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23Abstract Lipid droplets have a unique structure among organelles consisting of a
24dense hydrophobic core of neutral lipids surrounded by a single layer of phospho-
25lipids decorated with various proteins. Often labeled merely as passive fat storage
26repositories, they in fact have a remarkably dynamic life cycle. Being formed within
27the endoplasmic reticulum membrane, lipid droplets rapidly grow, shrink, traverse
28the cytosol, and engage in contacts with other organelles to exchange proteins and
29lipids. Their lipid and protein composition changes dynamically in response to
30cellular states and nutrient availability. Remarkably, their biogenesis is induced
31when cells experience various forms of nutrient, energy, and redox imbalances,
32including lipid excess and complete nutrient deprivation. Cancer cells are continu-
33ously exposed to nutrient and oxygen fluctuations and have the capacity to switch
34between alternative nutrient acquisition and metabolic pathways in order to strive
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35 even during severe stress. Their supply of lipids is ensured by a series of nutrient
36 uptake and scavenging mechanisms, upregulation of de novo lipid synthesis,
37 repurposing of their structural lipids via enzymatic remodeling, or lipid recycling
38 through autophagy. Importantly, most of these pathways of lipid acquisition con-
39 verge at lipid droplets, which combine different lipid fluxes and control their usage
40 based on specific cellular needs. It is thus not surprising that lipid droplet breakdown
41 is an elaborately regulated process that occurs via a complex interplay of neutral
42 lipases and autophagic degradation. Cancer cells employ lipid droplets to ensure
43 energy production and redox balance, modulate autophagy, drive membrane syn-
44 thesis, and control its composition, thereby minimizing stress and fostering tumor
45 progression. As regulators of (poly)unsaturated fatty acid trafficking, lipid droplets
46 are also emerging as modulators of lipid peroxidation and sensitivity to ferroptosis.
47 Clearly, dysregulated lipid droplet turnover may also be detrimental to cancer cells,
48 which should provide potential therapeutic opportunities in the future. In this review,
49 we explore how lipid droplets consolidate lipid acquisition and trafficking pathways
50 in order to match lipid supply with the requirements for cancer cell survival, growth,
51 and metastasis.

52 Keywords Autophagy · Cancer · Fatty acid · Ferroptosis · Lipid droplets ·
53 Metabolism · Stress

54 1 Introduction

55 The recently revived interest in cancer metabolism has resulted in the recognition of
56 metabolic reprogramming as one of the major cancer hallmarks (Hanahan and
57 Weinberg 2011). Moving forward from glucose and the classical Warburg effect,
58 recent discoveries have shown that the metabolism of amino acids and lipids is also
59 critical for tumorigenesis (Pavlova and Thompson 2016; Röhrig and Schulze 2016;
60 Ward and Thompson 2012). Additionally, we are now aware that different tumors,
61 and even cells within an individual tumor, display specific metabolic characteristics
62 but also a remarkable metabolic plasticity that enables their adaptation to adverse
63 conditions and drives their malignant potential (Hanahan and Weinberg 2011).
64 However, even genetically distinct cancer types encounter similar stress conditions
65 in the tumor microenvironment and may thus have common metabolic vulnerabil-
66 ities that present unique therapeutic opportunities (Martinez-Outschoorn et al. 2017).
67 In our quest for new cancer treatments, it is therefore imperative to discover the
68 context-specific responses of cancer cells to nutrient and oxidative fluctuations and
69 thereby expose their metabolic weaknesses.
70 The roles of lipids in cancer extend well beyond their typically ascribed roles in
71 membrane biogenesis and energy production (Beloribi-Djefaflia et al. 2016; Röhrig
72 and Schulze 2016). In fact, even these seemingly simple roles, as membrane building
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73blocks and energy-rich substrates, are far from being understood at the molecular
74and functional level. Moreover, we are only beginning to understand the distinct
75functions of individual species within the enormous variety of lipids and the
76intricacies of their collective effects in cell metabolism and signaling. The roles of
77individual lipids are intrinsically tied to the cooperative nature of lipid assemblies,
78whose function depends on their specific lipid composition and its dynamic changes
79at particular subcellular locations. Lipid droplets are emerging as novel regulators of
80many of these processes. These unique and remarkably dynamic organelles respond
81to nutrient fluctuations and various microenvironmental stress conditions to control
82the trafficking, storage, and use of lipids for a variety of purposes in the cell (Farese
83and Walther 2009; Jarc and Petan 2020; Koizume and Miyagi 2016; Krahmer et al.
842013; Olzmann and Carvalho 2019; Petan et al. 2018). They are readily available
85sources of fatty acids (FAs), sterols, and vitamins that are rapidly released on
86demand and under specific conditions. These lipids and their metabolites participate
87in and regulate multiple metabolic and signaling pathways within the cell and in the
88extracellular space, thereby affecting major cancer hallmarks, including cell growth,
89proliferation, metabolism, migration, inflammation, and immunity (Attané and
90Muller 2020; den Brok et al. 2018; Cruz et al. 2020; Currie et al. 2013; Koizume
91and Miyagi 2016; Petan et al. 2018; Tirinato et al. 2017). Moreover, lipid droplets
92also participate in the cellular trafficking and quality control of proteins, thereby
93affecting protein turnover, gene transcription, nuclear function, and various homeo-
94static and stress responses. Lipid droplets even manage the secretion of proteins that
95act as danger signals and activate immune cell responses and inflammatory pathways
96(Veglia et al. 2017; Jarc and Petan 2020). These fat-laden organelles also affect drug
97efficacy by altering the cellular distribution and activation of lipophilic anti-cancer
98agents (Dubey et al. 2020; Englinger et al. 2020).
99Alterations in lipid droplet metabolism are emerging as important parts of cancer
100metabolic reprogramming. Their biogenesis and breakdown may either help cancer
101cells in their constant fight against stress or promote their demise. In this review, we
102focus on the mechanisms that govern lipid droplet function in response to nutrient
103and oxygen imbalances. We explore how these highly dynamic organelles consol-
104idate lipid uptake, synthesis, recycling, distribution, and breakdown in order to
105match these entangled lipid fluxes with the requirements for cancer cell survival,
106growth, and metastasis.

1072 Lipid Droplets Are Dynamic Organelles

1082.1 Lipid Droplets Are Versatile Ensembles of Lipids
109and Proteins

110Lipid droplets have a unique structure among organelles with a hydrophobic core
111consisting of neutral lipids surrounded by a single layer of phospholipids decorated
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112 with various proteins (Henne et al. 2018; Olzmann and Carvalho 2019; Walther et al.
113 2017). Their neutral lipid core stores lipids primarily in their esterified, storage form,
114 e.g., FAs as triacylglycerols (TAGs), cholesterol and other sterols in the form of
115 sterol esters, retinoic acids as retinyl esters, and ceramides esterified into acyl
116 ceramides (Jarc and Petan 2020; Molenaar et al. 2017; Senkal et al. 2017; Thiam
117 and Beller 2017). Lipid droplets from different cells and tissues may display
118 significant differences in the relative proportions of these major lipid species, often
119 reflecting tissue-specific functions and storage requirements. By regulating the
120 storage and release of these various lipids, lipid droplets have a direct impact on
121 their involvement in processes essential for cell survival, growth, and proliferation,
122 including energy production, membrane and organelle biogenesis, cell signaling,
123 and gene transcription.
124 The lipid droplet proteome in mammalian cells contains approximately 150 pro-
125 teins and includes proteins involved in lipid metabolism and signaling, redox
126 metabolism, autophagy, gene transcription, ubiquitination, membrane trafficking,
127 and immunity (Bersuker and Olzmann 2017; Bersuker et al. 2018). Many among
128 these lipid droplet-associated proteins have unknown functions, whereas some have
129 known roles in processes as yet unrelated to lipids or lipid droplets. In most cases,
130 the functional importance of their lipid droplet localization is unknown. Further-
131 more, in some instances, the sequestration of proteins to the lipid droplet surface is a
132 mechanism of control of their involvement in processes occurring at other cellular
133 locations. For example, lipid droplets sequester histones, transcription factors (e.g.,
134 NFAT5), and chaperones (e.g., Hsc70 and calreticulin), thereby affecting gene
135 transcription, protein quality control, and immune cell function (Cotte et al. 2018;
136 Gallardo-Montejano et al. 2016; Johnson et al. 2018; Ueno et al. 2013; Veglia et al.
137 2017; Welte and Gould 2017).
138 Importantly, the lipid and protein composition of lipid droplets, as well as their
139 size, number, localization, and mobility in the cell, change rapidly in response to
140 cellular states and nutrient availability (Bosch et al. 2020; Herms et al. 2013, 2015;
141 Thiam and Beller 2017). For example, a surge of FAs leads to a rapid activation of
142 TAG synthesis and lipid droplet biogenesis in most cells. This process occurs with a
143 remarkable efficiency within seconds to minutes following FA exposure, whereby
144 the latter may be incorporated into both pre-existing lipid droplets and/or into newly
145 emerging ones (Kassan et al. 2013; Kuerschner et al. 2008). On the contrary, FA and
146 glucose depletion leads to rapid mobilization and redistribution of lipid droplets in
147 the cell, thereby increasing their contacts with the mitochondrial network to couple
148 lipolytic FA release from stored TAGs with mitochondrial FA intake and energy
149 production (Herms et al. 2015; Rambold et al. 2015). However, paradoxically,
150 mitochondria–lipid droplet contacts may also drive TAG synthesis and lipid droplet
151 expansion (Benador et al. 2019). As discussed in this review, the highly dynamic
152 nature of lipid droplet metabolism and its interactions with other organelles endows
153 cells with multiple layers of flexibility, which is often exploited by cancer cells for
154 protection against various stresses.
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1552.2 Lipid Droplet Biogenesis Occurs at the Crossroads
156of Membrane and Neutral Lipid Metabolism

157The life cycle of the lipid droplet is tightly linked to its mother organelle, the
158endoplasmic reticulum (ER). TAG synthesis is a prerequisite for de novo lipid
159droplet formation and occurs between the two leaflets of the ER membrane by
160sequential addition of FAs to a glycerol backbone, catalyzed by a series of
161acyltransferase enzymes (Coleman and Mashek 2011). Importantly, the first several
162steps of the process are common to both phospholipid and TAG synthesis, enabling
163the cell to rapidly switch between phospholipid and neutral lipid production. This is
164essential for many aspects of the cellular stress response because it allows, for
165example, a shift from cell growth and proliferation during nutrient abundance,
166when the needs for membrane biogenesis are high, to quiescence during starvation,
167when lipids are syphoned into storage for later use (Bosch et al. 2020; Henne et al.
1682018; Natter and Kohlwein 2013). The dephosphorylation of phosphatidic acid into
169diacylglycerol (DAG) by phosphatidate phosphatases, also called lipins (Zhang and
170Reue 2017), is the branching-off point between these two pathways and is immedi-
171ately followed by the last step in TAG biosynthesis: the conversion of DAG into
172TAG catalyzed by diacylglycerol acyltransferases (DGATs). Cholesteryl ester syn-
173thesis also occurs within the ER membrane and is mediated by acyl-coenzyme A:
174cholesterol acyltransferase (ACAT) enzymes (Chang et al. 2009).
175The newly synthesized neutral lipids accumulate in growing lipid “lenses” within
176the bilayer, eventually giving rise to nascent lipid droplets that bud from the ER
177membrane and are released into the cytosol (Salo and Ikonen 2019). The budding
178process is guided by proteins recruited to the nascent droplet, such as the ER
179membrane protein seipin that is essential for stabilization and growth of the droplet,
180and requires a particular rearrangement of membrane lipids that drives membrane
181bending and asymmetrical budding into the cytosol (Chorlay et al. 2019; Henne et al.
1822018; Olzmann and Carvalho 2019; Thiam and Beller 2017). Several pathways of
183phospholipid synthesis and remodeling may contribute to these lipid rearrangements
184and enable membrane expansion to provide sufficient cover for the growing lipid
185droplet (Bosch et al. 2020; Penno et al. 2012). Remarkably, some components of the
186lipid droplet biogenesis machinery required for phospholipid and neutral lipid
187synthesis are transferred to the nascent lipid droplet and enable its growth indepen-
188dently of the ER (Krahmer et al. 2011; Wilfling et al. 2013). However, lipid droplets
189may also grow by fusion, and they form transient contacts with the ER, mitochon-
190dria, and other organelles, via protein tethers and membrane bridges, thereby
191allowing bidirectional lipid and protein transfer (Barbosa and Siniossoglou 2017;
192Bohnert 2020; Schuldiner and Bohnert 2017).
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193 2.3 Lipid Droplet Breakdown Occurs via Lipolysis or
194 Lipophagy

195 When cells are exposed to nutrient imbalances that lead to a deficit in lipids, lipid
196 droplet breakdown is activated to provide lipids for essential processes (Bosch et al.
197 2020). At the organismal level, lipid droplet breakdown in adipocytes is hormonally
198 regulated and provides FAs for mitochondrial energy production in non-adipose
199 tissue during fasting and exercise (Haemmerle et al. 2011; Young and Zechner 2013;
200 Zimmermann et al. 2004). However, lipid droplets in most tissues also undergo a
201 dynamic cycle of biogenesis and breakdown in response to hormonal signals and
202 nutrient cues from the environment (Bosch et al. 2020; Jarc and Petan 2019).
203 Intriguingly, upon entry into target cells and tissues, adipose-derived FAs are
204 incorporated into lipid droplets, which become the major platforms that regulate
205 their subsequent use and distribution in the cell (Bosch et al. 2020; Zechner et al.
206 2012). For example, in the heart, liver, and most other tissues, lipid droplets provide
207 FAs that not only drive mitochondrial energy production, but act as signals that
208 activate transcriptional networks, such as the those mediated by the peroxisome
209 proliferator-activated receptors (PPARs), that are necessary for proper coupling of
210 FA supply with mitochondrial biogenesis, function, and oxidative capacity in the
211 cell (Haemmerle et al. 2011).
212 Lipid droplet breakdown occurs via two major mechanisms: lipolysis and
213 lipophagy (Currie et al. 2013; Petan et al. 2018; Schulze et al. 2017; Young and
214 Zechner 2013; Zechner et al. 2017). Lipolysis is mediated by cytosolic (neutral)
215 lipases that enable a highly regulated release of FAs from TAGs. Adipose triglyc-
216 eride lipase (ATGL) is the major TAG lipase in most mammalian cells and catalyzes
217 the first step in TAG lipolysis (Schreiber et al. 2019; Smirnova et al. 2005;
218 Zimmermann et al. 2004), which is followed by the sequential action of hormone-
219 sensitive lipase (HSL) and monoacylglycerol lipase (MAGL) (Grabner et al. 2017).
220 In certain conditions, lipid droplet breakdown also occurs by lipophagy, a form of
221 selective (macro)autophagy that delivers parts of or whole lipid droplets to lyso-
222 somes for bulk degradation by hydrolytic enzymes, such as the TAG and cholesteryl
223 ester hydrolase lysosomal acid lipase (LAL) (Schulze et al. 2017; Singh et al. 2009;
224 Zechner et al. 2017).
225 In principle, while lipolysis generally leads to lipid droplet shrinkage, lipophagy
226 provides a means of complete breakdown of all lipids and proteins within the droplet
227 into basic building blocks, suggesting that each mechanism may serve a distinct
228 purpose in the cell (Ogasawara et al. 2020; Petan et al. 2018; Schulze et al. 2017;
229 Zechner et al. 2017). Lipolysis and lipophagy are regulated by common and com-
230 plementary signaling pathways, and cells seem to preferentially use one or the other
231 depending on cell type, nutrient status, and current requirements, although concur-
232 rent or sequential occurrence is also possible. Indeed, these two mechanisms of lipid
233 droplet breakdown display a considerable crosstalk, whereby the activation of
234 lipolysis may stimulate autophagy/lipophagy, but autophagy may also be activated
235 in a compensatory manner upon inhibition of lipolysis (Goeritzer et al. 2015;
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236Ogasawara et al. 2020; Peng et al. 2016). In addition, chaperone-mediated
237autophagy may facilitate lipolysis by removing the lipid droplet-coating proteins
238perilipins 2 and 3 (Kaushik and Cuervo 2015). The main drivers and functions of this
239intricate interplay of lipid droplet breakdown mechanisms in various cell types and
240microenvironmental contexts are only beginning to be uncovered (Ogasawara et al.
2412020).

2423 Lipid Droplets Are at the Core of Cancer Metabolic
243Reprogramming

2443.1 Cancer Cells Use Ingenious Ways of Lipid Acquisition
245That Converge at the Lipid Droplet

246Some of the earliest studies implicating lipids in cancer have shown that aggressive
247cancers display elevated rates of de novo FA synthesis, revealing that tumors may
248satisfy their requirements for lipids independently of uptake from the circulation
249(Menendez and Lupu 2007; Röhrig and Schulze 2016). Ever since, numerous studies
250have also suggested the involvement of other branches of FA, cholesterol, phospho-
251lipid, and neutral lipid metabolism in neoplastic transformation, disease progression,
252and drug resistance (Carracedo et al. 2013; Currie et al. 2013; Hernández-Corbacho
253and Obeid 2018; Menendez and Lupu 2007; Petan et al. 2018; Snaebjornsson et al.
2542019). Although the first inhibitors of FA synthesis have entered clinical develop-
255ment only recently, some intrinsic drawbacks of targeting this pathway have already
256been revealed (Röhrig and Schulze 2016).
257Namely, cancer cells that have access to lipids from the circulation are resistant to
258inhibition of FA synthesis, since they may increase lipid uptake to compensate for
259the lack of endogenous lipogenesis (Martinez-Outschoorn et al. 2017; Röhrig and
260Schulze 2016; Snaebjornsson et al. 2019). Inhibitors of lipogenesis are also ineffec-
261tive in cancer cells exposed to hypoxia and nutrient deprivation, because lipogenesis
262is already blocked under these conditions and cells switch to lipid acquisition from
263their immediate microenvironment (Ackerman and Simon 2014; Petan et al. 2018).
264Remarkably, cancer cells engage in opportunistic modes of extracellular nutrient
265acquisition to satisfy their needs for lipids, amino acids, and carbohydrates by
266scavenging exosomes, extracellular matrix proteins, and albumin and even engulfing
267necrotic cell debris and entire living cells (Commisso et al. 2013; Finicle et al. 2018;
268Jayashankar and Edinger 2020; Kamphorst et al. 2013; Kim et al. 2018;
269Michalopoulou et al. 2016).
270Cancer cells also enter in symbiotic relationships with neighboring cells, includ-
271ing tumor-associated adipocytes, whereby lipid droplet lipolysis in adipocytes pro-
272vides FAs for energy production in cancer cells (Attané and Muller 2020; Hoy et al.
2732017; Nieman et al. 2010; Wang et al. 2017). Furthermore, recent studies have
274shown that even when extracellular sources of lipids are exhausted, stressed cells
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275 may have access to additional endogenous lipid pools. These include lipids that can
276 be recommissioned from their own structural and storage pools via several possible
277 routes, including membrane phospholipid hydrolysis (e.g., by phospholipases A2),
278 autophagic degradation of organelles, and the breakdown of neutral lipids stored
279 within cytosolic lipid droplets (Ackerman et al. 2018; Jarc et al. 2018; Lue et al.
280 2017; Nguyen et al. 2017; Petan et al. 2018; Pucer et al. 2013; Rambold et al. 2015).
281 Intriguingly, most if not all of these pathways of lipid acquisition converge at the
282 lipid droplet (Fig. 1). Lipid droplets are perfectly positioned within the metabolic
283 scheme of the cell to control both the acquisition of lipids (from the various internal
284 or external sources mentioned above) and their utilization for various purposes and
285 depending on specific cellular needs. Although lipid droplets are often regarded
286 merely as transient repositories for the trafficking lipids on route to their final
287 destination – and certainly there will be cases when this is true – the syphoning of
288 various lipid fluxes into lipid droplets is in fact required for numerous homeostatic
289 cell functions and, in particular, for the cellular stress response. One of the earliest
290 and most notable examples was reported in cardiomyocytes (Haemmerle et al.
291 2011). Namely, while extracellular FAs may enter the cell in various ways and
292 bind to different proteins in the cytosol, including nuclear transcription factors, they
293 must first be incorporated into TAGs within lipid droplets and then released by
294 lipolysis in order to bind to and activate PPAR-mediated gene transcription that

Fig. 1 Lipid droplets integrate lipid uptake and usage pathways in cancer cells. Based on the
context and current conditions, cancer cells may use several lipid acquisition pathways, which all
converge at the lipid droplet. Lipid droplets act as buffers that consolidate the various lipid fluxes
and finely tune their release and distribution in the cell to drive essential processes that control
cancer cell fate

60 T. Petan



295drives mitochondrial biogenesis and oxidative metabolism in these cells. This
296seemingly futile cycle of FA esterification and lipolytic release reveals one of the
297hallmark principles of lipid droplet biology, whereby the organelle acts as a focal
298point that coordinates lipid flux with metabolic and signaling pathways essential for
299cell function and resistance to stress (Fig. 1) (Jarc and Petan 2020; Khan et al. 2015;
300Mottillo et al. 2012; Ong et al. 2011; Zechner et al. 2012).
301Similarly, cancer cells exposed to extracellular FAs form lipid droplets that in
302turn regulate mitochondrial redox metabolism to increase NADPH production and
303protect cancer cells from hypoxic damage (Bensaad et al. 2014). Lipid droplets are
304also formed in breast and ovarian cancer cells exposed to lipids derived from
305neighboring adipocytes and provide a consistent supply of FAs that drives FA
306oxidation, sustains metabolic reprogramming, and promotes tumor aggressiveness
307(Nieman et al. 2010; Wang et al. 2017). Moreover, lipid droplet biogenesis is also
308activated when exogenous lipids are limiting but endogenous lipids are present in
309excess, such as following autophagic breakdown of membranous organelles, in order
310to finely tune their uptake by mitochondria, thereby preventing mitochondrial
311damage and ensuring efficient energy production (Herms et al. 2015; Nguyen
312et al. 2017; Rambold et al. 2015). In this review, we discuss these and related studies
313that describe the various essential roles of lipid droplets in the response of cancer
314cells to stress and their ability to regulate downstream lipid fluxes depending on
315cellular requirements.

3163.2 Lipid Droplets and Nutrient Scavenging

317To ensure their survival and promote growth in a nutrient-poor environment, cancer
318cells use multiple nutrient scavenging strategies to obtain various macromolecules
319and break them down to their basic constituents in the lysosome, thereby ensuring
320the supply of energy substrates and anabolic building blocks (Finicle et al. 2018).
321Some cancer cell types, in particular those driven by oncogenic mutations in the
322mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)
323pathways (Commisso et al. 2013; Jayashankar and Edinger 2020; Kamphorst et al.
3242013; Kim et al. 2018; Palm et al. 2015), use macropinocytosis, a non-selective
325endocytotic uptake mechanism of different material, including extracellular fluid,
326proteins, vesicles, and cellular debris (Finicle et al. 2018; Jayashankar and Edinger
3272020; Kim et al. 2018). Macropinocytosis is supported by activation of
328AMP-activated protein kinase (AMPK) and inhibition of mammalian target of
329rapamycin (mTOR) pathways; it promotes cancer cell proliferation and confers
330resistance to therapies that target cancer anabolism.
331Remarkably, macropinocytosis enables the extraction of amino acids, nucleo-
332tides, and FAs even from dying cell corpses, a process termed necrocytosis
333(Jayashankar and Edinger 2020; Kim et al. 2018). Necrocytosis has been shown to
334help amino acid-deprived prostate cancer cells maintain lipid droplet levels, but it
335remained unknown if extracellular lipids are de facto scavenged from cell debris
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336 (Kim et al. 2018). Indeed, some of the other types of acquired nutrients could
337 provide energy and building blocks for essential cellular processes, thereby sparing
338 existing lipid droplets. It was shown recently by tracing experiments that necrotic
339 debris-derived FAs are indeed incorporated into breast cancer cells, thereby reducing
340 their dependence on de novo FA synthesis and rendering them insensitive to
341 inhibitors of FA synthase (Fig. 2a) (Jayashankar and Edinger 2020). These studies
342 hint at the possibility that lipid droplets act as transient buffers for lipids taken up via
343 macropinocytosis. It will be interesting to see in future studies whether FA release
344 from lipid droplets is responsible for the observed reduced dependence on FA
345 synthesis. Given their similar role in cells exposed to FA surges from lysosomal
346 breakdown via autophagy (Nguyen et al. 2017; Rambold et al. 2015), it is possible
347 that lipid droplets serve as central lipid buffering and distribution hubs that carefully
348 balance lipid input with the requirements of these “voracious,” macropinocytic
349 cancer cells.

350 3.3 Lipid Droplets Maintain Membrane Unsaturation During
351 Stress

352 Rapidly proliferating cancer cells rely on several oncogenic signal transduction
353 pathways that activate mTOR signaling to maintain high levels of protein and lipid
354 synthesis, which are prerequisites for cell growth and proliferation (Liu and Sabatini
355 2020). The mTOR pathway is activated in response to amino acid availability and
356 drives cell growth by stimulating numerous anabolic pathways, including protein
357 translation and nucleotide synthesis. It also promotes FA, cholesterol, and
358 glycerolipid synthesis via the sterol regulatory element-binding protein (SREBP)
359 transcription factors (Yecies and Manning 2011). This strong anabolic drive requires
360 a coordination between nutrient availability, metabolic pathways, and the various
361 oncogene-driven mitogenic signals. The survival of cancer cells is thus
362 compromised when biosynthetic pathways, such as lipid and protein production,
363 are not synchronized.
364 For example, in cancer cells exposed to limited oxygen availability, the conver-
365 sion of palmitate, the principal product of de novo FA synthesis, into unsaturated
366 FAs is compromised due to inactivation of the oxygen-dependent lipid desaturase
367 stearoyl-coenzyme A desaturase 1 (SCD1) (Fig. 2b) (Kamphorst et al. 2013; Scaglia
368 et al. 2009). Under these conditions, constitutive mTOR activity causes an imbal-
369 ance between the elevated protein synthesis and the lagging membrane expansion,
370 which ultimately leads to ER stress and cell death (Young et al. 2013). Conse-
371 quently, these cells become dependent on the uptake of unsaturated FAs from
372 extracellular sources in order to compensate for the diminished desaturase activity
373 and restore the balance between protein and lipid synthesis (Ackerman and Simon
374 2014; Young et al. 2013). Even in normoxic conditions, elevated Ras oncogene
375 signaling, which imposes a potent growth impetus to cancer cells by activating the
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Fig. 2 Lipid droplets, lipid fluxes, and cancer cell fate. (a) Macropinocytosis of extracellular
material, including necrotic cell debris and extracellular vesicles (EVs), provides amino acids,
nucleotides, and lipids for cancer cell survival and resistance to drugs that target anabolic pathways,
including inhibitors of FA synthesis; the macropinocytosis-derived FAs are incorporated into lipid
droplets, whose role in mediating the effects of FAs is not yet clear. (b) Lipid droplets are important
repositories of unsaturated FAs that are used by cancer cells to maintain proper membrane
saturation and prevent endoplasmic reticulum (ER) stress, particularly when demands for lipids
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376 MAPK pathway and mTOR complex 1 (mTORC1) signaling, drives the uptake of
377 serum lysophospholipids as sources of unsaturated FAs to reduce the dependence of
378 cancer cells on SCD1 activity (Kamphorst et al. 2013). Intriguingly, upregulated
379 lysophospholipid uptake in cancer cells with Ras oncogenic mutations leads to
380 increased lipid droplet storage (Fig. 2b) (Qiao et al. 2020). The latter is in turn
381 coupled to elevated FA oxidation and improved redox metabolism that promotes
382 tumor aggressiveness in vitro and in vivo, indicating that lipid droplets might
383 mediate the effects of exogenous lysophospholipids in aggressive Ras-driven
384 tumors.
385 Clearly, the provision of unsaturated FAs is critical for cancer cell survival
386 and growth. There is accumulating evidence that lipid droplets are important sources
387 and regulators of unsaturated FA trafficking. Indeed, recent studies in kidney cancer
388 have found that lipid droplets play an important role in the maintenance of mem-
389 brane unsaturation levels during hypoxia (Ackerman et al. 2018; Qiu et al. 2015).
390 Constitutive hypoxia-inducible factor (HIF) signaling and abundant lipid storage
391 are hallmarks of clear-cell renal cell carcinoma (ccRCC). It was found that

Fig. 2 (continued) are elevated, such as during Ras oncogene- and mTOR signaling-driven rapid
cell growth, or when the synthesis of unsaturated lipids is compromised, e.g., due to hypoxia-
induced inhibition of stearoyl-CoA desaturase-1 (SCD-1); during hypoxic stress, lipid droplets also
drive mitochondrial oxidative metabolism to provide energy and reducing equivalents that reduce
oxidative stress. (c) During nutrient replete conditions, when mTOR is active, lipid uptake and de
novo FA synthesis drive both membrane synthesis and lipid droplet biogenesis; when lipids become
limiting, lipid droplets support membrane synthesis, thereby sustaining cell growth and prolifera-
tion. Upon nutrient depletion, cells experience a fall in energy levels, leading to AMPK activation,
which in turn blocks de novo lipogenesis and stimulates rapid lipid droplet dispersion to mitochon-
drial contact sites; AMPK also promotes the lipolytic release and transfer of FAs into mitochondria
for oxidation, thereby restoring energy levels and the redox balance through ATP and NADPH
production. (d) Distinct populations of mitochondria and lipid droplets may engage in opposing
purposes in the same cell: mitochondria, tightly anchored to lipid droplets, provide citrate, ATP, and
NADPH to support FA and TAG synthesis driving lipid droplet formation, whereas “free,”
cytosolic mitochondria dynamically interact with lipid droplets to take up and oxidize FAs. (e) In
the tumor microenvironment, cancer cells take up FAs and EVs released by neighboring adipocytes
and store them in lipid droplets, whose breakdown via (1) lipophagy or (2, 3) lipolysis drives
mitochondrial energy production, thereby promoting tumor growth and invasion. Under these lipid-
rich conditions, AMPK supports lipolysis, lipophagy, and mitochondrial FA oxidation, which may
be (3) coupled to or (2) uncoupled from ATP production via uncoupling protein 2 (UCP2); this
uncoupling is instigated by the influx of lipid droplet-derived fatty acids and drives a feedback
circuit that sustains AMPK activation. (f) In cells exposed to amino acid starvation or to inhibitors
targeting the PI3K/Akt/mTOR pathway, mTORC1 is inhibited leading to activation of autophagy,
which breaks down membranous organelles to release FAs that trigger lipid droplet biogenesis;
rapid lipid droplet biogenesis protects mitochondria from excess FAs; lipid droplets provide an
efficient way to gradually deliver FAs via ATGL-mediated lipolysis into fused mitochondria and
enable cell survival during starvation; the process is supported by AMPK, which sustains
autophagic flux and oxidative metabolism; the hypoxia-inducible lipid droplet-associated protein
(HILPDA), an endogenous inhibitor of ATGL, is upregulated in response to autophagy-driven lipid
droplet biogenesis, and it may participate in the fine regulation of lipolysis to prevent oxidative
stress and lipotoxicity
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392HIF2α-dependent lipid droplet accumulation protects ccRCC cells from ER stress,
393thereby promoting cell proliferation and xenograft tumor growth (Qiu et al. 2015).
394Intriguingly, even in cells depleted of HIF2α, overexpression of the lipid droplet-
395coating protein PLIN2 is sufficient to restore lipid storage and protect from ER
396stress, which occurs at least in part due to mTOR-driven protein synthesis. Further-
397more, it was found recently that lipid droplets formed in nutrient-replete ccRCC cells
398are rich in serum-derived unsaturated FAs and are gradually broken down when cells
399are exposed to low serum and oxygen stress (Ackerman et al. 2018). This delayed
400lipolytic release of unsaturated FAs is dependent on HSL activity and is responsible
401for replacing saturated acyl chains in cell membranes and prevention of ER stress
402(Fig. 2b). Concurrently, lipid droplets reduce the dependence on de novo FA
403synthesis, revealing that targeting lipid droplet biogenesis, e.g., via inhibition of
404DGATs, may be a more relevant therapeutic target than FA synthesis in ccRCC
405(Ackerman et al. 2018).
406The dependence of cancer cells on the supply of unsaturated FAs from lipid
407droplets for long-term maintenance of membrane homeostasis and protection against
408ER stress is very likely not limited to kidney cancer. In rapidly proliferating yeast
409cells, lipid droplet turnover is essential for providing a balanced supply of saturated
410and unsaturated FAs for membrane synthesis (Natter and Kohlwein 2013;
411Petschnigg et al. 2009; Zanghellini et al. 2008), hinting at a conserved, essential
412function of lipid droplets across the eukaryotic kingdom. Lipid droplets are unique in
413their ability to consolidate different FA fluxes and regulate their input into phospho-
414lipid synthesis and remodeling pathways that are necessary for membrane homeo-
415stasis. Collectively, these studies suggest that lipid droplets are important
416repositories of unsaturated FAs that may be utilized by cancer cells to maintain
417membrane and organelle function particularly when demands for lipids are elevated,
418such as during oncogene-driven rapid cell growth, or when the synthesis of unsat-
419urated lipids is compromised, e.g., due to hypoxia.

4203.4 Lipid Droplets Match Nutrient Fluctuations with Cell
421Growth and Survival

422Lipid droplet biogenesis and turnover are dynamically altered in response to changes
423in nutrient and energy status. Recent studies have significantly increased our under-
424standing of the integration of lipid droplet turnover in the general cellular response to
425nutrient imbalances (Bosch et al. 2020), but new evidence is also emerging regarding
426their roles in the context of metabolic reprogramming in cancer. Cancer cells often
427have constitutively activated pathways of nutrient sensing and uptake and display
428oncogene-driven, growth factor-independent signaling that stimulates cell growth
429and survival irrespective of nutrient levels. AMPK and mTOR are two major
430intracellular kinases that reciprocally regulate adaptive cellular responses to nutrient
431stress and cell growth. They sense metabolite availability, energy and stress levels
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432 and integrate these signals with those coming from growth factor and oncogene-
433 driven pathways (González et al. 2020; Liu and Sabatini 2020; Palm and Thompson
434 2017). AMPK detects glucose and energy levels and responds to starvation by
435 inhibiting anabolic pathways and cell growth and activating catabolic pathways to
436 restore the energy balance. AMPK blocks de novo FA, cholesterol, and TAG
437 synthesis; it activates lipolysis and FA oxidation and engages gene transcription
438 programs responsible for mitochondrial biogenesis and oxidative metabolism
439 (Hardie et al. 2012; Muoio et al. 1999; Wendel et al. 2009; Zechner et al. 2017).
440 The amino acid-sensitive complex mTORC1 is positively regulated by the PI3K/Akt
441 and MAPK pathways to promote cell growth and survival and is inactivated when
442 amino acids are limiting. Because AMPK negatively regulates mTORC1, energy or
443 glucose depletion also inhibits mTORC1 activity; however, amino acid deficiencies
444 do not activate AMPK. Both kinases are often dysregulated in cancer, thereby
445 allowing cancer cells to evade metabolic checkpoints and strive even in nutrient-
446 limiting conditions. Emerging studies are beginning to reveal how lipid droplets
447 respond to nutrient and energy fluctuations and how they are integrated in the
448 sensing and regulatory networks that orchestrate the metabolic rewiring of stressed
449 cancer cells.

450 3.4.1 Lipid Droplets Are Rapidly Mobilizable Energy Sources During
451 Stress

452 Many of the hallmark changes in lipid metabolism in cancer cells are shared by
453 rapidly proliferating, fermenting yeast cells (Natter and Kohlwein 2013). Both types
454 of cells depend on lipogenic pathways for cell growth and viability. The synthesis of
455 FAs and their incorporation into complex lipids, most notably phospholipids, drives
456 membrane expansion, which is required for cell growth, cell cycle progression, and
457 cell division. In yeast, TAG lipolysis has been linked with the cell cycle and provides
458 FAs for membrane synthesis (Kurat et al. 2009; Zanghellini et al. 2008). Upon
459 glucose depletion, the Snf1 protein kinase (the yeast orthologue of AMPK) is
460 activated to engage a switch from glucose fermentation to FA oxidation as a primary
461 source of energy. Intriguingly, this is accompanied by a shift from phospholipid to
462 TAG synthesis resulting in elevated lipid droplet biogenesis (Bosch et al. 2020;
463 Henne et al. 2018). This conserved mechanism of preservation of lipids that is
464 activated at the onset of starvation prepares the cell for the possibility of prolonged
465 periods of nutrient deficiency. Indeed, in starving yeast cells, lipid droplets are
466 gradually consumed by microautophagy, a form of lipophagy involving the vacuole,
467 and become essential for long-term survival (Seo et al. 2017).
468 Proliferating mammalian and cancer cells with access to nutrients mostly rely on
469 glucose fermentation for energy production and use mitochondria as a biosynthetic
470 organelle. Mitochondria provide building blocks and reducing equivalents for ana-
471 bolic reactions, including FA synthesis, thereby ensuring a consistent supply of FAs
472 for membrane biogenesis (Natter and Kohlwein 2013; Ward and Thompson 2012).
473 In such nutrient- and lipid-rich conditions, mammalian cells also synthesize TAGs
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474and accumulate lipid droplets (Fig. 2c) (Herms et al. 2015). When extracellular lipids
475become limiting, lipid droplet-derived FAs may be used for phospholipid synthesis
476and drive cell proliferation (Herms et al. 2015). When both glucose and lipids are
477scarce, mammalian cells shut off phospholipid synthesis and turn on mitochondrial
478oxidative metabolism. Lipid droplet-derived FAs are then syphoned into mitochon-
479dria for oxidation and energy production. The decrease in energy levels is detected
480by AMPK, which not only activates FA oxidation and mitochondrial oxidative
481metabolism but also directly stimulates the rapid redistribution of lipid droplets
482along the microtubular network, thereby driving their recruitment to mitochondria
483and optimizing FA delivery (Herms et al. 2015; Zhu et al. 2019). AMPK activation
484and associated starvation responses, such as autophagy, mTORC1 inhibition, and
485protein kinase A (PKA) activation, also promote mitochondrial fusion, which is
486necessary for efficient FA intake and uniform distribution within the network of
487tubulated mitochondria (Gomes et al. 2011; Rambold and Pearce 2018; Rambold
488et al. 2015). Lipid droplets thus provide a rapidly mobilizable form of energy sub-
489strates for cell survival following a sudden glucose depletion and energy deficiency.

4903.4.2 Cancer Cells Depend on the Long-Term Supply of Lipid
491Droplet-Derived Lipids

492Cancer cells may be exposed to relatively long periods of nutrient deficiency due to
493insufficient vasculature and rapid tumor growth (Wellen and Thompson 2010). Their
494nutrient and oxygen supply may also be severely compromised following matrix
495detachment, migration, and invasion into neighboring tissue. Cancer cells having
496accumulated lipid droplets during nutrient (and oxygen) sufficiency rely on the long-
497term supply of lipid droplet-derived lipids not only to survive the immediate stress
498but also to migrate and resume growth at a new location (Clement et al. 2020; Wang
499et al. 2017). Indeed, lipid droplets, accumulated in nutrient-rich conditions, enable a
500prolonged protection from starvation by undergoing gradual lipid droplet breakdown
501(Jarc et al. 2018; Przybytkowski et al. 2007; Pucer et al. 2013). Aggressive breast
502cancer cells harboring Ras oncogenic mutations increase their lipid droplet storage
503upon exposure to even minute amounts of monounsaturated or polyunsaturated FAs
504when grown in nutrient replete conditions. When these cells are switched to lipid-
505and serum-free starvation medium, but still rich in glucose and amino acids, lipid
506droplets undergo gradual breakdown over several days in culture resulting in an
507increased resistance to cell death (Jarc et al. 2018; Przybytkowski et al. 2007; Pucer
508et al. 2013). In comparison with control cells without initial lipid loading, these cells
509also activate AMPK, decrease their dependence on de novo lipogenesis, and
510upregulate FA oxidation (Brglez et al. 2014; Jarc et al. 2018; Pucer et al. 2013). In
511fact, preloading aggressive breast cancer cells with lipid droplets suppresses the
512strong surge in lipogenic signaling that occurs at the onset of lipid and serum
513starvation. The activation of lipogenesis is driven by the major lipid sensor and
514transcription factor sterol regulatory element-binding protein-1c (SREBP-1c) and its
515target genes involved in FA and cholesterol synthesis, including FA synthase

Lipid Droplets in Cancer 67



516 (FASN), acetyl-coenzyme A carboxylase (ACC), SCD1, and 3-hydroxy-3-
517 methylglutaryl-CoA reductase (HMGCR) (Jarc et al. 2018; Pucer et al. 2013). The
518 biosynthesis of FAs and other lipids consumes large amounts of ATP and reducing
519 power in the form of NADPH (Natter and Kohlwein 2013). Therefore, the break-
520 down of pre-accumulated lipid droplets at the onset of starvation spares important
521 cellular resources by reducing the need for de novo lipogenesis. The starving cancer
522 cell may thus redirect the saved energy and redox equivalents to other essential
523 processes that protect against starvation.
524 In addition, the concurrent increase in the levels of FA oxidation enzymes,
525 including carnitine palmitoyltransferase 1A (CPT1A), whose inhibition is lethal to
526 serum-starved breast cancer cells, suggests that the pre-accumulated lipid droplets
527 provide a long-term supply of FAs for mitochondrial oxidation to support cell
528 survival (Pucer et al. 2013). Indeed, a combined depletion of the major TAG lipase
529 ATGL and pharmacological targeting of CPT1A abolished the protective effects of
530 lipid droplets in breast cancer cells (Jarc et al. 2018). Moreover, the observed
531 activation of AMPK and the ability of its activator AICAR to protect breast cancer
532 cells from starvation-induced cell death (Pucer et al. 2013) are in line with the fact
533 that AMPK supports cancer cell survival by stimulating FA oxidation, blocking
534 lipogenesis, and driving both ATP and NADPH production (Buzzai et al. 2005;
535 Carracedo et al. 2013; Jeon et al. 2012; Pike et al. 2011). Such changes in the
536 metabolic landscape involving AMPK, mitochondria, and the lipid droplet may
537 render cancer cells particularly well-equipped to handle prolonged periods of nutri-
538 ent limitation. Collectively, these studies suggest that lipid droplets support
539 Ras-driven cancer cell survival in lipid-limiting conditions by (1) reducing the
540 need for energy-depleting de novo lipogenesis and (2) driving mitochondrial oxida-
541 tive metabolism that replenishes cellular energy and redox capacity.

542 3.4.3 Devouring and Creating Fat: Metabolic Flexibility Driving
543 Tumorigenesis

544 Recent studies suggest that the interactions between mitochondria and lipid droplets,
545 besides optimizing FA transfer and rates of FA oxidation (Herms et al. 2015;
546 Rambold et al. 2015), in fact enable the formation of complex metabolic and
547 signaling “synapses.” These are endowed with sophisticated feedback mechanisms
548 that finely tune both lipid droplet and mitochondrial metabolism (Benador et al.
549 2019; Bohnert 2020; Bosch et al. 2020; Freyre et al. 2019; Jarc and Petan 2019). In
550 fact, lipid droplet-mitochondria contacts may also reflect an essential role of mito-
551 chondria in the synthesis of TAG and lipid droplet biogenesis. Benador et al. have
552 recently discovered that brown adipose tissue cells contain two segregated and
553 functionally distinct subpopulations of mitochondria (Fig. 2d): peridroplet mito-
554 chondria, which are anchored to lipid droplets and are primarily involved in provid-
555 ing ATP and NADPH to support FA and TAG synthesis driving lipid droplet
556 formation, and “free,” cytosolic mitochondria that primarily take up and oxidize
557 FAs (Benador et al. 2018, 2019). Furthermore, in white adipocytes, a tripartite lipid
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558droplet–mitochondria–ER interaction couples FA synthesis from glycolytic
559precursors processed in the citric acid cycle with their esterification into TAGs
560within the ER membrane and TAG storage in the growing lipid droplet (Freyre
561et al. 2019). Thus, overturning the classical biochemical dogma of the exclusively
562unidirectional mode of FA metabolism, cells may simultaneously engage in antag-
563onistic biochemical processes, such as FA oxidation and synthesis, or lipid droplet
564expansion and breakdown, using distinct subpopulations of mitochondria and lipid
565droplets. Emerging studies hint at the possibility that such organelle and metabolic
566flexibility is also used by cancer cells to trigger and sustain metabolic
567reprogramming. Indeed, cancer cells grown in various nutrient- and lipid-rich
568conditions increase FA uptake and activate lipid droplet biogenesis in parallel with
569catabolic lipid droplet consumption and FA oxidation that drives cancer cell sur-
570vival, growth, and metastasis (Clement et al. 2020; Lazar et al. 2016; Nieman et al.
5712010; Pucer et al. 2013; Wang et al. 2017).
572In the tumor microenvironment, cancer cells may “trick” neighboring adipocytes
573into releasing FAs from their large TAG stores, which are then taken up and used by
574cancer cells to form lipid droplets (Fig. 2e) (Attané and Muller 2020; Balaban et al.
5752017; Clement et al. 2020; Nieman et al. 2010; Wang et al. 2017; Wen et al. 2017).
576These lipid droplets are broken down via lipolysis or lipophagy, thereby syphoning
577the adipocyte-derived FAs into mitochondria to be used for energy production and
578likely other purposes. Remarkably, in melanoma cells exposed to adipocyte-derived
579extracellular vesicles, mitochondria, lipid droplets, and lysosomes are redistributed
580and proximally located in cell protrusions to promote cancer cell migration via
581lipophagic lipid droplet breakdown and FA oxidation (Clement et al. 2020). Intrigu-
582ingly, although typically sensing nutrient depletion, AMPK is activated in cancer
583cells co-cultured with adipocytes, most likely to promote and regulate the tight
584cooperation between lipid droplet consumption and FA oxidation, which may be
585coupled to or uncoupled from ATP production (Nieman et al. 2010; Wang et al.
5862017; Wen et al. 2017; Zechner et al. 2017). Furthermore, upregulated ATGL-
587mediated lipid droplet lipolysis in breast cancer cells may lead to uncoupling of
588FA oxidation resulting in a drop in ATP levels and sustained AMPK activation,
589which promotes further FA uptake and mitochondrial biogenesis (Wang et al. 2017).
590Another possibility that may explain the activation of AMPK in such lipid-rich
591conditions is a decrease in energy levels as a consequence of elevated FA/TAG
592cycling, whereby the influx of exogenous FAs stimulates a cycle of FA esterification
593into TAG and lipolysis at the expense of ATP (Prentki and Madiraju 2008;
594Przybytkowski et al. 2007). Namely, free FAs require ATP-dependent activation
595into FA-CoA by long-chain acyl-CoA synthetase (ACSL) enzymes before entering
596TAG synthesis or being transported into mitochondria following lipolysis (Cooper
597et al. 2015). In line with this, the ACSL inhibitor triacsin C suppresses both
598FA-induced lipid droplet biogenesis and AMPK activation in breast cancer cells
599during growth in nutrient-rich conditions (Pucer et al. 2013). Moreover, because
600inhibition of CPT1A with low concentrations of etomoxir (Raud et al. 2018) also
601reduces both AMPK activation and lipid droplet accumulation, it may be speculated
602that the exogenous FA supply stimulates FA oxidation that provides ATP and
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603 NADPH to support the anabolic branch of FA/TAG cycling (Pucer et al. 2013). The
604 elevated FA/TAG cycling may lead to ATP deficiency that promotes AMPK acti-
605 vation, which in turn further stimulates mitochondrial FA oxidation. AMPK may be
606 required under these conditions to reduce unnecessary de novo lipogenesis, suppress
607 excessive lipid droplet accumulation, activate lipolysis, and increase the mitochon-
608 drial capacity of the cell by stimulating gene expression programs responsible for
609 mitochondrial biogenesis and oxidative metabolism.
610 Whether different subpopulations of mitochondria and lipid droplets enable these
611 antagonistic processes in individual cancer cells remains to be confirmed. Moreover,
612 the intracellular heterogeneity in mitochondrial and lipid droplet function is likely
613 also influenced and combined with intercellular lipid trafficking and population
614 dynamics, whereby individual cells preferentially specialize their lipid droplet func-
615 tion to serve specific roles, e.g., protect from bulk lipid influx or engage in
616 anabolic vs. catabolic lipid metabolism (Herms et al. 2013; Thiam and Beller 2017).

617 3.5 When the Going Gets Tough, Lipid Droplets Team Up
618 with Autophagy

619 When cells are exposed to prolonged nutrient deficiency, and in particular when
620 amino acids become limiting, autophagy is typically strongly activated (Bosch et al.
621 2020; Galluzzi et al. 2017; Kroemer et al. 2010; Nguyen et al. 2017; Ogasawara et al.
622 2020; Rambold et al. 2015). Lipid droplets and autophagy engage in a complex
623 relationship, which is currently poorly understood: (1) lipid droplets may be the
624 target of autophagic degradation (Schulze et al. 2017), (2) they may be formed as a
625 consequence of autophagic breakdown of other lipid-containing organelles (Lue
626 et al. 2017; Nguyen et al. 2017; Rambold et al. 2015; VandeKopple et al. 2019),
627 and (3) they may support the formation of autophagosomes by providing lipids
628 (Bekbulat et al. 2019; Dupont et al. 2014; Shpilka et al. 2015) or supporting
629 signaling that stimulates the expression of autophagy genes (Ogasawara et al.
630 2020; Petan et al. 2018; Zechner et al. 2017). Emerging studies suggest that changes
631 in lipid droplet turnover are a conserved cellular response to high autophagic flux,
632 occurring across the eukaryotic kingdom and playing various beneficial roles in
633 cellular homeostatic and stress responses (Jaishy and Abel 2016; Petan et al. 2018;
634 Wang 2016). The opposite is also true, since lipid overload and exogenous unsatu-
635 rated FAs stimulate autophagy (Niso-Santano et al. 2015). Indeed, cells preloaded
636 with (unsaturated) FA-induced lipid droplets display higher autophagic flux during
637 starvation (Dupont et al. 2014). In accordance with this entangled relationship, it is
638 not surprising that both lipid droplet turnover and autophagy are often simulta-
639 neously or sequentially activated by various kinds of stress.
640 In mouse embryonic fibroblasts (MEFs) exposed to acute amino acid starvation,
641 mTORC1 is inactivated leading to the activation of autophagy, which in turn triggers
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642lipid droplet biogenesis (Fig. 2f) (Nguyen et al. 2017; Rambold et al. 2015). Lipids
643derived from membranous organelles are delivered into lysosomes by autophagy and
644broken down by acid phospholipases and lipases. The FAs released from lysosomes
645are rapidly esterified by DGAT1 into TAGs and stored in growing lipid droplets.
646Immediate lipid droplet biogenesis is required to avoid the accumulation of
647autophagy-derived free FAs that could overwhelm the mitochondrial FA transfer
648mechanism leading to piling up of toxic acylcarnitines at the mitochondrial “gates.”
649Furthermore, the newly formed lipid droplets provide an efficient way to gradually
650deliver FAs into the network of fused mitochondria during the ongoing starvation.
651Indeed, under these conditions, free FAs are released from lipid droplets primarily by
652ATGL-mediated lipolysis, but not lipophagy (Rambold et al. 2015). Notably, ATGL
653may not only provide FAs but also stimulate signaling pathways that both activate
654mitochondrial oxidative metabolism and regulate autophagy/lipophagy (Zechner
655et al. 2017). Interestingly, rather than in the initiation of autophagy, AMPK seems
656to be involved in sustaining autophagic flux and oxidative metabolism during the
657starvation (Nguyen et al. 2017).
658Surely, the fine regulation of lipolysis and its coordination with autophagy will be
659of critical importance for cell survival in starved cells. Indeed, the hypoxia-inducible
660lipid droplet-associated protein (HILPDA), an endogenous inhibitor of ATGL (Das
661et al. 2018), is upregulated in MEFs and in cancer cells during acute starvation
662(VandeKopple et al. 2019). Interestingly, HILPDA is activated in direct response to
663autophagy-driven lipid droplet biogenesis, thereby suppressing ATGL-mediated
664lipolysis. In accordance, ablation of HILPDA reduces lipid droplet accumulation
665and xenograft tumor growth in vivo, possibly by elevating oxidative stress, lipid
666peroxidation, and apoptosis due to excessive lipolysis (VandeKopple et al. 2019;
667Zhang et al. 2017). Although additional confirmation is clearly required, these
668results suggest that autophagy-driven lipid droplet turnover and the fine-tuning of
669lipolysis by HILPDA promote tumorigenesis.
670While physiological levels of autophagy generally play a tumor suppressor role
671by preventing cell damage, maintaining cellular fitness, and restoring homeostasis,
672cancer cells may also subvert the autophagic machinery to enhance their resistance to
673stress. Lipid droplets and autophagy may play a complementary role in both
674contexts. For example, nutrient deficiency within cancer cells may be induced
675indirectly by exposing cells to drugs targeting major nutrient sensing and growth
676pathways, such as the PI3K/Akt/mTOR pathway (Lue et al. 2017). Intriguingly,
677although tumor growth is restricted by these drugs, cancer cells may circumvent
678therapeutic inhibition by activating autophagy. Importantly, this cancer treatment-
679induced autophagy stimulates lipid droplet biogenesis to sustain mitochondrial
680energy production and redox homeostasis, thereby reducing cancer cell death
681(Fig. 2f) (Lue et al. 2017). Intriguingly, the supply of FAs for lipid droplet biogenesis
682and oxidative metabolism is dependent on an unidentified member of the phospho-
683lipase A2 family of enzymes, which release free FAs and lysophospholipids from
684membrane phospholipids (Lambeau and Gelb 2008; Murakami and Lambeau 2013;
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685 Murakami et al. 2011). Several phospholipases A2 have been implicated in lipid
686 droplet metabolism and cancer cell survival (Cabodevilla et al. 2013; Guijas et al.
687 2014; Jarc et al. 2018; Pucer et al. 2013), but it is not clear how they cooperate with
688 autophagy to stimulate lipid droplet and mitochondrial metabolism (Petan et al.
689 2018). The mechanisms and relevance of autophagy-driven lipid droplet turnover for
690 tumor growth remain to be established.
691 Several in vitro studies have shown that lipophagy is typically activated under
692 milder, albeit prolonged, starvation conditions than those activating bulk autophagy
693 (Rambold et al. 2015; Wang 2016). For example, in contrast to amino acid-starved
694 MEFs, autophagy-driven lipid droplet biogenesis does not occur in serum-starved
695 MEFs, most likely because mTORC1 is not inhibited under these conditions, but
696 instead lipophagy contributes to lipid droplet breakdown (Nguyen et al. 2017;
697 Rambold et al. 2015). The activation of AMPK may drive lipophagy under such
698 conditions, because it can bypass mTORC1 and activate lipophagy through direct
699 activation of ULK1 even in nutrient-rich conditions (Kim et al. 2011; Li et al. 2019;
700 Zechner et al. 2017). Moreover, AMPK phosphorylates PLIN2 and primes it for
701 chaperone-mediated autophagy, which is an additional mechanism of AMPK-
702 mediated regulation of both lipophagy and lipolysis (Kaushik and Cuervo 2016).
703 AMPK also indirectly activates the deacetylase sirtuin 1 (SIRT1) and its target
704 transcription factors peroxisome proliferator-activated receptor γ co-activator 1α
705 (PGC1α) and forkhead box protein O (FOXO), which regulate both neutral and
706 acid lipolysis (Zechner et al. 2017).
707 A role for AMPK-driven lipophagy has been suggested in promoting cancer cell
708 growth in the context of metabolic symbiosis between adipocytes and cancer cells
709 (Wen et al. 2017). Adipocyte-derived FAs were found to stimulate AMPK-
710 dependent lipophagy and mitochondrial energy production, which were required
711 for the survival of neighboring cancer cells during starvation. On the contrary, in
712 prostate cancer cells, the activation of lipophagy may occur in response to SIRT1-
713 mediated acetylation of LAMP1 and lead to proliferative senescence, likely as a
714 consequence of elevated oxidative stress (Panda et al. 2019). Accordingly, excessive
715 lipophagy leads to an overflow of free FAs causing mitochondrial damage, ER
716 stress, and cancer cell death in cervical cancer cells (Mukhopadhyay et al. 2017).
717 Lipophagy has also been associated with reduced ccRCC tumor growth and
718 increased patient survival (Xu et al. 2015). In line with these studies suggesting a
719 tumor suppressor role for lipophagy, recent evidence has shown that LAL suppresses
720 inflammation and metastasis in liver and lung cancer (Du et al. 2015; Zhao et al.
721 2016). With these mostly preliminary studies, we are only beginning to understand
722 the role of lipophagy in cancer, which seems to play a dual, context-dependent role
723 (Kounakis et al. 2019; Maan et al. 2018; Petan et al. 2018). In accordance with the
724 opposing roles of neutral lipolysis in cancer, the role of lipophagy likely depends on
725 the specific metabolic and oncogenic reprogramming of the cancer type in question
726 and the microenvironmental conditions (Petan et al. 2018).
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7273.6 Lipid Droplets, Lipid Peroxidation, and Ferroptosis
728in Cancer

729One of the primary functions of lipid droplets in most biological systems and
730conditions is the protection from various forms of lipotoxicity (Listenberger et al.
7312003; Schaffer 2003). Lipid droplets have also recently been implicated in the
732regulation of the cellular distribution of unsaturated and polyunsaturated FAs
733(PUFAs) (Ackerman et al. 2018; Bailey et al. 2015; Jarc et al. 2018; Petan et al.
7342018), which is essential for the maintenance of proper membrane saturation and
735redox balance. In fact, lipid droplets seem to act as antioxidant organelles by actively
736regulating the trafficking of PUFAs in order to prevent oxidative stress and cell
737death. Lipid droplets also regulate the release of PUFAs for their conversion by
738cyclooxygenases and lipoxygenases into a whole range of oxygenated mediators of
739inflammation in immune cells, adipocytes, and in cancer cells (Jarc and Petan 2020).
740The recent discovery of ferroptosis (Dixon et al. 2012), a type of programmed cell
741death driven by the oxidation of PUFAs in membrane phospholipids, has pinpointed
742the importance of lipid peroxidation for cellular well-being and protection from
743stress. Lipid droplets, being implicated in the regulation of PUFA lipotoxicity and
744trafficking, are thereby emerging as imminent regulators of ferroptotic sensitivity.
745Ferroptosis is a form of programmed cell death that depends on the accumulation
746of lethal levels of oxidized lipids in cell membranes (Fig. 3) (Dixon and Stockwell
7472019). Cells possess at least two major antioxidant mechanisms that act in parallel to
748protect from ferroptotic cell death: (1) the glutathione peroxidase 4 (GPX4) pathway
749and (2) the ubiquinol (coenzyme Q10) antioxidant system, which depends on the
750activity of ferroptosis-suppressor-protein 1 (FSP1; previously called AIFM2)
751(Bersuker et al. 2019; Doll et al. 2019). Currently, it is not clear whether any final
752executioner proteins of ferroptosis exist, since the process essentially depends on the
753propagation of lipid peroxidation chain reactions and the ultimate failure of protec-
754tive antioxidant mechanisms, progressively leading to irreparable membrane and
755organelle dysfunction. Importantly, induction of ferroptosis by inhibition of GPX4
756and/or FSP1 is effective at killing multiple types of cancers in vitro and in vivo
757(Badgley et al. 2020; Bersuker et al. 2019; Doll et al. 2019; Hangauer et al. 2017;
758Tousignant et al. 2020; Viswanathan et al. 2017; Zhang et al. 2019; Zou et al. 2019).
759Thus, the stimulation of ferroptosis in tumors may offer new opportunities for
760effective cancer treatment. However, certain types of cancer cells are resistant to
761known ferroptotic inducers suggesting that additional modulators of ferroptotic
762sensitivity exist.
763Emerging studies point to a crosstalk between ferroptosis and lipid droplets.
764Diffuse large B cell lymphoma cancer cells treated with imidazole ketone erastin
765(IKE), which blocks cystine uptake and promotes ferroptosis by depleting glutathi-
766one, display a decrease in the levels of PUFA-containing phospholipids and TAGs,
767possibly as a consequence of a cell protective mechanism that removes oxidized
768PUFAs from these lipids (Zhang et al. 2019). The decrease in TAGs could be a
769consequence of elevated lipolysis, since IKE treatments led to a significant
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770 upregulation of ATGL expression, along with enzymes involved in de novo FA
771 synthesis, phospholipid remodeling, and several lipoxygenases. This may indicate
772 that PUFAs are first released from lipid droplets by ATGL and then incorporated in
773 membrane phospholipids, thereby contributing to the lethal membrane lipid perox-
774 idation caused by IKE (Fig. 4). In line with this idea, treatments with the lipophilic
775 antioxidant ferrostatin prevented IKE toxicity and increased TAG accumulation in
776 the cells. This is also in accordance with our studies in breast cancer cells showing
777 that depletion of ATGL suppresses PUFA-induced oxidative stress and rescues cells
778 from PUFA lipotoxicity, whereas lipid droplet biogenesis protects against PUFA
779 lipotoxicity (Jarc et al. 2018). These findings suggest that in some cancer cells, lipid
780 droplet breakdown via lipolysis may promote ferroptotic cell death.
781 Recent findings provide more support for the idea that lipid droplet breakdown
782 regulates ferroptosis sensitivity. Several types of therapy-resistant cancer cells have
783 been shown to be particularly sensitive to ferroptosis (Tousignant et al. 2020;
784 Viswanathan et al. 2017). Namely, drug-resistant prostate cancer cells undergo an
785 extensive metabolic reprogramming characterized by increased lipid uptake that
786 drives lipid droplet accumulation and phospholipid remodeling. The latter results

Fig. 3 Ferroptosis is a consequence of lethal membrane lipid peroxidation. Polyunsaturated fatty
acids (PUFAs), mostly residing in membrane phospholipids, are particularly susceptible to oxida-
tion by reactive oxygen species (ROS), non-enzymatic Fe2+-mediated reactions, and lipoxygenase
(LOX)-mediated peroxidation. The propagation of lipid peroxidation chain reactions along with a
failure of antioxidant mechanisms leads to irreparable cell damage and cell death. Cells possess two
complementary mechanisms of protection against ferroptosis. The first depends on cystine import,
which is necessary for glutathione (GSH) synthesis, the main redox buffer in the cell, that is in turn
required for the activity of glutathione peroxidase 4 (GPX4). GPX4 converts toxic PUFA peroxides
into harmless lipid alcohols. The second mechanism depends on the activity of ferroptosis-
suppressor-protein 1 (FSP1), which is necessary for the NAD(P)H-dependent regeneration of
ubiquinol (coenzyme Q10), the major lipophilic antioxidant in cell membranes. Blocking cystine
import by erastin or inhibition of GPX4 activity by RSL-3 results in a failure of the GPX4
antioxidant system, accumulation of lipid peroxides, and ferroptotic cell death
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787in elevated membrane PUFA content, thereby increasing lipid peroxidation and
788dependence on GPX4 activity (Tousignant et al. 2020). Counterintuitively, a deple-
789tion of TAGs and CEs was also observed, indicating the possibility that lipid droplet-
790derived lipids are consumed for phospholipid synthesis and thus mediate ferroptosis
791sensitivity. The study suggests that some other lipid species, such as acylceramides,
792concurrently drive the formation of a separate population of lipid droplets (Senkal
793et al. 2017; Tousignant et al. 2020). Interestingly, lipid droplets have also been
794suggested to sensitize breast cancer cells to ferroptosis via ATGL-mediated lipolysis
795in a cell density-dependent manner (Panzilius et al. 2018). Moreover, lipid droplet
796breakdown via lipophagy has recently been shown to promote GPX4 inhibition-
797induced ferroptotic cell death in hepatocytes (Bai et al. 2019). Finally, ferroptosis
798has been identified as a specific vulnerability of clear-cell carcinomas, whereby
799HILPDA, albeit acting in an ATGL-independent manner, mediates a HIF-2-
800α-dependent enrichment of PUFAs into TAGs and phospholipids (Zou et al.
8012019). Collectively, these findings suggest that PUFA-TAGs stored within lipid
802droplets are drivers of ferroptotic sensitivity, most likely by providing PUFAs for
803phospholipid membrane synthesis (Fig. 4). Moreover, since TAGs stored within
804lipid droplets may also be oxidized, it is possible that lipid droplets themselves are
805sites of lipid peroxidation that promote ferroptosis if peroxidized lipids are not
806efficiently removed (Ramakrishnan et al. 2014; Veglia et al. 2017). In line with

Fig. 4 Potential crosstalk between lipid droplets and ferroptosis. Lipid droplets may modulate
ferroptosis by regulating polyunsaturated fatty acid (PUFA) trafficking. (a) Lipid droplet formation
via DGAT-mediated triglyceride (TAG) synthesis may act as a sink for phospholipid-derived
PUFAs, thus preventing their peroxidation; lipid droplet biogenesis may also restrict lipid perox-
idation by sequestering already damaged, peroxidized PUFAs (ox-PUFAs) to suppress the propa-
gation of lipid peroxidation. (b) ATGL-mediated TAG lipolysis may provide PUFAs for membrane
synthesis, thus stimulating lipid peroxidation and sensitizing cells to ferroptosis. Other lipases and
phospholipases may also release ox-PUFAs from TAGs or phospholipids. (c) ATGL may also
provide monounsaturated fatty acids (MUFAs) that reduce the abundance of oxidizable PUFAs in
membranes, thereby restricting lipid peroxidation
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807 this idea, the Spastin/ABCD1/ESCRT-III lipid droplet-peroxisome tethering com-
808 plex is necessary for the removal of peroxidized lipids from lipid droplets, which
809 implicates both organelles in protecting cells against lipid peroxidation and possibly
810 ferroptosis (Chang et al. 2019).
811 On the other hand, depending on the fatty acyl composition of lipid droplets and
812 the predominantly released species, lipid droplet breakdown should also be able to
813 protect from ferroptosis (Fig. 4). Accordingly, lipolysis of monounsaturated FA
814 (MUFA)-enriched TAGs protects aggressive breast cancer cells from PUFA-
815 induced oxidative stress and lipotoxicity, likely by reducing the relative abundance
816 of membrane-resident PUFAs available for peroxidation (Ackerman et al. 2018; Jarc
817 et al. 2018). In addition, the lipolytic release of MUFAs has been recently shown to
818 promote mitochondrial biogenesis and oxidative metabolism via PLIN5-mediated
819 allosteric activation of SIRT1 (Najt et al. 2019), which may additionally explain their
820 beneficial effects on redox metabolism. However, lipid droplet biogenesis was not
821 necessary for the ability of exogenous MUFAs to suppress erastin-induced
822 ferroptosis (Magtanong et al. 2018). Instead, their ASCL3-dependent incorporation
823 into plasma membrane phospholipids and displacement of PUFAs was found to be
824 responsible for the effect in several cancer cell lines. The ability of lipid droplet
825 biogenesis and/or breakdown to modulate ferroptotic sensitivity surely requires
826 further exploration, particularly in the sense that combined targeting of lipid droplet
827 turnover and the anti-ferroptotic redox machinery may prove to be a valid therapeu-
828 tic strategy.

829 4 Conclusions and Perspectives

830 Given their central role as coordinators of lipid metabolism with cell growth and
831 stress resistance, lipid droplets are emerging as potentially vulnerable hotspots in
832 numerous cancers. However, we are only beginning to understand how lipid droplets
833 respond to the various stressful conditions encountered by cancer cells and which are
834 the essential tasks that these organelles perform to support the cellular stress
835 response. We have to find out more about the particular mechanisms involved in
836 order to use this knowledge in cancer treatment. Numerous points in their biogenesis
837 and/or breakdown could potentially be targeted in order to either compromise the
838 ability of lipid droplets to protect cancer cells from stress or to purposefully use lipid
839 droplets to cause cell damage. For example, inhibiting lipid droplet biogenesis in
840 starving cells dependent on autophagy for their survival could increase mitochon-
841 drial damage due to the build-up of cytosolic FAs and acylcarnitines (Nguyen et al.
842 2017). The inhibition of lipid droplet biogenesis in poorly vascularized tumors could
843 abolish their function as long-term lipid reservoirs and compromise the ability of
844 cancer cells to survive prolonged periods of starvation or resume growth upon
845 reoxygenation (Bensaad et al. 2014; Jarc et al. 2018; Pucer et al. 2013). During
846 the final stages of revision of this manuscript, two important papers were published
847 showing that DGAT1-mediated lipid droplet biogenesis is a relevant target for the
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848treatment of melanoma and glioblastoma (Cheng et al. 2020; Wilcock et al. 2020).
849DGAT1 was even identified as a bona fide oncoprotein that enables enhanced lipid
850uptake and drives melanoma formation. Its ability to protect cancer cells from
851oxidative stress and membrane lipid peroxidation, which hints at protection from
852ferroptosis as well, was found pivotal for melanoma aggressiveness (Wilcock et al.
8532020). Compromising the ability of cancer cells to form lipid droplets could also
854impair their chemoresistance and immune evasion (Cotte et al. 2018). Finally, recent
855studies have revealed that lipid droplets may also regulate drug efficacy by affecting
856the selective partitioning of lipophilic drugs in their hydrophobic core and even
857promote drug activation in situ (Dubey et al. 2020; Englinger et al. 2020).
858In other cases, the activation of lipid droplet breakdown could be a beneficial
859strategy. For example, stimulation of lipolysis or lipophagy is detrimental for cancer
860cells under certain conditions, since it may increase the levels of oxidative and ER
861stress, elevate lipid peroxidation and even lead to ferroptotic cell death (Jarc et al.
8622018; Mukhopadhyay et al. 2017; Zhang et al. 2019; Zou et al. 2019). However,
863caution should be exerted, because in many instances lipid droplet breakdown in fact
864promotes the resistance of cancer cells to stress, as discussed at length in this review.
865Clearly, the feasibility of targeting lipid droplets should be carefully examined in
866different tumor types and particular contexts. In summary, lipid droplets are highly
867dynamic compartments that consolidate lipid uptake, synthesis, recycling, distribu-
868tion, and breakdown pathways in the cell and are emerging as promising targets
869either to (1) restrict the supply of essential lipids or to (2) promote the accumulation
870of damaging lipids in order to compromise cancer cell survival, growth, and
871metastasis.
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