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Abstract. We develop an automata-theoretic framework for reasoning about
infinite-state sequential systems. Our framework is based on the observation that
states of such systems, which carry a finite but unbounded amount of informa-
tion, can be viewed as nodes in an infinite tree, and transitions between states
can be simulated by finite-state automata. Checking that the system satisfies a
temporal property can then be done by an alternating two-way tree automaton
that navigates through the tree. As has been the case with finite-state systems,
the automata-theoretic framework is quite versatile. We demonstrate it by solving
several versions of the model-checking problem for p-calculus specifications and
prefix-recognizable systems, and by solving the realizability and synthesis pro-
blems for p-calculus specifications with respect to prefix-recognizable environ-
ments.

1 Introduction

One of the most significant developments in the area of formal design verification is the
discovery of algorithmic methods for verifying temporal-logic properties of finite-state
systems [CESS6JLPSS[QS81IIVWE6]. In temporal-logic model checking, we verify the
correctness of a finite-state system with respect to a desired behavior by checking whether
a labeled state-transition graph that models the system satisfies a temporal logic formula
that specifies this behavior (for a survey, see [CGP99]). Symbolic methods that enable
model checking of very large state spaces, and the great ease of use of fully algorithmic
methods, led to industrial acceptance of temporal model checking [BBG™T94].

An important research topic over the past decade has been the application of model
checking to infinite-state systems. Notable successes in this area has been the appli-
cation of model checking to real-time and hybrid systems (cf. [HHWTOSILPY9T]).
Another active thrust of research is the application of model checking to infinite-state
sequential systems. These are systems in which a state carries a finite, but unboun-
ded, amount of information, e.g., a pushdown store. The origin of this thrust is the
important result by Miiller and Schupp that the monadic second-order theory of context-
free graphs is decidable [MS85]]. As the complexity involved in that decidability re-
sult is nonelementary, researchers sought decidability results of elementary complexity.
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This started with Burkart and Steffen, who developed an exponential-time algorithm
for model-checking formulas in the alternation-free p-calculus with respect to context-
free graphs [BS92]. Researchers then went on to extend this result to the p-calculus,
on one hand, and to more general graphs on the other hand, such as pushdown gra-
phs [BS99alWal96|, regular graphs [BQ96|, and prefix-recognizable graphs [Cau96].
The most powerful result so far is an exponential-time algorithm by Burkart for mo-
del checking formulas of the p-calculus with respect to prefix-recognizable graphs
[Bur97b]]. See also [BCMSO0/BE96IBEM97|/BS99h/Bur97aFWW97]|.

In this paper we develop an automata-theoretic framework for reasoning about
infinite-state sequential systems. The automata-theoretic approach uses the theory of
automata as a unifying paradigm for system specification, verification, and synthesis
[WVS8E3IEJ91/Kur94)VW94|KVWO00|. Automata enables the separation of the logical
and the algorithmic aspects of reasoning about systems, yielding clean and asymptoti-
cally optimal algorithms. The automata-theoretic framework for reasoning about finite-
state systems has proven to be very versatile. Automata are the key to techniques such
as on-the-fly verification [GPVW95], and they are useful also for modular verification
[KVO9S], partial-order verification [GW94|WWOG0], verification of real-time and hybrid
systems [HKV96IDW99], and verification of open systems [AHK97/KV99|. Many de-
cision and synthesis problems have automata-based solutions and no other solution for
them is known [EJ88/PREIKVO0]. Automata-based methods have been implemented
in industrial automated-verification tools (c.f., COSPAN [HHK96] and SPIN [Hol97,
VB99)).

The automata-theoretic approach, however, has long been thought to be inapplicable
for effective reasoning about infinite-state systems. The reason, essentially, lies in the
fact that the automata-theoretic techniques involve constructions in which the state space
of the system directly influences the state space of the automaton (e.g., when we take the
product of a specification automaton with the graph that models the system). On the other
hand, the automata we know to handle have finitely many states. The key insight, which
enables us to overcome this difficulty, and which is implicit in all previous decidability
results in the area of infinite-state sequential systems, is that in spite of the somewhat
misleading terminology (e.g., “context-free graphs” and “pushdown graphs”), the classes
of infinite-state graphs for which decidability is known can be described by finite-state
automata. This is explained by the fact the the states of the graphs that model these
systems can be viewed as nodes in an infinite tree and transitions between states can
be expressed by finite-state automata. As a result, automata-theoretic techniques can be
used to reason about such systems. In particular, we show that various problems related
to the analysis of such systems can be reduced to the emptiness problem for alternating
two-way tree automata, which was recently shown to be decidable in exponential time
[Var9g]].

We first show how the automata-theoretic framework can be used to solve the u-
calculus model-checking problem with respect to context-free and prefix-recognizable
systems. While our framework does not establish new complexity results for model
checking of infinite-state sequential systems, it appears to be, like the automata-
theoretic framework for finite-state systems, very versatile, and it has further potential
applications. We demonstrate it by showing how the p-calculus model-checking algo-
rithm can be extended to graphs with regular state properties, to graphs with regular
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fairness constraints, to p-calculus with backwards modalities, and to checking realiz-
ability of u-calculus formulas with respect to infinite-state sequential environments. In
each of these problems all we have to demonstrate is a (fairly simple) reduction to the
emptiness problem for alternating two-way tree automata; the (exponentially) hard work
is then done by the emptiness-checking algorithm.

2 Preliminaries

2.1 Labeled Rewrite Systems

A labeled transition graph is quadruple G = (S, Act, p, so), where S is a (possibly
infinite) set of states, Act is a finite set of actions, p C S x Act x S is a labeled
transition relation, and sg € Sy is an initial state. When p(s, a, s’), we say that s is
an a-successor of s, and s is an a-predecessor of s'. For a state s € S, we denote by
G*® = (S, Act, p, s), the graph G with s as its initial state. A rewrite system is a quadruple
R = (V, Act, R, xq), where V is a finite alphabet, Act is a finite set of actions, R maps
each action a to a finite set of rewrite rules, to be defined below, and g € V* is an
initial word. Intuitively, R(a) describes the possible rules that can be applied by taking
the action a. We consider here two types of rewrite systems. In a context-free rewrite
system, each rewrite rule is a pair (A,x) € V x V*. In a prefix-recognizable rewrite
system, each rewrite rule is a triple («, 3, ) of regular expressions over V, each defining
a subset of V*. We refer to rewrite rules in R(a) as a-rules.
The rewrite system R induces the labeled transition graph

GR = <V*>A0t>PR7$O> )

where (x, a,y) € pr if there is arewrite rule in R(a) whose application on z results in y.
Formally, if R is a context-free rewrite system, then pr (A-y, a, x-y) if (A, z) € R(a).If
R is a prefix-recognizable system, then pg (z -y, a, x - y) if there are regular expressions
a, B,and y such that z € o, y € B, x € 7, and (o, 3,7) € R(a). A labeled transition
graph that is induced by a context-free rewrite system is called a context-free graph. A
labeled transition system that is induced by a prefix-recognizable rewrite system is called
a prefix-recognizable graph. Note that in order to apply an a-transition in state = of a
context-free graph, we only need to match the first latter of = with the first element of an
a-rule. On the other hand, in an application of an a-transition in a prefix-recognizable
graph, we should find an a-rule and a partition of x to a prefix that belongs to the first
element of the rule and a suffix that belongs to the second element.

Example 1. The context-free rewrite sy- A —= AB — = ABB — -ABBB- - -
stem ({4, B},{a,b}, R, A), with R(a) = bl bl bi bl
{(A,AB)} and R(b) = {(A,¢), (B,¢)}, in- e <2 B < g <P ppp---

duces the labeled transition graph on the right.

We define the size | R| of R as the space required in order to encode the rewrite rules
in R. Thus, in the case of a context-free rewrite system,

RI=> > |,

ac€Act (A,xz)€R(a)
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and in a prefix-recognizable rewrite system,

Rl= 3 Y Wal+ sl + 4],

a€Act (a,8,7)€R(a)

where |, is the size of a nondeterministic automaton provided for the regular expres-
sion 7.

2.2 p-Calculus

The p-calculus is a modal logic augmented with least and greatest fixpoint operators
[Koz83]]. Given a finite set Act of actions and a finite set Var of variables, a p-calculus
formula (in a positive normal form) over Act and Var is one of the following:

— true, false, or y for all y € Var;

— 1 A\ 2 o1 1 V g, for p-calculus formulas ¢ and o;
[a)p or (a)y, for a € Act and a p-calculus formula ;
py.p or vy.p, for y € Var and a p-calculus formula ¢.

A sentence is a formula that contains no free variables from Var (that is, all the
variables are in a scope of some fixed-point operator). We define the semantics of u-
calculus with respect to a labeled transition graph G = (S, Act, p, so) and a valuation
V : Var — 29 for its free variables. Each formula 1/ and valuation ) then define a set
wG(V) of states of G that satisfy the formula. For a valuation V, a variable y € Var,
and a set S” C S, we denote by V[y + S’] the valuation obtained from V by assigning
S’ to 3. The mapping 1/ is defined inductively as follows:

- true®(V) = S and false® (V) = 0);
— Fory € Var, we have y& (V) = V(y);
= (V1 A)9 (V) =9 (V) g (V)
1 Vz/}z) (V) = 9f (V) Uy (V)
[a]y)€ ( )= {s € S: forall s’ such that R(s,a, s’), we have s’ € % (V)};
{a)h)¥ ( )={s €S : thereis s’ such that R(s,a,s’) and s’ € ¢ (V)};
p0)6(V) = I8’ € 8 0C Wy « 5) € S')
vy)°(V) = US' € 5+ 8 CuCly ).
Note that 1)“ cares only about the valuation of free variables in 1. In particular, no

valuation is required for a sentence. For a state s € S and a sentence v, we say that
holds at s in G, denoted G, s |= v iff s € Y. Also, G = iff G, s = ¢

- (¥
- (
- (
- (
- (

2.3 Alternating Two-Way Automata

Given a finite set 7" of directions, an 1 -tree is a set T' C 7* such that if v - 2 € T, where
v € T and x € T*, then also z € T'. The elements of T are called nodes, and the empty
word ¢ is the root of T'. For every v € 1" and « € T, the node x is the parent of v - x.
Each node = # ¢ of T has a direction in 7. The direction of the root is the symbol L
(we assume that | ¢ 7). The direction of a node v - x is v. We denote by dir(z) the
direction of node x. An 1-tree T is a full infinite tree if T = T*. A path 7 of a tree T
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is a set 7 C T such that ¢ € 7 and for every x € w there exists a unique v € 7" such
that v - € 7. Note that our definitions here reverse the standard definitions (e.g., when
T = {0, 1}, the successors of the node 0 are 00 and 10 (rather than 00 and 01}1.

Given two finite sets 1" and X, a X-labeled T-tree is a pair (T, V') where T is an
T-tree and V' : T — X maps each node of 7" to a letter in 2. When 7" and X' are
not important or clear from the context, we call (T, V) a labeled tree. We say that an
(Y u{L}) x X)-labeled T-tree (T, V') is Y-exhaustive if for every node z € T, we
have V(z) € {dir(z)} x X.

Alternating automata on infinite trees generalize nondeterministic tree automata and
were first introduced in [MS87]. Here we describe alternating two-way tree automata.
For a finite set X, let B+ (X)) be the set of positive Boolean formulas over X (i.e., boolean
formulas built from elements in X using A and V), where we also allow the formulas
true and false, and, as usual, A has precedence over V. Foraset Y C X and a formula
6 € Bt (X), we say that Y satisfies 0 iff assigning true to elements in Y and assigning
false to elements in X \ Y makes 6 true. For a set 1" of directions, the extension of 1" is
the set ezt(Y") = T U {e,1} (we assume that 7" N {e, 1} = 0). An alternating two-way
automaton over X-labeled T-trees is a tuple A = (X, Q, 9, qo, F'), where X is the input
alphabet, Q is a finite set of states, § : Q x X — Bt (ezt(T) x Q) is the transition
function, gy € @ is an initial state, and F’ specifies the acceptance condition.

A run of an alternating automaton .4 over a labeled tree (1™, V) is a labeled tree
(T, ry in which every node is labeled by an element of 7™* x (). A node in T, labeled
by (z, q), describes a copy of the automaton that is in the state ¢ and reads the node x
of T*. Note that many nodes of 7;. can correspond to the same node of 7°*; there is no
one-to-one correspondence between the nodes of the run and the nodes of the tree. The
labels of a node and its successors have to satisfy the transition function. Formally, a run
(Ty,r) is a X,.-labeled I'-tree, for some set I” of directions, where X, = 7™ x @ and
(T, r) satisfies the following:

1. e€T,andr(e) = (g, qo).

2. Consider y € T, with r(y) = (z,¢) and 6(g, V' (z)) = 6. Then there is a (possibly
empty) set S C ext(T) x @, such that S satisfies 6, and for all {c, ¢’) € S, there is
~v € I' such that vy - y € T, and the following hold:

- Ifce?, thenr(y-y) = (c-z,q¢).
- Ifc=¢,thenr(y-y) = (x,¢).
— Ifc=t,thenx =v-2,forsomev € Tand z € T*, and (7 - y) = (2,¢).

Thus, e-transitions leave the automaton on the same node of the input tree, and 1-
transitions take it up to the parent node. Note that the automaton cannot go up the root
of the input tree, as whenever ¢ =7, we require that x # ¢.

Arun (T, r) is accepting if all its infinite paths satisfy the acceptance condition. We
consider here parity acceptance conditions [[EJ9T]. A parity condition over a state set )
is a finite sequence F' = {F}, Fy, ..., F,,} of subsets of ), where F; C F5 C ... C
F,, = Q. The number m of sets is called the index of A. Given a run (7)., r) and an
infinite path 7 C T, let inf(7) C @ be such that ¢ € inf(w) if and only if there are

! As will get clearer in the sequel, the reason for that is that rewrite rules refer to the prefix of
words.
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infinitely many y € 7 for which r(y) € 7* x {q}. That is, inf(7) contains exactly all
the states that appear infinitely often in 7. A path 7 satisfies the condition F' if there is
an even i for which inf () N F; # () and inf (7) N F;_; = 0. An automaton accepts a
labeled tree if and only if there exists a run that accepts it. We denote by £(.A) the set
of all X-labeled trees that A accepts. The automaton A is nonempty iff L(A) # (.

Theorem 1. Given an alternating two-way parity tree automaton A with n states and
index k, we can construct an equivalent nondeterministic one-way parity tree automaton
whose number of states is exponential in nk and whose index is linear in nk [Var9f],
and we can check the nonemptiness of A in time exponential in nk [EIS93]].

2.4 Alternating Automata on Labeled Transition Graphs

Consider a labeled transition graph G = (S, Act, p, so). For the set Act of actions, let
next(Act) = {e} UU,ca.1la], (@)}. An alternating automaton on labeled transition
graphs (graph automaton, for short) [JW95] is a tuple S = (Act, Q, 9, qo, F'), where
@, qo, and F are as in alternating two-way automata, Act is a set of actions, and ¢ :
Q — BT (next(Act) x Q) is the transition function. Intuitively, when S is in state ¢
and it reads a state s of G, fulfilling an atom ({(a),t) (or (a)t, for short) requires S to
send a copy in state ¢ to some a-successor of s. Similarly, fulfilling an atom [a]t requires
S to send copies in state ¢ to all the a-successors of s. Thus, like symmetric automata
[DW99IW1l99]], graph automata cannot distinguish between the various a-successors of
a state and treat them in an existential or universal way.

Like runs of alternating two-way automata, a run of a graph automaton S over a
labeled transition graph G = (S, Act, p, so) is a labeled tree in which every node is
labeled by an element of S x Q. A node labeled by (s, q), describes a copy of the
automaton that is in the state ¢ of S and reads the state s of G. Formally, a run is a
XY .-labeled I'-tree (T,.,r), where I is an arbitrary set of directions, ;. = S x @, and
(T, r) satisfies the following:

1. e € T, and r(g) = (80,90)-

2. Consider y € T, with r(y) = (s, ¢q) and d(¢) = 6. Then there is a (possibly empty)
set S C next(Act) x @, such that S satisfies 0, and for all (¢, ¢') € S, the following
hold:

— Ifc=¢, thenthereisy € I'suchthaty -y € T, and r(y - y) = (s,¢).

— If ¢ = [a], then for every a-successor s’ of s, there is y € I" such thaty-y € T,
and (- y) = (', ')

— If ¢ = (a), then there is an a-successor s’ of s and y € I" such thaty -y € T,
andr(y-y) = (s',¢).

A run (T, r) is accepting if all its infinite paths satisfy the acceptance condition. The
graph G is accepted by S if there is an accepting run on it. We denote by £(S) the set
of all graphs that S accepts. We denote by S? = (Act, Q, 9, ¢, F') the automaton S with
q as its initial state.

% The graph automata in [JW93]] are different than these defined here, but this is only a technical
difference.
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We use graph automata as our specification language. We say that a labeled transition
graph G satisfies a graph automaton S, denoted G = S, if S accepts G. It is shown in
[JWO3]] that graph automata are as expressive as p-calculus. In particular, we have the
following.

Theorem 2. Given a p-calculus formula 1), of length n and alternation depth k, we
can construct a graph parity automaton Sy, such that L(Sy) is exactly the set of graphs
satisfying 1. The automaton Sy, has n states and index k.

3 Model Checking of Context-Free Graphs

In this section we present an automata-theoretic approach to model-checking of context-
free transition systems. Consider a labeled transition graph G = (V*, Act, pr,vo),
induced by a rewrite system R = (V, Act, R, x). Since the state space of G is the full
V-tree, we can think of each transition (z, a, z’) € pgr as a “jump” that is activated by
the action a from the node z of the V-tree to the node z’. Thus, if R is a context-free
rewrite system and we are at node A - y of the V -tree, an application of the action a takes
us to nodes z -y, for (A, ) € R(a). Technically, this means that we first move up to the
parent y of A -y, and then move down along x. Such a navigation through the V-tree
can be easily performed by two-way automata.

Theorem 3. Given a context-free rewrite system R = (V, Act, R,vo) and a graph
automaton S = (Act,Q,0,qo, F), we can construct an alternating two-way parity
automaton A over (V U {L})-labeled V -trees such that L(A) is not empty iff Gr
satisfies S. The automaton A has O(|Q| - |R| - |V'|) states, and has the same index as S.

Proof: The automaton A checks that the input tree is V-exhaustive (that is, each node
is labeled by its direction). As such, A can learn from labels it reads the state in V* that
each node corresponds to. The transition function of .A then consults the rewrite rules in
R in order to transform an atom in next(Act) x @ to a chain of transitions that spread
copies of A to the corresponding nodes of the full V-tree.

We define A = (VU{L},Q",n,q, F’) as follows.

- Q' =Q xtails(R) x (VU{L,#}), where tails(R) C V* is the set of all suffixes
of words = € V* for which there are a € Act and A € V such that (A, z) € R(a).
Intuitively, when A visits a node x € V* in state (g, y, A), it checks that G with
initial state y - « is accepted by S¢. In particular, when y = ¢, then G with initial
state x (the node currently being visited) needs to be accepted by S9. In addition,
if A # #, then A also checks that dir(z) = A. States of the form (g,e, A) are
called action states. From these states A consults § and R in order to impose new
requirements on the exhaustive V-tree. States of the form (g, y, A), fory € VT, are
called navigation states. From these states .4 only navigates downwards y to reach
new action states. On its way, A also checks the V-exhaustiveness of the input tree.

— In order to define  : Q' x (V U{L}) = BT (ext(V) x Q'), we first define the
function apply , : next(Act) x Q x (VU{L}) = Bt (ext(V) x Q). Intuitively,
apply i transforms atoms participating in J, together with a letter A € V U {L},
which stands for the direction of the current node, to a formula that describes the
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requirements on G when the rewrite rules in R are applied to words of the form
A -V*. Forc € next(Act),q € Q,and A € V U {L}, we define

(e, (q,¢, A)) Ifc=e.
apply p(c,q, A) = | Nayyer) (T (@ v, #)) I c=[a].
V(A,y)ER(a) (1 (¢ y,#)) Ifc=(a).

Note that R(a) may contain no pairs in { A} x V* (that is, the transition relation of
G may not be total). In particular, this happens when A = L (that is, the state ¢ of
G has no successors). Then, we take empty conjunctions as true, and take empty
disjunctions as false.

In order to understand the function apply s, consider the case ¢ = [a]. When S reads
the state A - z of the input graph, fulfilling the atom [a]q requires S to send copies
in state ¢ to all the a-successors of A - x. The automaton .4 then sends to the node x
copies that check whether all the states y - x, with pr (A - z,a,y - ©), are accepted
by S with initial state q.

Now, for a formula § € BT (next(Act) x Q) , the formula

apply r(0, A) € Bt (ext(V) x Q")

is obtained from 6 by replacing an atom (c, ¢) by the atom apply (c, ¢, A). We can
now define n) forall A € V U { L} as follow.

- n({g,e,A), A) = n({g,&, #), A) = applyr((q), A).

- n({g; By, A), A) =n({q, B -y, #),4) = (B, (¢, y, B)).
Thus, in action states, .4 reads the direction of the current node and applies the rewrite
rules of R in order to impose new requirements according to J. In navigation states,
A needs to go downwards B - y and check that the nodes it comes across on its way
are labeled by their direction. For that, A proceeds only with the direction of the
current node (maintained as the third element of the state), and sends to direction B
a state whose third element is B. Note that since we reach states with # only with
upward transitions, A visits these states only when it reads nodes x that have already
been read by a copy of A that does check whether z is labeled by its direction.

- ¢4 = {qo, To, L). Thus, in its initial state .4 checks that Gx with initial state x is
accepted by S with initial state ¢g. It also checks that the root of the input tree is
labeled with L.

— F'isobtained from F by replacing each set F; by the set F; X tails(R) x (VU{#}).

O

Context-free rewrite systems can be viewed as a special case of prefix-recognizable
rewrite systems. In the next section we describe how to extend the construction described
above to prefix-recognizable graphs, and we also analyze the complexity of the model-
checking algorithm that follows for the two types of systems.

4 Model Checking of Prefix-Recognizable Graphs

In this section we extend the construction described in Section[3 to prefix-recognizable
transition systems. The idea is similar: two-way automata can navigate through the full
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V-tree and simulate transitions in a system induced by a rewrite system by a chain of
transitions in the tree. While in context-free transition systems the application of rewrite
rules involved one move up the tree and then a chain of moves down, here things are a
bit more involved. In order to apply a rewrite rule («, 3, ), the automaton has to move
upwards along a word in «, check that the remaining word leading to the root is in 3,
and move downwards along a word in . As we explain below, A does so by simulating
automata for the regular expressions participating in R.

Theorem 4. Given a prefix-recognizable rewrite system R = (V, Act, R,vy) and a
graph automaton S = (Act,Q, 0, qo, F'), we can construct an alternating two-way
parity automaton A over (V U {L})-labeled V -trees such that L(A) is not empty iff
Gr satisfies S. The automaton A has O(|Q| - |R| - |V|) states, and has the same index
as S.

Proof: For a regular expression a on V, let U, = (V,Sq, My, S, F,) be a non-
deterministic word automaton with £(U,) = «. Let 2 = {{«, 8,7) : thereisa €
Act such that {(a, 8,v) € R(a)} be the set of all triples in R(a), for some a € Act, and
let S, = U(a,@,v)efl So USg U S, be the union of all the state spaces of the automata
associated with regular expressions that participate in R.

As in the case of context-free rewrite systems, A checks that the input tree is the
V-exhaustive tree and then uses its labels in order to learn the state in V'* that each node
corresponds to. As there, A applies to the transition function ¢ of S the rewrite rules of
R. Here, however, the application of the rewrite rules on atoms of the form (a)q and
[a]g is more involved, and we describe it below. Assume that A wants to check whether
87 accepts G, and it wants to proceed with an atom (a)q in §(¢). The automaton A
needs to check whether S7 accepts G¥% for some state y reachable from x by applying
an a-rule. That is, a state y for which there is (o, 5,v) € R(a) and partitions z’ - z and
y' - z, of  and y, respectively, such that 2’ is accepted by U,, z is accepted by Upg,
and is y" accepted by U.,. The way A detects such a state y is the following. From the
node z, the automaton A simulates the automaton I, upwards (that is, .4 guesses a run
of U, on the word it reads as it proceeds on direction 1 from x towards the root of the
V-tree). Suppose that on its way up to the root, A encounters a state in F, as it reads the
node z € V*. This means that the word read so far is in «, and can serve as the prefix
a’ above. If this is indeed the case (and .4 may also continue as if a state in F,, has not
been encountered; thus guess that the word read so far is not z”), then it is left to check
that the word z is accepted by U3, and that there is a state that is obtained from z by
prefixing it with a word 3/ € -y that is accepted by S9. To check the first condition, A
sends a copy in direction 7 that simulates a run of U{g, hoping to reach a state in Fg as it
reaches the root (that is, A guesses a run of U3 on the word it reads as it proceeds from z
up to the root of the V'-tree). To check the second condition, A simulates the automaton
U, downwards. A node ¢ - z € V* that A reads as it encounters a state in F’, can serve
as the state y we are after. The case for an atom [a]q is similar, only that here A needs to
check whether S7 accepts G’ for all states y reachable from z by applying an a-rule,
and thus the choices made by A for guessing the partition 2’ - z of x and the prefix y’ of
y are now treated dually.

In order to follow the above application of rewrite rules, the state space of A is
Q = Qx N2 xSy x{0,1,2,3} x {V,3} x (VU{L,#}). Thus, a state is a 6-
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tuple ¢ = (¢, {«, 3,7),s,i,b, A), where A is the expected direction of the current
node (needed in order to check the V-exhaustiveness), i € {0,1,2,3} is the current
simulation mode (states in mode 0 are action states, where we apply R on the transitions
in J, and states in modes 1, 2 and 3 are states where we simulate automata for o, 3, and ,
respectively), b € {V, 3} is the simulating mode (depending on whether we are applying
R to an (a) or an [a] atom), {(«, (3,) is the rewrite rule in R(a) we are applying, and s
is the current state of the simulated automatorﬁ The formal definition of the transition
function of A follows quite straightforwardly from the definition of the state space and
the explanation above.

The acceptance condition of A is the adjustment of ' to the new state space. That is,
it is obtained from F’ by replacing each set F; by the set F; x {2 x Sq, x {0} x {V, 3} x
(V U{L,#}). Considering only action states excludes runs in which the simulation of
the automata for the regular expressions continues forever. Indeed, as long as a copy
of A simulates an automaton U,, Ug, or U, it stays in simulation mode 1, 2, or 3,
respectively. a

The constructions described in Theorems Bland @l reduce the model-checking pro-
blem to the nonemptiness problem of an alternating two-way parity tree automaton. By
Theorem[I], we then have the following.

Theorem 5. The model-checking problem for a context-free or a prefix recognizable
rewrite system R = (V, Act, R, vo) and a graph automaton S = (Act, Q, 0, qo, F), can
be solved in time exponential in nk, where n = |Q| - |R| - |V'| and k is the index of S.

Together with Theorem 2] we can conclude with an EXPTIME bound also for the
model-checking problem of y-calculus formulas matching the lower bound in [Wal96].
Note that the fact the same complexity bound holds for both context-free and prefix-
recognizable rewrite systems stems from the different definition of | R| in the two cases.

5 Extensions

The automata-theoretic approach offers several extensions to the model-checking setting.
We describe some of these extensions below.

5.1 Regular State Properties

The systems we want to reason about often have, in addition to a set of actions, also
a set P of state properties. In the case of finite-state systems, these are described by a
mapping L : S — P that associates with each state of the labeled transition graph that
models the system, the property that is true in it (for simplicity, we assume that exactly
one property holds in each state). In our case, of infinite-state graphs induced by rewrite
systems, we consider regular state properties, where each property p € P is associated

? Note that a straightforward representation of @’ results in O(|Q| - |£2| - | R| - |V'|) states. Since,
however, the states of the automata for the regular expressions are disjoint, we can assume that
the triple in {2 that each automaton corresponds to is uniquely defined from it.
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with a regular expression [p] over V, describing the set of states (words in V*) in which
p holds. Again, we assume that for each z € V¥, there is a single p € P such that
z € [p).

In order to specify behaviors of labeled transition graphs with regular state pro-
perties in P, we consider an extension of graph automata with the alphabet P. The
transition function of an extended automaton S = (P, Act, @, J, qo, F),is§ : Q x P —
BT (next(Act) x Q); thus it reads from the input graph both the state properties, in order
to know with which transition to proceed, and the actions, in order to know to which
successors to proceed. The formal definition of a run of an extended graph automaton
on a labeled transition graph with state properties is the straightforward extension of the
definition given in Section[2.4]for the graph automata described there. Alternatively, one
can consider a p-calculus with both state properties and actions [Koz83]]. Theorem
holds also for formulas in such a u-calculus.

Having our solution to the model-checking problem based on two-way automata, it
is simple to extend it to graphs and specifications with state properties. Indeed, whenever
the automaton A from Theorems B]and[4] reads the state € V* and takes a transition
from an action state, it should now also guess the property p that holds in z and proceed
according to the transition function of the specification automaton with input letter p.
In order to check that the guess z € [p] is correct, the automaton simulates the word
automaton U, upwards, hoping to visit an accepting state when the root is reached.
The complexity of the model-checking algorithm stays the same.

5.2 Fairness

The systems we want to reason about are often augmented with fairness constraints.
Like state properties, we can define a regular fairness constraint by a regular expression
«, where a computation of the labeled transition graph is fair iff it contains infinitely
many states in « (this corresponds to weak fairness; other types of fairness can be defined
similarly). It is easy to extend our model-checking algorithm to handle fairness (that is,
let the path quantification in the specification range only on fair pathsﬂ): the automaton
A can guess whether the state currently visited is in «, and then simulate the word
automaton U/, upwards, hoping to visit an accepting state when the root is reached.
When A checks an existential property, it has to make sure that the property is satisfied
along a fair path, and it is therefore required to visit infinitely many states in «. When A
checks a universal property, it may guess that a path it follows is not fair, in which case
A eventually always send copies that simulate the automaton for —~«. The complexity
of the model-checking algorithm stays the same.

5.3 Backward Modalities

Another extension is the treatment of specifications with backwards modalities. While
forward modalities express weakest precondition, backward modalities express strongest

* The exact semantics of fair graph automata as well as fair p-calculus is not straightforward, as
they enable cycles in which we switch between existential and universal modalities. To make
our point here, it is simpler to assume, say, graph automata that correspond to CTL* formulas.
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postcondition, and they are very useful for reasoning about the past [LPZ85]]. In order to
adjust graph automata to backward reasoning, we add to next( Act) the “directions” {(a ™)
and [a~]. This enables the graph automata to move to a-predecessors of the current state.
More formally, if a graph automaton reads a state x of the input graph, then fulfilling an
atom (a~ )t requires S to send a copy in state ¢ to some a-predecessor of x, and dually
for [a~]¢. Theorem 2] can then be extended to u-calculus formulas and graph automata
with both forward and backward modalities [Var98].

Extending our solution to graph automata with backward modalities is simple. Con-
sider anode x € V* in a prefix-recognizable graph. The a-predecessors of x are states y
for which there is a rule (o, 3,7) € R(a) and partitions z’ - z and ¢’ - z, of = and y, res-
pectively, such that 2’ is accepted by U, z is accepted by U, and ¢’ is accepted by Us,.
Hence, we can define a mapping R~ such that (7, 8, a) € R~ (a) iff (o, 5,7) € R(a),
and handle atoms (¢~ )t and [a~ |t exactly as we handle (a)t and [a]¢, only that for them
we apply the rewrite rules in R~ rather than these in R. The complexity of the model-
checking algorithm stays the same. Note that the simple solution relies on the fact that
the structure of the rewrite rules in a prefix-recognizable rewrite system is symmetric
(that is, switching « and ~y results in a well-structured rule), which is not the case for
context-free rewrite systemsﬁ.

5.4 Global Model Checking

In the full paper we show that in addition to checking whether a system R satisfies a
specification &, we can compute the regular languages of all states satisfying S, thus
we solve the global model-checking problem. For a rewrite system R and a regular
language L, let post(L), post*(L), pre(L), and pre*(L) be the sets of states in Gg
that are immediate sucessors of the states in L, sucessors of the states in L, immediate
predecessors of the states in L, and predecessors of the states in L, respectively. The
predicates above can be viewed as specifications. Indeed, post(L) = (+) L, post*(L) =
wy.LV (+)y, pre(L) = (=)L, and pre*(L) = py.L V (—)y (in a p-calculus with state
predicates, where (+) and (—) are the “next” and “previously” modalities). Hence, the
algorithm can be used to compute successors and predecessors of regular state sets, and
can be viewed as the automata-theoretic approach to the algorithms in [BEM97].

This observation is related to the work in [LS98]], where bottom-up automata on
finite trees are used in order to recognize sets of terms in Process Algebra. Given a term
t, [CS98] shows that it is possible to define post*(t) as the solution of a regular equation.
They conclude that post * (¢) is a regular tree language, and similarly for post(t), pre(t),
and pre*(t).

3 Note that this does not mean we cannot model check specifications with backwards modalities in
context-free rewrite systems. It just mean that doing so invovles rewrite rules that are no longer
context free. Indeed, a rule (A, z) € R(a) in a context-free system corresponds to the rule
(A, V* x) € R(a) in a prefix recognizable system, inducing the rule {z, V*, A) € R™'(a).
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6 Realizability and Synthesis

Given a rewrite system R = (V, Act, R, vo), a strategy of R is a function f : V* —
Act. The function f restricts the graph G so that from a state x € V*, only f(z)-
actions are taken. Formally, R and f together define the graph G r = (V*, Act, p, vo),
where p(z,a,y) iff f(z) = a and pgr(x,a,y). Given R and a graph automaton S =
(Act, @, 9, o, F'), we say that a strategy f of R is winning for S iff Gr s satisfies S.
Given R and S, the problem of realizability is to determine whether there is a winning
strategy of R for S. The problem of synthesis is then to construct such a strategy.
The setting described here corresponds to the case where the system needs to satisfy a
specification with respect to environments modeled by a rewrite system. Then, at each
state, the system chooses the action to proceed with and the environment provides the
rules that determine the successors of the state. Branching-time realizability of finite-
state systems can be viewed as a special case of our setting here, where for all actions
a € Act, we have R(a) = {(e,V*, A)}. Thus, from each state z € V*, we can apply
an a-transitions to all the states A -z, for A € V.

The automaton A from TheoremH]can be modified to solve the realizability problem
and to generate winning strategies. The idea is simple: a strategy f : V* — Act can
be viewed as an Act-labeled V-tree. Thus, the realizability problem can be viewed as
the problem of determining whether we can augment the labels of the V/-labeled V-
exhaustive tree by elements in Act, and accept the augmented tree in a run of A in
which whenever A reads an action ¢ € Act, it applies to the transition function of the
specification graph automaton only rewrite rules in R(a). Hence the following theorem.

Theorem 6. Given a prefix-recognizable rewrite system R = (V, Act, R,vo) and a
graph automaton S = (Act,Q, 9, qo, F), we can construct an alternating two-way
parity automaton A over ((V U{L}) x Act)-labeled V -trees such that L(.A) contains
exactly all the V -exhaustive trees whose projection on Act is a winning strategy of R
for S. The automaton A has O(|Q| - |R| - |V|) states, and has the same index as S.

Proof: Exactly as in Theorem[4] only that from an action state we proceed with the
rules in R(a), where a is the Act-element of the letter we read. For example, in the case
of a context-free rewrite system, we would have, for ¢ € next(Act),q € Q, A€V,
and a € Act (the new parameter to applyr, which is read from the input tree),

(¢,(q,8,A)) Ifc — e
/\<A’y>€R(a) <T7 (q7 Y, #)) If CcC = [a]

apply p(c, ¢, A, a) = | true If ¢ = [b], for b # a.
V(Av?/>€R(a) <T’ (qv Y, #)> Ifc = <a>
false If ¢ = (b), for b # a.

Letn = |Q| - |R| - |V], let k be the index of S, and let X' = (V U {L}) x Act. By
Theorem[I] we can transform A to a nondeterministic one-way parity tree automaton A4’
with 29("%) gtates and index O(nk). By [Rab69]Eme83], if A’ is nonempty, there exists
a Y-labeled V-tree (V*, f) such that for all ¢ € X, the set X,, of nodes z € V* for
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which f(z) = o is a regular set. Moreover, the nonemptiness algorithm of .A’, which
runs in time exponential in nk, can be easily extended to construct, within the same
complexity, a deterministic word automaton U/ 4 over V such that each state of U4 is
labeled by a letter o € X, and for all z € V*, we have f(z) = o iff the state of Uy
that is reached by following the word z is labeled by o. The automaton I/ 4 is then the
answer to the synthesis problem.

The construction described in Theorems [Bland [ implies that the realizability and
synthesis problem is in EXPTIME. Thus, it is not harder than in the satisfiability problem
for the p-calculus, and it matches the known lower bound [FL79]. Formally, we have
the following.

Theorem 7. The realizability and synthesis problems for a context-free or a prefix reco-
gnizable rewrite system R = (V,Act,R,vy) and a graph automaton S =
(Act, Q, 9, qo, F), can be solved in time exponential in nk, where n = |Q| - |R| - |V,
and k is the index of S.

By Theorem[2] if the specification is given by a u-calculus formula 1, the bound is
the same, with n = |¢| - |R| - |V, and k being the alternation depth of .

7 Discussion

The automata-theoretic approach has long been thought to be inapplicable for effective
reasoning about infinite-state systems. We showed that infinite-state systems for which
decidability is known can be described by finite-state automata, and therefore, the states
and transitions of such systems can be viewed as nodes in an infinite tree and transitions
between states can be expressed by finite-state automata. As a result, automata-theoretic
techniques can be used to reason about such systems. In particular, we showed that
various problems related to the analysis of such systems can be reduced to the emptin-
ess problem for alternating two-way tree automata. Our framework achieves the same
complexity bounds of known model-checking algorithms, and it enables several exten-
sions, such as treatment of state properties, fairness constraints, backwards modalities,
and global model checking. Our framework also provides a solution to the realizability
problem.

An interesting open problem is the extension of our framework to the linear paradigm.
Since LTL formulas can be translated to automata, a simple extension of our framework
to handle specifications in LTL is possible. Nevertheless, since our algorithm involves
a translation of a two-way alternating automaton to a nondeterministic automaton, we
would end up in a complexity that is at least exponential in the system, which is worst
than known polynomial algorithms [EHRS00].
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