
Regular Model Checking

Ahmed Bouajjani1, Bengt Jonsson2, Marcus Nilsson?2, and Tayssir Touili1

1 Liafa, Univ. Paris 7, Case 7014, 2 place Jussieu, 75251 Paris Cedex 05, France
{Ahmed.Bouajjani,Tayssir.Touili}@liafa.jussieu.fr

2 Dept. of Computer Systems, P.O. Box 325, S-751 05 Uppsala, Sweden
{bengt, marcusn}@docs.uu.se

Abstract. We present regular model checking, a framework for algo-
rithmic verification of infinite-state systems with, e.g., queues, stacks,
integers, or a parameterized linear topology. States are represented by
strings over a finite alphabet and the transition relation by a regular
length-preserving relation on strings. Major problems in the verification
of parameterized and infinite-state systems are to compute the set of sta-
tes that are reachable from some set of initial states, and to compute the
transitive closure of the transition relation. We present two complemen-
tary techniques for these problems. One is a direct automata-theoretic
construction, and the other is based on widening. Both techniques are
incomplete in general, but we give sufficient conditions under which they
work. We also present a method for verifying ω-regular properties of
parameterized systems, by computation of the transitive closure of a
transition relation.

1 Introduction

This paper presents regular model checking, intended as a uniform paradigm
for algorithmic verification of several classes of parameterized and infinite-state
systems. Regular model checking considers systems whose states can be repre-
sented as finite strings of arbitrary length over a finite alphabet. This includes
parameterized systems consisting of an arbitrary number of homogeneous finite-
state processes connected in a linear or ring-formed topology, and systems that
operate on queues, stacks, integers, and other data structures that can be repre-
sented by sequences of symbols.

Regular model checking can be seen as symbolic model checking, in which
regular sets words over a finite alphabet is used as a symbolic representation of
sets of states, and in which regular length-preserving relations between words,
usually in the form of finite-state transducers, represent transition relations. This
framework has been advocated by, e.g., Kesten et al. [KMM+97] and by Boigelot
and Wolper [WB98], as a uniform framework for analyzing several classes of
parameterized and infinite-state systems, where automata-theoretic algorithms
? supported in part by the ASTEC competence center, and by the Swedish Board for

Industrial and Technical Development (NUTEK)

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 403–418, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



404 A. Bouajjani et al.

for manipulation of regular sets can be exploited. Such algorithms have been
implemented, e.g., in the Mona [HJJ+96] and MoSel [KMMG97] packages.

A major problem in regular model checking is that the standard iteration-
based methods, used for finite-state systems (e.g., [BCMD92]), to compute, e.g.,
the set of reachable states, are guaranteed to terminate only if there is a bound
on the distance (in number of transitions) from the initial configurations to any
reachable configuration. An analogous observation holds if we perform a reach-
ability backwards, from a set of “unsafe” configurations, as in [KMM+97]. In
general, a parameterized or infinite-state system does not have such a bound. To
explore the entire state-space, one must therefore be able to calculate the effect
of arbitrarily long sequences of transitions. For instance, consider a transition of
a parameterized system in which a process passes a token to its neighbor. The
effect of an arbitrarily long sequence of such transitions will be to pass the token
to any other process through an arbitrary sequence of neighbors.

The problem of calculating the effect of arbitrarily long sequences of transi-
tions has been addressed for certain classes of systems, e.g., systems with unbo-
unded FIFO channels [BG96,BGWW97,BH97,ABJ98], systems with pushdown
stacks [BEM97,Cau92,FWW97], systems with counters [BW94,CJ98], and cer-
tain classes of parameterized systems [ABJN99]. A more uniform calculation
of the transitive closure of a transition relation was presented in our previous
work [JN00] for the case that the transition relation satisfies a condition of
bounded local depth. This construction was used to verify safety properties of
several parameterized algorithms and algorithms that operate on unbounded
FIFO channels or on counters.

In this paper, we develop the regular model checking paradigm further. We
give a simple and uniform presentation of the program model, which is simpler
than that used in [JN00]. The main part of the paper considers the problem of
calculating the set of configurations reachable from a set of initial configurations
via a transition relation, and the problem of computing the transitive closure of
a transition relation. We present two complementary techniques to attack these
problems:

– The first technique is an automata-theoretic construction, which uses the
standard subset-construction and minimization techniques from automata
theory. The construction succeeds if the resulting automaton is finite-state.
It generalizes the transitive closure construction in [JN00].

– The second technique is based on computing fixpoints using widening, in the
spirit of [CC77]. We propose exact widening techniques for regular langua-
ges and show how to use them for reachability analysis and for computing
transitive closures.

As another main contribution, we show how to verify liveness properties (or,
more generally, ω-regular properties). When applied to parameterized systems,
our method allows to prove, e.g., absence of starvation in resource allocation
algorithms. In general, it allows to prove a liveness property, given an arbitrary
number of parameterized fairness requirements. For instance, in a parameterized
algorithm there is typically a fairness requirement associated with each process.



Regular Model Checking 405

Our method is based on a reduction of the model-checking problem of ω-regular
properties to the problem of finding fair loops, which can be detected after having
computed the transitive closure of a transition relation.

Both the automata-theoretic and the widening-based techniques presented
in this paper have been implemented and experimented on several examples of
parameterized and infinite-state systems, including different parameterized algo-
rithms for mutual exclusion (e.g., the Bakery algorithm by Lamport, Burns pro-
tocol, Dijkstra algorithm), unbounded FIFO-channel systems (e.g., Alternating-
bit protocol), and counter systems (e.g., Sliding Window protocol with unboun-
ded sequence numbers).

Outline In the next section, we present the framework of regular model checking,
and define the verification problems that are considered in the paper. In Section 3
we present an automata-theoretic construction for computing the transitive clo-
sure of a transition relation. The construction can also be used to compute
reachability sets. Sect. 4 presents widening techniques for the same problem.
A method for model checking of ω-regular properties is given in Sect. 5, and
concluding remarks are given in Sect, 6.

Related Work Previous work on the general aspects of regular model checking,
and on analyzing classes of systems, e.g., pushdown systems, parameterized sy-
stems, systems with FIFO channels, or with counters, has already been men-
tioned earlier in the introduction. The acceleration techniques presented in this
paper are able to emulate the acceleration operations for FIFO channels reported
in [BG96].

Widening techniques have been introduced in [CC77] in order to speed up
the computation of fixpoints in the framework of abstract interpretation. Many
works have proposed widening operators for different kinds of systems, e.g.,
widening operators defined on representations based on convex polyhedra for
use in the analysis of systems operating on integers or reals (e.g., [CH78,Hal93]),
or widening operators on automata [LHR97]. All these techniques compute upper
approximations of the desired fixpoint.

Other researchers, e.g., [FO97,Sis97], use regular sets in a deductive frame-
work, where basic manipulations on regular sets are performed automatically.
These methods are based on proving an invariant given by the user or by some
invariant generation technique, but are not fully automatic. In [FO97], the aut-
hors show how to check that a given regular set is the reachability set of special
kind of relations. We use their result to prove that our widening technique is
exact. However, they do not provide any technique to find automatically the
fixpoint.

2 Preliminaries

2.1 Model

We introduce the program model used in regular model checking.



406 A. Bouajjani et al.

Let Σ be a finite alphabet. As usual, Σ∗ is the set of finite words over Σ. A
relation R on Σ∗ is regular and length-preserving if w and w′ are of equal length
whenever (w, w′) ∈ R, and the set {(a1, a

′
1) · · · (an, a′

n) : (a1 · · · an, a′
1 · · · a′

n) ∈
R} is a regular subset of (Σ × Σ)∗. In the following, we will implicitly under-
stand that a regular relation is also length-preserving. A regular relation can be
conveniently recognized by a finite-state transducer over (Σ × Σ).

Definition 1. A program is a triple P = 〈Σ, φI , R〉 where

Σ is a finite alphabet,
φI is a regular set over Σ, denoting a set of initial configurations, and
R is a regular relation on Σ∗, sometimes called the transition relation.

A configuration w of a program P is a word a1 a2 · · · an over Σ. We denote
by Rid = {(w, w′) : w = w′} the identity relation on configurations. Regular
relations can be composed to yield new regular relations. For two regular relati-
ons R and R′, their union R ∪ R′, intersection R ∩ R′, sequential (or relational)
composition R ◦ R′, and concatenation R · R′ are regular.

2.2 Modeling Parameterized and Infinite-State Systems

We give two examples of different classes of systems that can be modeled in the
framework of the preceding subsection. More examples can be found in [JN00].

Parameterized Systems. Consider a parameterized system consisting of an ar-
bitrary number of homogeneous finite-state processes connected in a linear to-
pology. A configuration of this system can be represented by a word over an
alphabet consisting of the set of states for each process, where the length of the
word equals the number of processes. A particular example of such a system is
an array of processes that pass a token from the left to the right. Each process
can be in one of two states, ⊥ or t, where ⊥ denotes that the process does not
have the token, and t denotes that the process has the token. We model this
system as the program P = 〈Σ, φI , R〉 where

– Σ = {⊥, t} is the set of states of a process,
– φI = t⊥∗ is the set of initial configurations, in which the leftmost process

has the token, and
– R = (⊥,⊥)∗ · (t, ⊥) · (⊥, t) · (⊥,⊥)∗ ∪ (⊥,⊥)∗ · ((⊥,⊥) ∪(t, t)) · (⊥,⊥)∗

is the union of two relations, of which the first denotes the passing of the
token from a process to its right neighbor, and the second denotes an idling
computation step. Note that the transition relation is implicitly constrained
by the invariant that there is exactly one token in the system.

Systems Communicating over Unbounded FIFO Channels As another exam-
ple, consider systems of finite-state processes that communicate over unbounded
FIFO channels. Assume for simplicity that there is only one FIFO channel, con-
taining a sequence of messages in the finite set M. Let Q be the finite set of



Regular Model Checking 407

combinations of control states of the processes. A configuration of this system
can be modeled as a word of the form

q ⊥⊥ · · · ⊥ m1m2 · · ·mn ⊥⊥ · · · ⊥

where q ∈ Q is the current control state, and m1m2 · · ·mn is the sequence of
messages in the channel. In order to allow messages to be added to and removed
from the channel, we add an arbitrary amount of “padding symbols” ⊥ before
and after the sequence of messages. Thus, we can model this system as the
program P = 〈Σ, φI , R〉, where

– Σ = Q∪M ∪{⊥},
– φI is the regular set qi ⊥∗ of configurations with no message in the channel,

and the initial control state qi,
– R is the union of several relations: one for each operation in the system. An

operation which sends a message m ∈ M while making a transition from
control state q to q′ is modeled by the relation

(q, q′) · (⊥,⊥)∗ · (Rid ∩ M2)∗ · (⊥, m) · (⊥,⊥)∗

Receive operations are modeled in a similar way.

2.3 Verification

Let R be a regular relation. We use R+ to denote the transitive closure of R,
and R∗ to denote the reflexive and transitive closure of R, and R−1 to denote
the inverse of R. For a regular set φ of configurations, R(φ) denotes the image
{w′ : ∃w ∈ φ.(w, w′) ∈ R} of φ under R.

In this paper, we will consider two verification problems:

– Computing Reachability Sets: Given a regular set φ of configurations and a
regular relation R, compute the reachability set R∗(φ). This can be used for
checking whether some configuration in a set φF is reachable from a set φI of
initial configurations, either by checking whether φF ∩ R∗(φI) = ∅ (forward
reachability analysis), or whether φI ∩ (R−1)∗(φF ) = ∅ (backward reach-
ability analysis). If R is a union R1 ∪ · · · ∪Rk of several regular relations,
then one can also compute the set of reachable configurations stepwise, by
repeatedly extending the set φ of currently reached configurations by R∗

i (φ)
for some i.

– Computing Transitive Closure: Given a regular relation R, compute its tran-
sitive closure R+. The transitive closure can be used for finding loops of
parameterized systems. The relation R+ ∩ Rid represents the identity rela-
tion on the set of configurations that can reach themselves via a non-empty
sequence of computation steps. To obtain the loops that can actually occur
in an execution, we intersect this set with the set of reachable configurations,
computed as a reachability set. The transitive closure can also be used for
computing the reachability set.



408 A. Bouajjani et al.

A straight-forward approach to computing R∗(φ) is to compute a sequence of
unions ∪n

i=0 Ri(φ) for n = 1, 2, 3, . . . until a fixpoint is reached, i.e., ∪n
i=0 Ri(φ) =

∪n+1
i=0 Ri(φ) for some n. This approach is guaranteed to terminate for finite-

state systems [BCMD92], but in general not for parameterized and infinite-state
systems, as observed, e.g., in [ABJN99]. The analogous observation holds for
the approach of computing R+ through the sequence of unions ∪n

i=1 Ri for n =
1, 2, 3, . . . until convergence.

We present two complementary techniques which are applicable to both of
the above problems.

– A direct automata-theoretic construction for computing R∗(φ) or R+, which
is based on the transducer for R. It is presented in Section 3.

– A technique based on widening, in the spirit of [CC77] is presented in Sec-
tion 4. The technique is based on observing successive approximations to
R∗(φ), and trying to guess automatically the limit. The guess can always be
checked to be an upper-approximation, and to be exact under some conditi-
ons. The technique can also be applied to the computation of R∗, by viewing
it as a regular set over Σ × Σ.

3 Automata Theoretic Construction of the Transitive
Closure

In this section, we present a technique for computing R+, which attempts to
compute a minimal deterministic transducer that recognizes R+ using the stan-
dard subset-construction and minimization techniques from elementary auto-
mata theory. The technique can also, with obvious modifications, be used for
computing R∗(φ). We will here concentrate on the transitive closure construc-
tion, and only briefly summarize the reachability set construction at the end of
this section.

Our transitive closure construction is not guaranteed to terminate, in par-
ticular if R+ is not regular. However, if R has bounded local depth, a concept
introduced in [JN00], a slightly modified version of our construction will yield a
finite transducer.

3.1 The Transducer Construction

For the remainder of this section, let R be a regular relation on Σ, represented
as a finite-state transducer R = 〈Q, q0, δ, F 〉 where Q is the set of states, q0
is the initial state, δ : (Q × (Σ × Σ)) 7→ 2Q is the transition function, and
F ⊆ Q is the set of accepting states. For each pair (w, w′) in R+, there is a
sequence w0, w1, . . . , wm of configurations such that w = w0, w′ = wm and
(wi−1, wi) ∈ R for 0 < i ≤ m. Let wi be the word ai

1a
i
2 · · · ai

n of length n. Then
(wi−1, wi) ∈ R means that there is a run qi

0q
i
1 · · · qi

n of R which accepts the word



Regular Model Checking 409

(ai−1
1 , ai

1) (ai−1
2 , ai

2) · · · (ai−1
n , ai

n). Let us organize these runs into a matrix of
form:

q1
0

(a0
1,a1

1)−−−−−−−−−−→ q1
1

(a0
2,a1

2)−−−−−−−−−−→ q1
2 · · · q1

n−1

(a0
n,a1

n)
−−−−−−−−−−→ q1

n

q2
0

(a1
1,a2

1)−−−−−−−−−−→ q2
1

(a1
2,a2

2)−−−−−−−−−−→ q2
2 · · · q2

n−1

(a1
n,a2

n)
−−−−−−−−−−→ q2

n
...

...
...

qm
0

(am−1
1 ,am

1 )
−−−−−−−−−−→ qm

1

(am−1
2 ,am

2 )
−−−−−−−−−−→ qm

2 · · · qm
n−1

(am−1
n ,am

n )
−−−−−−−−−−→ qm

n

with m rows, where each row shows a run of the transducer R with n transitions.
The first step in our construction of R+ is to regard the above matrix as

a single run of another transducer, whose states are columns (i.e., sequences)
of form q1q2 · · · qm for m ≥ 1, and whose transitions represent the relationship
between adjacent columns in a matrix of the above form. More precisely, define
the column transducer for R+ as the tuple 〈Q+, q+

0 , ∆, F+〉 where

– Q+ is the set of non-empty sequences of states of R,
– q+

0 is the set of non-empty sequences of initial states of R,
– ∆ : (Q+ × (Σ ×Σ)) 7→ 2Q+

is defined as follows: for any columns r1r2 · · · rm

and q1q2 · · · qm, and pair (a, a′), we have r1r2 · · · rm ∈ ∆(q1q2 · · · qm, (a, a′))
iff there are a0, a1, . . . , am with a = a0 and a′ = am such that ri ∈
δ(qi, (ai−1, ai)) for 1 ≤ i ≤ m.

It is not difficult to show that the column transducer for R+ accepts exactly
the relation R+. The only problem is that it has infinitely many states. We
will therefore determinize it using the standard subset-construction, in the hope
of decreasing the number of states. Let x, y range over columns and X, Y over
sets of columns. The subset construction applied to the column transducer for
R+ yields the automaton, 〈2Q+

, q+
0 , ℘∆, F〉 whose states are sets of columns of

states of R, whose initial state is the set q+
0 of columns of initial states, whose

set F of accepting states is the set of states with at least one column in F+,
and whose transition function ℘∆ is the lifting of ∆ to sets: ℘∆(X, (a, a′)) =
∪x∈X ∆(x, (a, a′)). We note that for each pair (a, a′), the relation {(x, y) : y ∈
∆(x, (a, a′))} is regular, so that a transducer which implements the function ℘∆
can be constructed directly from the definition of ∆. It follows that if X is a
regular set of columns, then ℘∆(X) is also a regular set of columns, which can be
constructed by composing the automaton for X with that for ℘∆ and projecting
onto the “next column”.

In most cases, the subset construction does not yield a finite automaton. We
therefore try to make it smaller by identifying equivalent sets of columns during
the construction (cf. the minimization of deterministic finite automata). For a
set X of columns (i.e., a state in the subset-automaton), let suff(X) denote the
set of suffixes of X, i.e., the set of words π ∈ (Σ ×Σ)∗ such that ℘∆(X, π) ∈ F .
Two sets X, Y of columns are equivalent if suff(X) = suff(Y ). We employ a simple
(and incomplete) technique to detect equivalent sets, based on saturation. The
basic idea is to extend (saturate) each set X of columns by additional columns



410 A. Bouajjani et al.

x such that suff({x}) ⊆ suff(X). Hopefully, two equivalent sets of columns will
become identical after saturation, in which case they will identified during the
subset construction.

Let us present the saturation rule. A state q in the original transducer R is a
copying state if suff({q}) ⊆ Rid, i.e., if its suffixes only perform copying of words.
We use the following saturation rule:.

– if xy ∈ X or if xqqy ∈ X, where x and y are (possibly empty) columns and
q is a copying state, then add xqy to X.

It is not difficult to see that suff({xqy}) ⊆ suff({xy}) and that suff({xqy}) ⊆
suff({xqqy}), implying the soundness of the saturation rule. Let dXe denote the
saturation of X, i.e., the least set of columns containing X which is closed under
the above rule. To saturate a regular set of columns is an easy operation on the
automaton which represents the set.

It follows from the above construction that the transducer obtained after
saturation recognizes R+. We summarize the discussion in the following theorem.

Theorem 1. Let R = 〈Q, q0, δ, F 〉 be a finite-state transducer. Then the deter-
ministic (possibly infinite-state) transducer 〈Q, dq+

0 e, ∆̃, F̃〉, where

– Q ⊆ 2Q+
is the set of saturated regular subsets of Q+,

– ∆̃ : (Q × (Σ × Σ)) 7→ Q is defined by ∆̃(X, (a, a′)) = d℘∆(X, (a, a′))e,
– F̃ are the sets with at least one sequence in F+.

accepts the relation R+.
It follows that if the set set of reachable states in the above automaton is finite,
then R+ is regular. We can then, using standard techniques, obtain a minimal
deterministic finite-state transducer which recognizes R+.

3.2 A Sufficient Condition for Termination

In [JN00], it was shown that R+ is regular under some sufficient conditions on a
regular relation R. We will restate these conditions and note that the construc-
tion given in the previous section, with slight modifications, will terminate under
these conditions. It should be noted that these conditions are merely sufficient
conditions for regularity, and that there are many other situations in which our
construction of R+ yields a finite-state transducer.

Let R be of the form φL · Rl · φR where

– φL ⊆ Rid is a left context, i.e., it copies a regular language which can be
accepted by a deterministic finite automaton which has a unique accepting
state, and which has no transitions from an accepting to a non-accepting
state,

– Rl is any regular relation,
– φR ⊆ Rid is a right context, i.e., the mirror image of some left context.



Regular Model Checking 411

We say that R has local depth k if for each (w, w′) ∈ R+ there is a sequence
w = w0, w1, . . . , wm = w′ such that for each 1 ≤ i ≤ m we can find indices li
and ui such that

– (ai−1
1 ai−1

2 · · · ai−1
li−1 , ai

1a
i
2 · · · ai

li−1) ∈ φL,
– (ai−1

ui+1a
i−1
ui+2 · · · ai−1

n , ai
ui+1a

i
ui+2 · · · ai

n) ∈ φR, and
– (ai−1

li
ai−1

li+1 · · · ai−1
ui

, ai
li
ai

li+1 · · · ai
ui

) ∈ Rl.

where wi = ai
1a

i
2 · · · ai

n and such that for each position p (with 1 ≤ p ≤ n), there
are at most k indices i with 1 ≤ i ≤ m such that li ≤ p ≤ ui. Intuitively, the
decomposition of R into φL ·Rl ·φR serves to structure R as a local rewriting Rl

in a “context”, represented by φL and φR. A relation with local depth k never
needs to rewrite any element of a word more than k times to relate two words.

Theorem 2. [JN00] If R has local depth k, for any k, the transitive closure R+

is regular and can be recognized by a transducer of size exponential in k.

The proof of the above theorem divides the set of columns into a finite set
of equivalence classes. We will try to apply the same reasoning to the saturated
columns in the construction of Theorem 1.

Let a copied state be a state whose prefixes are a subset of the identity rela-
tion, in analogy with copying states. The key of the proof is the observation that
all sets X of columns generated in the subset construction satisfy the following
closure property:

– if xqy ∈ X, where x and y are (possibly empty) columns and q is a copied
state, then xzy ∈ X for any z ∈ q∗.

It can be shown that the saturated columns corresponding to sequences of
configurations satisfying the conditions of local depth k is built up from sets of
the form

X0q0X1q1 · · ·Xn−1qn−1Xn

with n ≤ k and where each qi with 0 ≤ i < n is a state in the transducer for Rl

and each Xi with 0 ≤ i ≤ n is one of the following sets, where qL is a copied
state and qR is a copying state:

1. q∗
R 2. (qL + qR)∗ 3. (qL + qR)∗qR(qL + qR)∗

4. qR(qL + qR)∗ 5. (qL + qR)∗qR 6. qR(qL + qR)∗qR 7. q+
R

To obtain the termination result, we therefore restrict the columns in the
construction to have up to k states from the transducer for Rl. The conditions
on R ensure that it is enough to consider such columns.

3.3 Computing Reachable Configurations

We will finally sketch the modifications for computing instead the set R∗(φ),
where φ is a regular set of configurations. Assume that φ is recognized by a
finite automaton. In the construction of Section 3.1, a run of φ will replace the
transducer run in the first row of the matrix, with the obvious modifications.



412 A. Bouajjani et al.

The end result, corresponding to Theorem 1, is a (possibly infinite-state) au-
tomaton that recognizes R∗(φ), with the starting state dp0q

∗
0e, where p0 is the

starting state of an automaton that recognizes φ and q0 is the starting state of
a transducer for R.

4 Widening Based Techniques

We present in this section techniques for computing the effect of iterating a
regular relation. These techniques are based on using exact widening operations
in order to speed up the calculation of a regular fixpoint.

Roughly speaking, our techniques consist in (1) guessing automatically the
image of iterating a relation starting from some given regular set, and (2) deci-
ding whether this guess is correct.

The guessing technique we use consists in, given a relation R and a set φ,
comparing the sets φ and R(φ) in order to detect some “growth” (e.g., R(φ) =
φ ·Λ for some regular Λ), and then extrapolate by guessing that each application
of R will have the same effect (e.g., we guess that the limit could be φ·Λ∗). Then,
we apply a simple fixpoint test which ensures (in general) that the guessed set is
an upper approximation of the set R∗(φ). This means that using our widening
techniques we can capture in one step (at least) all the reachable configurations
from φ by R∗. Moreover, we show that under some conditions on R, the fixpoint
test allows in fact to decide the exactness of our guess (i.e., that the guessed set
in precisely R∗(φ)).

4.1 Widening on Regular Sets

Widening is applied during the iterative construction of the set of reachable
configurations in order to help termination. Given a set of configurations φ ⊆ Σ∗

and a relation R, a widening step consists in guessing the result of iterating R
starting from φ by comparing φ with R(φ) (in general, this guess can be made
by considering the sets Ri(φ) up to some finite bound k). Once this guess is
made, the obtained set is added to the computed set of configurations and the
exploration of the configuration space is continued.

Let φ ⊆ Σ∗ and let R be a regular relation on Σ∗. Our widening principle
consists in checking whether there are regular sets φ1, φ2, and Λ such that the
following two conditions are satisfied

C1: φ = φ1 · φ2 and R(φ) = φ1 · Λ · φ2,
C2: φ1 · Λ∗ · φ2 = R(φ1 · Λ∗ · φ2) ∪ φ.

and, if C1 and C2 hold, in adding φ1·Λ∗·φ2 to the computed set of configurations.
Intuitively, condition C1 means that the effect of applying R to φ is to “add”

Λ between φ1 and φ2. Notice that when φ1 or φ2 is equal to {ε}, this corresponds
respectively to the case where a growth occurs to the left or to the right of φ.
Condition C2 implies that R∗(φ) ⊆ φ1 ·Λ∗ ·φ2. Indeed, C2 means that φ1 ·Λ∗ ·φ2
is a fixpoint of F = λX. φ ∪ R(X) and R∗(φ) is the least fixpoint of F . Hence,



Regular Model Checking 413

by adding φ1 · Λ∗ · φ2 to the computed set of configurations, we capture at least
all the reachable configurations from φ by iterating R.

The inclusion φ1 ·Λ∗ ·φ2 ⊆ R∗(φ) is not guaranteed in general by C2 (for any
kind of relation R). Nevertheless, we show in the next section that for a large
class of relations, condition C2 guarantees the exactness of our technique, i.e., it
computes exactly the set R∗(φ).

The application of the widening principle depends on the quality of the “au-
tomatic guessing” part which is implicit in C1. Given two regular sets φ and
φ′ = R(φ), we have to find regular sets φ1, φ2 and Λ such that C1 holds, and
check that for these sets the condition C2 also holds. We use techniques on au-
tomata allowing to extract from φ and φ′ these sets. Roughly speaking, these
techniques consist in finding cuts in the automata of φ and φ′ that delimit φ1, φ2
and Λ. To reduce the number of choices to examine, we adopt a heuristic which
consists in considering cuts at entering vertices to strongly connected compo-
nents. This heuristic behaves well because almost always the automata we need
are of simple forms (e.g., their loops are only self-loops) and the Λ is very often
a nonempty word (or a sum of nonempty words w1 + · · · + wn), or a set of the
form w · Λ′ or Λ′ · w where w is a nonempty word.

4.2 Simple Rewriting Relations

We introduce in this section a class of relations for which it can be shown that
our widening technique is exact.

A regular relation R is unary if it is a subset of Σ × Σ. A unary relation is
acyclic if there is no a ∈ Σ such that (a, a) ∈ R+. A regular relation R is binary
if it is a subset of Σ2 × Σ2. A binary relation R is a permutation if it is a set of
pairs of form (ab, ba) where a, b ∈ Σ and a 6= b. A permutation is antisymmetric
if there are no a, b ∈ Σ such that both (ab, ba) ∈ R and (ba, ab) ∈ R.

A regular relation is defined to be simple if it is a finite union of relations of
form φL · Rl · φR, such that

1. In each sub-relation of form φL ·Rl ·φR, the “contexts” φL and φR are regular
subsets of Rid, and Rl is either unary or binary,

2. The union of all unary Rl’s is acyclic,
3. The union of all binary Rl’s is antisymmetric.

The class of simple relations is noncomparable with the class of relations
of bounded local depth. We can now prove the following theorem, stating that
conditions C1 and C2 give an exact guess for simple relations.
Theorem 3. If R is a simple relation, and if there are regular sets φ1, φ2, and
Λ such that conditions C1 and C2 are satisfied, then R∗(φ) = φ1 · Λ∗ · φ2.

To prove this theorem, we need to introduce the notion of nœtherian relations.
We say that a relation R is nœtherian if for every word w ∈ Σ∗, there is no infinite
sequence w0, w1, w2, . . . such that w0 = w and for every i ≥ 0, (wi, wi+1) ∈ R
(i.e., no word can be rewritten an infinite number of times). Notice that a length
preserving relation R is nœtherian if and only if Rid ∩ R+ = ∅. We can prove
the following fact:



414 A. Bouajjani et al.

Proposition 1. For every simple relation R, both R and R−1 are nœtherian.
Then, Theorem 3 can be deduced from Proposition 1 and the following result

by Fribourg and Olsen on nœtherian relations:
Proposition 2 ([FO97]). Let R be a relation. If R−1 is nœtherian, then for
every φ, φ′ ⊆ Σ∗, φ′ = R(φ′) ∪ φ if and only if φ′ = R∗(φ).

4.3 Constructing Transitive Closures

Given a length preserving relation R, widening can also be used to compute the
transitive closure of R. Indeed, R can be seen as a language over Σ ×Σ and R+

can be computed as the limit of the sequence (Ri)i>0. Our procedure starts from
R and computes iteratively the sets Ri for increasing i’s. Each step consists in
applying the operation λX. R ◦ X. During this iterative computation, widening
operations can be applied in order to jump to the limit. Now, from the definition
of nœtherian relations, it is easy to see that:
Lemma 1. For every nœtherian relation R, the relation {((w, w1), (w, w2)) :
w2 ∈ R(w1)} is nœtherian.

From Lemma 1 and Proposition 1, we deduce that our widening technique is
also exact when computing the transitive closure of a simple relation R, starting
from R and applying iteratively λX. R ◦ X. Notice that R∗ can be computed in
the same manner, starting from Rid instead of R.

4.4 Example

We have applied our widening-based techniques to several examples of parame-
terized systems including the mutual exclusion protocols of Szymanski, Burns,
Dijkstra, the Bakery protocol of Lamport, as well as the Token passing protocol.
All these examples can be modeled as simple relations, and our procedure ter-
minates for all of them and computes the exact set of reachable configurations.
Moreover, our techniques allow also to construct the transitive closures of the
relations modeling these systems.

We show here the application of our techniques on the example of the token
passing protocol described in section 2.2. It is easy to see that the relation R in
this model is indeed simple.

First, let us consider the problem of computing the reachability set. Our
procedure starts from the initial set of configurations φI = t⊥∗ and computes
the set R(φI) = ⊥t⊥∗. At this point, it checks that condition C1 holds since
R(t⊥∗) = Λ · t⊥∗ where Λ = ⊥. Then, it checks that condition C2 also holds:

R(⊥∗t⊥∗) ∪ t⊥∗ = ⊥∗⊥t⊥∗ ∪ t⊥∗ = ⊥∗t⊥∗

Hence, we can apply an exact widening step by adding ⊥∗t⊥∗ to the set of
reachable configurations. By doing this, our procedure terminates (since no new
configurations can be added) and we get the result:

R∗(t⊥∗) = ⊥∗t⊥∗



Regular Model Checking 415

Now, let us consider the problem of constructing the relation R+. Our pro-
cedure starts from the relation

R = (⊥,⊥)∗ · (t, ⊥) · (⊥, t) · (⊥,⊥)∗

(We omit here the part of the relation corresponding to idle transitions.) The
first step is to compute R2 which is:

R2 = (⊥,⊥)∗ · (t, ⊥) · (⊥,⊥) · (⊥, t) · (⊥,⊥)∗

Then, it can be checked that C1 holds because R = φ1 · φ2 and R2 = φ1 · Λ · φ2
with φ1 = (⊥,⊥)∗ · (t, ⊥), φ2 = (⊥, t) · (⊥,⊥)∗, and Λ = (⊥,⊥). It can also be
checked that C2 holds:

(R ◦ (φ1 · (⊥,⊥)∗ · φ2)) ∪ R = φ1 · (⊥,⊥)∗ · (⊥,⊥) · φ2 ∪ φ1 · φ2

= φ1 · (⊥,⊥)∗ · φ2

and hence, our procedure gives the result:

R+ = (⊥,⊥)∗ · (t, ⊥) · (⊥,⊥)∗ · (⊥, t) · (⊥,⊥)∗

5 Model Checking of ω-Regular Properties

In this section we will show how to reduce the problem of verifying a property
specified by a Büchi automaton to the problem of computing the transitive
closure. A related technique is presented by Pnueli and Shahar [PS00]. Our
technique is based on the observation that the problem of detecting infinite
sequences reduces to that of detecting loops. This is true because the transition
relation is length preserving which implies that each state, which is a word of a
certain length, can only reach a finite set of states. For a program P = 〈Σ, φI , R〉,
we can check for loops by checking the emptiness of the set

R∗(φI) ∩ R+ ∩ Rid

We can use this idea to verify that a program satisfies an ω-regular property
under a set of fairness requirements, as follows. We use the standard techni-
que [VW86] of encoding the negation of the property to be checked as a Büchi
automaton. We also encode each fairness constraint as a Büchi automaton. Ac-
tually, we can handle parameterized fairness requirements, using the position as
the parameter: simply associate one Büchi automaton with each position in the
word, which expresses the fairness constraint for that position. Now construct
the product of the program with the Büchi automaton for the negation of the
property, and the Büchi automata for the fairness requirements. We must now
check whether this product has a reachable “fair loop” in which each Büchi
automaton visits an accepting state.

To check for fair loops, we first construct the set of reachable configurations
of the product. Then, for each Büchi automaton, we add an observer. This is a



416 A. Bouajjani et al.

bit which can be initialized to false in a reachable state and thereafter detects
whether the Büchi automaton has visited some accepting state during a sequence
of transitions. More precisely, the transition relation is extended so that it sets
an observer bit to true whenever the corresponding Büchi automaton reaches an
accepting state; an observer bit can never become false after being set to true.

Let Raug be the so constructed transition relation containing both Büchi
automata and their observer bits. Fair loops can now be detected by checking
whether R+

aug relates a reachable state with all observer bits being false with
the same reachable state but with all observer bits being true.

We illustrate this method by verifying a liveness property for the token array
system, given in Sect. 2.2, extended with fairness constraints. We will verify that
every process eventually gets the token. The negation of this property is “some
process never gets the token”, which can be expressed by a Büchi automaton
accepting an infinite sequence of states of a process where the token is never
obtained, i.e., an infinite sequence of the symbol ⊥. We encode this automaton
by adding one boolean variable r which is true at the position at which the Büchi
automaton reads symbols and by constraining the transition relation and the set
of initial configurations so that

– r is true at exactly one position in the word,
– the truth value of r never changes in any position, and
– the token is never passed to the position where r holds.

We also impose for each process the fairness constraint that “the process may
not hold the token indefinitely”. For each position, this fairness constraint can
be expressed by the Büchi automaton

��
��
��
��
s1 ��

��
s2

�
��	

�
-

t

⊥

�

�

�

�

?

⊥ �

�

�

�

?

t

These Büchi automata, one for each position in the word, are encoded by an
extra variable s, initialized to s1 and ranging over the set of automaton states
{s1, s2}. The transition relation is extended so that the variable s simulates the
state of the above automaton. Let P̂ = 〈Σ̂, φ̂I , R̂〉 denote the resulting program
obtained by adding the variables r and s as described above.

Finally, a boolean observer sobs is added to each position and the transition
relation is changed so that sobs becomes true when s becomes the accepting state
s1. Let Raug be the resulting transition relation.

Let the variable â range over Σ̂, the alphabet of the program P̂. We can
now check for fair infinite runs that violate the original property (“every process
eventually gets the token”) by checking emptiness of the set

R̂∗(φ̂I) ∩ R+
aug ∩ (â = â′ ∧ ¬sobs ∧ s′

obs)
∗



Regular Model Checking 417

Note that the set R̂∗(φ̂I) can be computed as a reachability set. We have
applied the construction given in Sect. 3 to construct a transducer for R+

aug

successfully in our implementation.

6 Conclusions

We have presented regular model checking, a framework for algorithmic verifica-
tion of parameterized and infinite-state systems. To solve verification problems in
this framework, we need to reason about the effect of iterating regular relations
an unbounded number of times. It is well-known that the verification of safety
properties reduces to reachability analysis. Moreover, the verification problem
of any ω-regular properties, including liveness properties, can be reduced to the
construction of the transitive closure of a regular length-preserving relation.

We have investigated properties of transitive closures, which lead to the de-
velopment of new techniques for the construction of transitive closures. We have
also presented widening-based techniques for constructing transitive closures and
for reachability analysis. These techniques can be combined for computing sets
of reachable configurations and transitive closures during verification.

Acknowledgments We are grateful to Amir Pnueli for fruitful discussions. Colla-
boration was supported by a travel grant from the ARTES network for real time
research and graduate education in Sweden.

References

[ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly
analysis of systems with unbounded, lossy fifo channels. In Proc. 10th

CAV, volume 1427 of LNCS, pages 305–318, 1998.
[ABJN99] Parosh Aziz Abdulla, Ahmed Bouajjani, Bengt Jonsson, and Marcus

Nilsson. Handling global conditions in parameterized system verification.
In Proc. 11th CAV, volume 1633 of LNCS, pages 134–145, 1999.

[BCMD92] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98:142–
170, 1992.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pus-
hdown Automata: Application to Model Checking. In Proc. CONCUR
’97. LNCS 1243, 1997.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communication
protocols with infinite state spaces using QDDs. In Alur and Henzin-
ger, editors, Proc. 8th CAV, volume 1102 of LNCS, pages 1–12. Springer
Verlag, 1996.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. In Proc. of the Fourth International Static Analysis Symposium,
LNCS. Springer Verlag, 1997.

[BH97] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of fifo-
channel systems with nonregular sets of configurations. In Proc. ICALP
’97, volume 1256 of LNCS, 1997.



418 A. Bouajjani et al.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
Proc. 6th CAV, volume 818 of LNCS, pages 55–67. Springer Verlag, 1994.

[Cau92] Didier Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106(1):61–86, Nov. 1992.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified model for
static analysis of programs by construction or approximation of fixpoints.
In Proc. 4th POPL, pages 238–252, 1977.

[CH78] Patrick Cousot and Nicholas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL’78. ACM, 1978.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis
and presburger arithmetic. In CAV’98. LNCS 1427, 1998.

[FO97] L. Fribourg and H. Olsén. Reachability sets of parametrized rings as
regular languages. In Proc. 2nd INFINITY’97, volume 9 of Electronical
Notes in Theoretical Computer Science. Elsevier Science Publishers, July
1997.

[FWW97] A. Finkel, B. Willems, , and P. Wolper. A direct symbolic approach
to model checking pushdown systems (extended abstract). In Proc. Infi-
nity’97, Electronic Notes in Theoretical Computer Science, Bologna, Aug.
1997.

[Hal93] N. Halbwachs. Delay Analysis in Synchronous Programs. In CAV’93.
LNCS 697, 1993.

[HJJ+96] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in prac-
tice. In Proc. TACAS ’95, 1th TACAS, volume 1019 of LNCS, 1996.

[JN00] Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relati-
ons for verifying infinite-state systems. In Proc. TACAS ’00, 6th TACAS,
LNCS, 2000. to appear.

[KMM+97] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich assertional languages. In O. Grumberg, editor,
Proc. 9th CAV, volume 1254, pages 424–435, Haifa, Israel, 1997. Springer
Verlag.

[KMMG97] P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: A flexible
toolset for monadic second–order logic. In Proc. TACAS ’97, Enschede
(NL), volume 1217 of LNCS (LNCS), pages 183–202, Heidelberg, Ger-
many, March 1997. Springer–Verlag.

[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of
parameterized linear networks of processes. In 24th POPL, Paris, January
1997.

[PS00] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized
verification. In Proc. 12th CAV, 2000. In this Volume.

[Sis97] A. Prasad Sistla. Parametrized verification of linear networks using au-
tomata as invariants. In O. Grumberg, editor, Proc. 9th CAV, volume
1254 of LNCS, pages 412–423, Haifa, Israel, 1997. Springer Verlag.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to au-
tomatic program verification. In Proc. 1st LICS, pages 332–344, June
1986.

[WB98] Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but
regular state spaces. In Proc. 10th CAV, volume 1427 of LNCS, pages
88–97, Vancouver, July 1998. Springer Verlag.


	Introduction
	Preliminaries
	Model
	Modeling Parameterized and Infinite-State Systems
	Verification

	Automata Theoretic Construction of the Transitive Closure
	The Transducer Construction
	A Sufficient Condition for Termination
	Computing Reachable Configurations

	Widening Based Techniques
	Widening on Regular Sets
	Simple Rewriting Relations
	Constructing Transitive Closures
	Example

	Model Checking of omega-Regular Properties
	Conclusions



