are comparable. The control overhead induced by the NICE proto-
col remains stable as clients join and leave the streaming overlay. The overhead from
MetaStream itself fluctuates slightly as the number of active streaming layers changes
over time (as shown in Figure 7). Both overhead are two orders of magnitude less than
the streaming data received at clients.

5.2 Effects of System Parameters

The performance of MetaStream varies with the following parameters:

– Cache size: Long buffers imply that more streaming requests can be satisfied by
other clients (Figure 11). It also allows for more choices in selecting streaming
sources and therefore better quality for streaming paths (Figure 12).
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varying client arrival rate:
cache length = 100 sec,
outbound/inbound = 1.0

– Client output bandwidth: The availability of a client as a streaming source is deter-
mined not only by the timing dependency between streaming requests, but also by
the output bandwidth of the client. With all the other factors fixed, more abundant
output bandwidth enables a client to serve more other clients (Figure 13). This can
also result in shorter streaming paths for some clients (Figure 14).

5.3 Scalability

A third parameter that can affect the performance of MetaStream is the client arrival
rate. For a fixed streaming length, higher arrival rate translates into larger client popu-
lation, and thus varying the arrival rate measures the scalability of MetaStream. On one
hand, increased client population increases the aggregate bandwidth demand. On the
other hand, it increases the opportunity for “cache and reply” from other clients instead
of from the server. Figure 16 and Figure 15 show that MetaStream scales well with the
client population, in terms of the bandwidth demand on both the server side and the
underlying network.

5.4 Fault Recovery

In order to evaluate the failure recovery capability of MetaStream, we introduced ran-
dom failures in our experiment of the representative scenario. Out of the 1000 clients,
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30% fail before they finish the 20 minute streaming. Failures are randomly injected
among the clients and for each failed client, the failure time is determined by a random
value in between (1, 20) minutes.

We also assume that clients fail silently and stop streaming to all downstream clients
immediately. Since the stream is encoded using the layer encoding scheme, once a layer
is interrupted due to source failure, all higher layers become useless and are therefore
also disconnected from their corresponding streaming sources. All disrupted layers will
be recovered by the failure handling mechanism. The directly affected clients continue
to stream to their own downstream receivers, and thus their caches can absorb some of
the potentially cascading effects of upstream failures in the streaming overlay.

Figure 17 and Figure 18 show the streaming throughput received and the streaming
quality experienced by an average client, with and without failure recovery, respectively.
Client streaming quality is defined by the percentage of decodable layers out of all the
desired layers. These results show that MetaStream can fully restore all the streaming
sessions and clients are hardly affected by failures except a tiny delay for recovery.
Meanwhile the server load remains roughly at similar levels as in failure-free situations
(the result is omitted due to page limit). Figure 10 depicts the CDF of the delay to
recover from streaming source failures, i.e., the time from when the streaming quality
at the client declines due to source node failures to when the streaming quality fully
recovers. The failure recovery delay is comparable with the startup delay shown in

8.

6 Related Work

MetaStream is related to previous work in the area of on-demand streaming. There
has been a rich body of work on on-demand streaming which roughly fall into two
categories: multicast-based techniques [12, 15, 9, 8] and media caching [20, 3, 23, 4].
MetaStream is closely related to several recent work on client-side media caching [5,
6, 14]. Also related to our work is overlay-based multicast and streaming [13, 18, 1,
17, 2, 19, 16, 11, 22]. Compared with these previous work, MetaStream focuses on the
problem of content discovery in peer-to-peer “caching and relaying”, and addresses the
server load, network cost, and client heterogeneity issues in a practical and efficient
framework.

Figure
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7 Conclusions

This paper presents the design and implementation of MetaStream, a scalable and dis-
tributed content discovery protocol for high bandwidth and low network cost media
streaming in a cooperative environment. Specifically, this paper makes the following
contributions:

– We presented the design and evaluation of MetaStream, which creates a media dis-
tribution network based on a topology-aware overlay and allows streaming clients
to achieve high bandwidth in caching-and-relaying on-demand media while incur-
ring low link cost to the underlying network;

– We conducted a large-scale evaluation of 1000 streaming clients running in an emu-
lated 5050-router network topology. The experiment results show that MetaStream
incurs low network link stress and low server load by effectively locating nearby
client-side streaming sources, and the streaming overlay is highly resilient to over-
lay membership changes and client failures.
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