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Abstract: Intrusion detection is one of the new frontiers in network security, but almost 
every implemented system is in trouble when it has to deal with new kind of 
attacks or when it has to give a real time response to predefined attacks. In this 
work, we assert that the way of improving intrusion detection is to consider the 
semantic aspects of the communication protocols. Furthermore, we analyze an 
intrusion detection model that tries to reach this goal putting together database 
logical design rules and new rules from Bayesian reasoning. In the final 
section, we sketch some application of the model and we show how to 
implement the model and how to face existing attacks using the model itself. 

1. INTRODUCTION 

Network Intrusion Detection is the process of identification of malicious 
behaviours that damage a network and its resources. Intrusion Detection 
systems are usually classified in misuse-based and anomaly-based. 

Solutions using misuse-based techniques contain a certain number of 
attack descriptions, called “signatures”. When these systems recognize a 
signature instance in the data flows audited, they judge it as an attack. The 
positive characteristic of the misuse-based systems is that they usually 
generate very few false alarms, the negative one is that they recognize only 
previously defined attacks (the “signatures”). 

The anomaly-based techniques follow a complementary approach: they 
are based on models or profiles that capture the “normal” behaviour of a 
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system. When something in the data flows is different from those models or 
profiles, they judge it as an attack. As known in literature, these systems are 
able to identify new attacks with unknown patterns, causing many false 
alarms. 

For these reasons, both misuse-base systems and anomaly-based systems 
are not so frequently used: the system manager and the security manager 
have to cooperate every time to classify anomalous network events 
distinguishing real attacks from not dangerous behaviours. It is therefore 
evident that anomaly-based techniques depend exclusively from the ability 
to define their underlying modeldprofiles. 

The challenge is to build a model that allows adding, within itself, rules 
and semantics that do not belong only to a static, predefined data set. 

In that sense, some intrusion detection systems provide a sort of semantic 
functionalities in the Protocol Anomaly Filters: these filters search for a bad 
use of a communication protocol, according to the standard protocol rules. 

An existing example of semantic based anomaly detection system is the 
human immune system. 

The goal of the immune system of an organism is to defend it against 
harmful diseases and infections. The immune system is virtually able to 
recognize any foreign cell or molecule and eliminating it from the body. To 
do this, the immune system performs an operation of pattern recognition, 
with the perspective to distinguish molecules and cells of the body (called 
“self ’) from foreign ones (called “nonself ’), potentially dangerous. The 
architecture of the immune system is multilayered, with defense systems 
provided in every one of the levels. The outmost layer, the skin, is the first 
barrier against infections. A second barrier is physiological: there are 
conditions such as pH and temperature that provide inappropriate living 
conditions for some foreign organisms (pathogens). Once pathogens have 
entered the body, they are handled with two types of approach: the innate 
immune system and the adaptive immune system. Examples of the first 
defense system are macrophages, that circulate in the organism and eat extra 
cellular molecules and foreign materials cleaning the body. Nevertheless, the 
most sophisticated system is the second one. It is called “adaptive” because 
it is responsible for immunity that is adaptively acquired during lifetime of 
the organism. Because the adaptive immune system provides the most 
potential from a computer security viewpoint, we will focus on it. The 
adaptive immune system can be viewed as a distributed detection system. It 
is constituted primarily of white blood cells, called lymphocytes. These 
small independent detectors circulate through the body in the blood and the 
lymph systems. They are negative detectors, because they act against foreign 
patterns, ignoring self patterns. Detection or recognition is caused by the 
affinity of the receptor that covers the surface of the lymphocyte and the 
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pathogens. Detection is approximate: hence, a lymphocyte will bind with 
several different kinds of (structurally related) pathogens. To recognize most 
different pathogens is required a huge diversity of lymphocyte receptors and 
a great number of them. This diversity is partly achieved by generating 
lymphocyte receptors through a genetic process that introduces a huge 
amount of randomness. Even if receptors are randomly generated, in the 
organism there are not enough lymphocytes to provide a complete coverage 
of the space of all pathogen patterns. One estimate is that there are lo8 
different lymphocyte receptors in the body at any given time, which must 
detect potentially 10A16 different foreign patterns. To address this problem, 
the immune system has several mechanisms that make it dynamic and 
specific. Protection is made dynamic by the continual circulation of 
lymphocytes through the body and by a continual turnover of the 
lymphocyte population. The life of lymphocytes is typically a few days: the 
random renovation process will replace them by new ones. Dynamic 
protection increases the coverage provided by the immune system over time: 
the longer a pathogen is present in the body, the more likely it will be 
detected because it will meet a greater diversity of lymphocytes. Protection 
is made more specific by mechanism of learning and by memory. If the 
immune system detects a pathogen that it has not encountered before, it 
undergoes a primary response, during which it “learns” the structure of the 
specific pathogen, i.e. it evolves a set of lymphocytes with high affinity for 
that pathogen, through a process called affinity maturation. Affinity 
maturation produces a large number of lymphocytes that have high affinity 
for a particular pathogen, which accelerates its detection and elimination. 
Speed of response is important in the immune system because most 
pathogens are replicating and will cause increasing damage as their numbers 
increase. Last remark, each individual in a population has his tribe of 
lymphocytes, specific for each individual and different from another 
individual. This diversity of immune systems across a population greatly 
enhances the survival of the population as a whole. 

Another reference that is similar to our approach could be the observation 
of a behaviour model. Let us suppose to observe a network security expert 
when he analyses outputs of some documentation system (router and firewall 
logs, sniffer output, . , .) with the goal to discover network anomalies. He has 
in his mind a rule system that comes from his experience and from his 
background knowledge. This system is updated continuously because the 
expert continuously observes the world around him. When a network pattern 
does not match with one of the rules of his system, the expert starts a more 
detailed observation activity around the non-matching event. 
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2. THE MODEL 

In the context of Protocol Anomaly Detection is often said that most 
attacks are violations of the rules that define a protocol. This statement must 
be understood in a general context: let recall the DOS (denial of service) 
attack, that is based on a rapid succession of TCP connect operations. A TCP 
connect operation, not followed by other TCP operations, it is not a wrong 
operation in the context of the TCP protocol: we can assert that it is an 
anomalous operation. Some times no other TCP operations follow a TCP 
connect because the other peer of the connection cannot complete his work 
session. In addition, well-known worms or backdoors are difficult to 
recognize as TCP protocol violations. 

An attack is a violation of an expected behaviour. This behaviour must be 
defined in a rule system. 

Starting from this definition, we will build our model. We want to refer 
to a more general context: the context of the relational model. The relational 
model allows us to design complex scenarios. Network attacks, when they 
are not only simple service negation, are made by complex phases that cross 
the communication protocol stack. Therefore, to design complex scenarios 
we use the tools of the relational model. This model has a drawback: it 
hasn’t tools to manage the semantic of the world we are representing, in 
particular, the semantic of the tuple to be inserted in the database. The 
logical design of databases and, in particular, the integrity constraint theory, 
could support us facing this limit. In this way we add the network rules to 
our model. However, this is not enough; the next step is to extend the 
classical concept of integrity constraint. To obtain this, we will use solutions 
deriving from Bayesian reasoning. 
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2.1 Bayesian reasoning 

In a nutshell, the Bayesian probability of an event x is a person’s degree 
of belief in that event (subjective approach). Whereas in classical approach 
probability is a physical property of the world (e.g. the probability that a coin 
will land heads) in the Bayesian approach probability is a property of the 
person who assigns it. Here we want to notate that the Bayesian approach 
doesn’t neglect the classical one. When assigning a probability to an event of 
flip of a coin, a person can take in account only physical properties of the 
context of the flip. The classical concept of probability can become the 
starting point for building a Bayesian probabilistic model. But in the model 
have to enter also other source of knowledge, such as prior knowledge and 
historical information. 
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If we have a dataset that we consider significant, by the Bayesian 
approach we can transform the problem of probability assignment in a 
learning problem starting from a dataset. To show this fact, consider an 
irregular coin or a coin we are not sure it is regular. If we throw the coin up 
in the air, the result can be head or tail. Suppose we repeat the trial N + 1 
times, making sure that the physical properties of the coin and the conditions 
under which it is thrown out remain stable over time. From the first N 
observations, we want to determine the probability of heads on the N-lh 
toss. In the classical analysis of this problem, we assert that there is some 
physical probability of heads, which is unknown. Probability does exist and 
it is defined by the physical conditions of the trial, but it is unknown. 
Therefore it is object of estimation using classical statistical inference 
procedures. We then use this estimate as our probability for heads on the 
N+lth toss. In the Bayesian approach, we also assert that there is some 
physical probability of heads, but we encode out uncertainty about this 
physical probability using (Bayesian) probabilities, and use the rules of 
probability to compute our probability of heads on the N+l th toss. 

We need some notation. We denote a variable by an upper-case letter (eg. 
X; Y;Xi; 0), and the current instance, or a state or a value of the 
corresponding variable by the same letter in lower case (e.g., x; y; xi; 0). We 
denote a set of variables by a bold-face upper-case letter (e.g. X;Y;Xi) and 
we use a corresponding bold-face lower-case letter (e.g., x; y; xi) to denote 
an assignment of state or value to each variable in a given set. We use p(X = 
x / 5) (or p(x/ 6) as a shorthand) to denote the probability of the event X = x 
for a person with a state of information 5. Other consideration, with the same 
formulas p(x / 6) we denote the density function of variable X and the mass 
or cumulative function F(X). Whether p(x / 5) refers to a probability, a 
probability density or a probability distribution will be clear from the 
con test. 

Let’s return to the irregular coin problem. Let 0 to be the variable whose 
values 8 correspond to the possible true value of the physical probability of 
the event heads. The probability 0 is a random variable and we express the 
uncertainty about O with the density function p(W 6). In addition, we use XI 
to denote the variable representing the outcome of the I-th toss, for I = 
1 ,........, N + 1, and D = {Xl=xl, ..... . XN = xN ) to denote the set of our 
observations. 

Thus, in Bayesian terms, the irregular coin problem reduces to computing 
p(xN+l/D, 6) from p(0/ 5). To do so, we first use Bayes theorem to obtain 
the probability distribution for 0 given D and background knowledge 5: 
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where 

p(D/ 8, 6)  is the convergence point between the classical approach and 
the Bayesian approach. For the conditions of the trials we have a binomial 
distribution: 

therefore first equation becomes 

where h and t are the number of heads and tails observed in D, 
respectively. p(8 / 6 ) is the prior probability and p(8 /D&) is the posterior 
probability, the effective object of dispute between classics and Bayesians. 
The quantities h and t are said to be sufficient statistics for binomial 
distribution. Finally, we average over the possible values of 0 (using the 
expansion rule of probability) to determine the probability that the N+lth 
toss of the coin will come up heads: 

where E means expectation or average, and p(8 / D,& ) is the weight 
element . 

To complete the exposure we have to spend some world about the prior 
probability p(0/ 6) .  In the Bayesian approach this is a predefined input. One 
possible way is to get a standard distribution with some known properties. 
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Another way is the complete building of the probability distribution by a 
predefined knowledge state. We will see that in our model prior probability 
distribution is a basic concept. Prior distribution is often ignored where can 
become the right tool to introduce rules in a intrusion detection system. 

Let's start to see how the above exposure enter in our model. In the field 
of logic design of a database there is the key declaration phase. A set of 
attribute is a key for a given entity set. We can try to review the key concept 
in the Bayesian approach. Generally speaking, for a given set of attributes X, 
parameter 8 that includes the fact that the given set is a key set for the 
database, is a Boolean variable. If X is really a key 8 = 1; in the other case 8 
= 0. In the Bayesian world 8 become 0; it is a random variable. An example: 
we take into consideration a teacher having an exam session. In the universe 
of persons, Name and Surname aren't a key attribute set. Supposing that in 
the same exam session arrive three persons with the same Name and 
Surname. This fact can become suspicious for the teacher. This last 
statement tells us that in the mind of the teacher {Name, Surname} could be 
a sort of key. 

2.2 Generalized integrity constraints 

2.2.1 Domain constraints 

Every attribute or set of attributes has to be linked with a domain of 
possible values. This is the most elementary form of integrity constraint. But 
it is very important in the field of network information systems. 

In the Bayesian world, in the space of admitted values for the domain we 
have to build a probability distribution. Almost every attack can be identified 
by some of its steps that are violation of one or more integrity constraints. 
We can think at backdoors, or various forms of worm viruses, or techniques 
that use man in the middle attacks to intermediate a communication. 

2.2.2 Functional dependencies 

It is easy to translate the concept of functional dependence in the 
direction of the concept of probabilistic dependence, and Bayesian inference 
methods supply all needed tools to express this new type of dependence. 

Some observations can be done about the DOS attack. We want to 
demonstrate that DOS attack does not agree with the following two 
constraints: IP-+TCP-CONNECTION and TCP-SEND+TCP-CO"EC. 
Consider the first functional dependence: in the TCP protocol the tuple 
(client ip, server ip, client service, server service) represents, at a given time, 
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a key tuple for the TCP connection. In a static Local Area Network there are 
not two connections having the same key tuple. We said that in our Bayesian 
world this tuple is a random variable @(client ip, server ip, client service, 
server service). Seen as an event, the fact of to be or not to be a key it is a 
trivial random variable, because it takes value “true” with probability 1. But 
we can study the random variable @(client ip) at a given time. In this way, 
we formalize the fact that in some DOS attacks there are many open 
connections starting from the same ip address. 

To better understand the second functional dependence violation, we will 
introduce the Bayesian concept of explaining away. Consider this simple 
probabilistic graph: 

C 

There are two causes A and B that compete to explain the effect C. Note 
that variables A and B are marginally independent but conditionally 
dependent. In terms of probabilities we have 

P(AA3.C) != P(A) 

This is known as Berkson paradox or explaining away. 
Let us return to the DOS attack. In the TCP protocol, we have the 

functional dependency SEND+TCP-CONNECT. A TCP send operation 
functionally implies a TCP connect operation. In other words, the send 
operation is one of the possible effects of the TCP connect operation. 
Following the Bayesian approach we can assert that in the HTTP protocol, 
the WEB clientherver protocol. TCP connect is the cause and TCP send is 
the effect. This means that, considering the explaining away concept, two 
TCP connect operations are independent a priori, but they become 
dependent a posteriori because a TCP send operation follows all TCP 
connect operations. In other words, a connect event is bound to the final 
result of the other previous TCP connection: a dialogue cannot continue if 
the present phases are not going ok. A large number of TCP connect without 
TCP send, in a clientherver protocol is a clear signal of network anomalies. 
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2.2.3 Generalized Functional dependencies 

In the field of logical db modeling, there are many types of constraints or 
dependencies (multi-valued dependencies, inclusion dependencies, . . .). In a 
more general context, we introduce the concept of generalized functional 
dependencies. The basic feature of all forms of constraint says: if there are 
some tuples in the instance, then there are also other tuples, or some 
components of these tuples have some features. Using first order logic we 
can assert that a constraint is a sentence of form: 

Clxl ... Oxn [cp(xl .... xn) -> Ozl  ... zk ~ ( y l  . . . y  m)] 

where {zl ... zk) = {yl ...y m)-(xl .... xn)  and where cp is a atoms 
conjunction, possibly empty. 

2.2.4 Probabilistic graphs 

All above showed constraints can be mapped in the Bayesian world by 
the concept of probabilistic graph or Bayesian network. 

A Bayesian network for a set of variables X = {XI,.. .. . . . . ..., Xn) consists 
of (1) a network structure S that encodes a set of conditional independence 
assertions about variables in X, and (2) a set P of local probability 
distributions associated with each variable. Together, these components 
define the joint probability distribution for X. The network structure S is a 
directed acyclic graph. The nodes in S are in one-to-one correspondence 
with the variables X. We use Xi to denote both the variable and its 
corresponding node, and Pai to denote the parents of node Xi in S as well as 
the variables corresponding to those parents. The lack of possible arcs in S 
encodes conditional independencies. In particular, given the structure S, the 
joint probability distribution for X is given by 

i- I 

The local probability distributions P are the distributions corresponding 
to the terms in the product of the above equation. Consequently, the pair (S; 
P) encodes the joint distribution p(x). 

In our context, we refer to a probabilistic graph as a GIC (generalized 
integrity constraint). 
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2.2.5 Tko layer, probabilistic model 

A probabilistic model can be introduced as: 

where R is an event space, a(Q) is an algebra in that space and m is a 
probabilistic measure in the algebra. With a mapping between a semantic 
model (the logical model) and the Bayesian definition of probability we have 
introduced a probabilistic model. Explicitly: 

M = ( [DS], [DAG over DS], m) 

DS = Database Schema 
DAG over DS = Direct Acyclic Graph over the database schema 
m = probabilistic measure over [DAG over DS]. 

We introduce another derived model: 

M’ = { [DAG over DS], R([DAG over DS]), m’ ) 

We have to explain in more details m and m’. For m construction we take 
in account Bayesian learning methods. For m’ construction we consider a 
concept borrow from information theory. 

2.2.6 Learning Probabilities in a Bayesian Network 

In literature there are many source about this problem. Here we want just 
recall them (see bibliography) and recall principles about the problem. 
Methodology in learning probabilities for a Bayesian network is that of 
refining a defined prior distribution with other source of information. For 
example data capturing with an advanced sniffer. 

We fix now two aspects, first one: the prior probability means rules. If a 
DAG represents a protocol or a work section, we know rules about it and we 
state that rules in the form of prior probabilities. 

Second aspect: in our world we have simple DAG. We have many simple 
DAG. An open problem in the classical approach to IDS is the complexity to 
learn one big abstract and only historic model. Many data, a big dataset but 
many difficulties to work with it. An opposite approach is to have many 
small rules an to try to match them progressively. 
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2.2.7 A model in DAG space 

The need of a model in DAG space and not only in event space, rises 
because we are building a dynamic model. To show this dynamism we need 
a correlation measure in DAG space. To do this we have to borrow some 
concepts from information theory. 

Definition 1 (Information Gap) Let P=(pl, ...., pk) and Q=(q1, .... ....q k) 
two probability distributions. Information delay between P and Q is defined 
as follows: 

D(Q/P) = C pi log(pi/qi) 

Conventionally we set O*log(O)=O. In particular: 

D(Q/P) = O  c+ P Q 

D(Q/P) = 00 c-) Ci  t.. qi = 0 

Definition 2 (Mutual Information) The information gap between the join 
probability distribution Pxy and the distribution PxPy is the mutual 
information between X and Y. 

I ( W )  = D(Pxy/PxPy) 

Mutual information can be viewed as a measure of conditional 
dependence between variables X and Y. So we have I (W)=O if Pxy = 
Px*Py. Mutual information is symmetric in variables exchange. In 
information theory two variables are dependent if they exchange 
information. This a dynamic view of variables correlation. 

Another important concept is the auto- mutual information, i.e. the 
mutual information of X and X. 

P(xi, xj) = 0 if I != j 

P(xi,xi) = xi 
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So we have: 

W X )  = C pij log(pij/pi pj) = - C pi log(pi). 

Auto mutual information is called Shannon entropy. 
Definition 3 (DAGs Mutual Information) The mutual information 

between two DAGs is the max mutual information between all couples of 
nodes one for DAG. 

So we define m’ as the DAG Mutual Information. We shall see that when 
we will explain model dynamic we will use DAGs Mutual Information 
concept and entropy concept. Return to immune systems. They have a 
mechanism to generate new lymphocytes in a normal situation (dynamism), 
and a mechanism to front an attack (specialization). The concept of entropy 
allows to generate random GIC; only those GIC with a small entropy will be 
considered valid, i. e. GIC that reflects the semantic of the model. The 
concept of DAGs Mutual Information introduces a metric in the space of 
DAGs, so when an event doesn’t correspond to a gived DAG, the system 
will analyze near DAGs. 

3. APPLICATIONS 

3.1 Sniffers 

We must have an proper environment allowing to start with design. The 
input database and its structure defines what we could build over it and 
subsequently, what type of surveys we could do. The great advantage of our 
approach is that we developed our analysis starting from a robust platform 
that is database designing tool. But this is true if there exists a tool allowing 
to write in the designed DBMS. Common sniffer or common log files can’t 
develop this job. Lab Nestor developed an environment to do this. The tool 
is not only a sniffer but a protocol recognizer and rebuilder so that it can be 
used to insert directly output data in the planned database. 

3.2 IDS system organization 

The designed IDS is a global filter in Database insert query. An insert 
query starts with a network event. Before the insert step can start IDS verify 
all its constraints. There are two other aspects to focus. First, there is a 
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parallel task that refresh continually the constraints set. It builds new 
constraint proposal, validates it with the current set of constraint (coherence 
check) and the current historical data and, if the validation step is ok, puts it 
in the constraints set. It review old constraints to validate their cumnt 
validity. Second, if the system locates a constraint violation, it starts a new 
task of generation of adjacent constraints and check with data object of 
violation. Concepts introduced in the below section define how all this 
operations can be achieved. 

3.3 IDS configuration steps 

The crucial step in the configuration phase is the constraints definition. 
There is a set of constraint that depends on the rules of the networks. In this 
case we refer to classical constraints. For the other part of the constraints we 
can consider three step: protocols analysis, work sessions analysis and 
applications analysis. We remember that we have to state rules; habits are an 
output of the model. So the rule is: “usually there is a DNS request and after 
an HTTP request”. The model learns that the host name of DNS answer and 
host called in HlTP request are the same. Then, this type of event sequences 
are regular, other different types of sequences are to be validated. 

3.4 Attacks 

Every attack is a violation of a constraint, but a crucial point is that we 
have to consider where the violation is located. Many attacks have a first 
step concerning substitution of an host with another one. We are thinking at 
many types of TCP protocol violations, at Mitnick attack, at idle scanning, at 
some types of man in the middle attacks. In all this cases violation is located 
in the client network. If IDS is located in server network to protect final 
services locations, then we note nothing. If an intruder extorts a password 
from the PC of a regular user, floods this PC and manages TCP connection 
in its PC, there are many violations but they all are client side. From the 
Server side is all regular. Security is a complex task and an organization 
task. IDS has to be a part of a system. 

Here we can state that we built our IDS on a robust platform and this is 
important. There are many studies in functional dependencies and 
implication problem that define environment where a set of constraints is 
complete and close. In our world we can state exactly what we are looking, 
and what we aren’t. 
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4. CONCLUSIONS 

The main goal of this paper is to explain how to add semantic in the field 
of IDS and how this is a crucial step in the perspective of adding learning in 
IDS. The approach we follow has many differences from the standard one. 

We start from an existing and robust model, that is conceptual and logic 
database design. All development in this field can potentially be translated in 
the IDS field. Future works could analyze the implication problem and the 
goal to define a model sound and complete. An IDS can't continue to be 
thought as an oracle that, given a network event, output an answer. Every 
IDS has to be characterized with its limits and properties. 

Prior knowledge strongly enters in the firsts phase of designing. This is 
true because we have a concept of constraint simple, so every prior 
information it is easily introduced in our model. 

The output of the designing phase is a set of simple constraints, a set that 
is refreshed during the life of IDS. 

Another important feature of our proposal is in its dynamism facing a 
constraint violation. Rarely an attack is something of punctual and when it is 
punctual cannot be really dangerous. A final attack is a process and the true 
goal of an IDS is to understand it. Introducing a metric in the network space 
is a step in this direction. We formalized a new concept of network as 
interconnected system. This is the base to do complete intrusion detection. 
Only in this direction we can avoid the problem of false alarms. 
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