
A Proof-Carrying Code Architecture for Java

Christopher Colby, Peter Lee, and George C. Necula

Cedilla Systems Incorporated
4616 Henry Street

Pittsburgh, Pennsylvania 15213
Hackers@CedillaSystems.com

1 Introduction

In earlier work, Necula and Lee developed proof-carrying code (PCC) [3,5], which
is a mechanism for ensuring the safe behavior of programs. In PCC, a program
contains both the code and an encoding of an easy-to-check proof. The validity
of the proof, which can be automatically determined by a simple proof-checking
program, implies that the code, when executed, will behave safely according to
a user-supplied formal definition of safe behavior. Later, Necula and Lee demon-
strated the concept of a certifying compiler [6,7]. Certifying compilers promise
to make PCC more practical by compiling high-level source programs into op-
timized PCC binaries completely automatically, as opposed to depending on
semi-automatic theorem-proving techniques. Taken together, PCC and certify-
ing compilers provide a possible solution to the code safety problem, even in
applications involving mobile code [4].

In this paper we describe a PCC architecture comprising two tools:

– A thin PCC layer implemented in C that protects a host system from unsafe
software. The host system can be anything from a desktop computer down
to a smartcard. The administrator of the host system specifies a safety policy
in a variant of the Edinburgh Logical Framework (LF) [1]. This layer loads
PCC binaries, which are Intel x86 object files that contain a .lf section
providing a binary encoding of a safety proof, and checks them against the
safety policy before installing the software.

– A software-development tool that produces x86 PCC binaries from Java
.class files. It is implemented in Objective Caml [2]. From a developer’s
perspective, this tool works just like any other compiler, with an interface
similar to javac or gcc. Behind the scenes, the tool produces x86 machine
code along with a proof of type safety according to the Java typing rules.

The demonstration will use a small graphics program to show that this archi-
tecture delivers Java safety guarantees without sacrificing the performance of
native compilation.
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2 Architecture

Figure 1 shows the architecture of our PCC system. The right side of the figure
shows the software-development process, and the left side shows the secure host
system. VC stands for “verification condition”.
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Fig. 1. The architecture of our PCC implementation.

The right side of Figure 1 is a code-production tool that the user runs offline
to generate Intel x86 PCC binaries from Java bytecode. First, a compiler genera-
tes x86 native code from a Java .class file. This compiler is largely conventional
except that it attaches some logical annotations to the resulting binary. These
annotations are “hints” that help the rest of the system understand how the
native code output corresponds to the bytecode input. These annotations are
easy for the compiler to generate from the bytecode, but would be difficult for
the rest of the system to “reverse engineer” from unannotated native code.

The annotated x86 binary is then analyzed by a tool called a verification-
condition generator, or VC generator. The VC generator is parameterized by
a set of axioms and rules, specified in the Edinburgh Logical Framework (LF),
that describe the safety policy against which the binary must be proven. The
VC generator outputs a logical predicate, also expressed in LF, that describes a
precondition that, if true, would imply that any possible execution of the binary
is safe. Intuitively speaking, it performs this task by scanning each native-code
instruction and emitting safety conditions as they arise. The result is called the
verification condition, or VC.

Finally, the VC is sent to an automated theorem prover, which, using the
same axioms and rules, attempts to prove the VC and, if successful, outputs the
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resulting logical proof in binary form. The annotations and proof are added to
the binary as an .lf segment, thus producing a PCC binary. This object file can
be loaded and linked with existing tools just like any other object file, in which
case the .lf section is ignored. Currently, proofs are 10–40% of the code size,
but preliminary results with a new proof-representation technology indicate that
this can be decreased to 5–10% [8].

Now we turn to the host on the left side of Figure 1. The host runs a thin
PCC layer that loads PCC binaries and verifies them. The host first separates the
annotated binary from the proof. In Figure 1, these are shown already separated.
It then runs a VC generator on the annotated binary to produce a VC from a
safety policy specified by the same set of rules and axioms.1 Lastly, it checks
the proof to make sure that it is indeed a valid proof under the safety policy. If
it checks out, then the unannotated binary is installed on the host system. The
annotations and the proof are discarded.

The PCC layer on the host illustrates another key engineering point that
makes the PCC architecture viable—checking a proof is usually much faster and
simpler than generating a proof. It is important that it is fast because it is
happening dynamically, as software is downloaded into the host. It is important
that it is simple because the trusted computing base (TCB) on the host must be
bug-free. Furthermore, some of our current applications involve small embedded
systems that lack memory resources to run large programs. For these reasons, it
is unacceptable to run a complex verifier on the host system.

In contrast, PCC development tools such as the code producer on the right
side of Figure 1 can be slow and buggy without compromising the soundness of
the basic architecture that we are proposing in this demonstration. For instance,
the compiler is free to perform aggressive optimizations, even though that might
present difficult and time-consuming problems for the proof generator, because
proof generation is done offline. Technically, this result is provided by a soundness
theorem [6]. This result is not specific to any particular code-production tool,
to Java, or to any particular safety policy, but rather is a property of the PCC
architecture itself.

3 Demonstration

We have implemented prototypes of both sides of Figure 1 for the Intel x86 ar-
chitecture. The certifying compiler performs register allocation and some global
optimizations, including a form of partial redundancy elimination. The VC ge-
nerator and proof checker are quite complete and have been stable for several
months. The compiler and proof generator, on the other hand, are still under
heavy development. At present, the compiler handles a large subset of the Java
1 The system that we demonstrate shares the same VC generator between the two

sides of the architecture, and this is often a convenient approach. Conceptually,
however, the host’s module is part of the TCB and thus must be bug-free, while the
code producer’s module is not trusted, and so bugs will simply produce incorrect
binaries that will be caught by the host before installation.
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features, including objects, exceptions, and floating-point arithmetic. However,
there are several key features that have yet to be implemented, including threads
and dynamic class loading. Also, a number of important optimizations are not
yet finished, including the elimination of null-pointer and array-bounds checks,
and the stack allocation of non-escaping objects.

The demonstration will use a small graphics program to show that this ar-
chitecture delivers Java safety guarantees without sacrificing the performance of
native compilation. The demonstration will compare three different approaches
to transmitting untrusted code to a secure host:

1. Java bytecode, verified and run by a JVM on the host (safe but slow)
2. x86 native code produced by a C compiler, run via the Java Native Interface

(JNI) on the host (fast but unsafe)
3. x86 native code produced by our certifying compiler, run via JNI on the host

(fast and safe)

We demonstrate the safety of our approach (3) by showing that various forms of
tampering with the PCC binary cause the host to reject the binary as potentially
unsafe.

In future work, we plan to release our current system for public use. Also of
great interest is to extend the safety policy to go beyond Java type safety, in
particular to allow enforcement of some constraints on the use of resources such
as execution time and memory.
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