Model-Checking for Hybrid Systems by
Quotienting and Constraints Solving

Franck Cassez! and Francois Laroussinie?
I TRCCyN, EC Nantes & CNRS UMR 6597, France,
Franck.Cassez@Qirccyn.ec-nantes.fr
2 LSV, ENS de Cachan & CNRS UMR 8643, France,
Francois.Laroussinie@lsv.ens-cachan.fr

Abstract. In this paper we present a semi-algorithm to do composi-
tional model-checking for hybrid systems. We first define a modal logic
L which is expressively complete for linear hybrid automata. We then
show that it is possible to extend the result on compositional model-
checking for parallel compositions of finite automata and networks of
timed automata to linear hybrid automata. Finally we present some re-
sults obtained with an extension of the tool CMC to handle a subclass
of hybrid automata (the stopwatch automata).

1 Introduction

Model checking for timed and hybrid systems. Model-checking algorithms for
finite-state automata have been extended to timed automata [ACD93] and tools
like KRONOS [Yov97] or UPPAAL [LPY97] have been used successfully also
for verifying many industrial applications [BGKT96/MY96]. Hybrid systems
JACH95] are a strong extension of timed automata and model-checking (or
reachability) is undecidable [HKPV98] for these models. Nevertheless semi-algo-
rithms have been implemented in tools like HyTech [HHWT97].

Heuristics for model-checking. In the timed verification area, model-checking is
decidable but its complexity is high (PSPACE-complete or EXPTIME-complete)
[ACD93/AL99]. A lot of works deal with heuristics to overcome this complexity
blow-up (symbolic approaches [HNSY94], efficient and compact data structu-
res [BLPT99], on-the-fly algorithms [BTY97] etc). From a practical point of
view it is interesting to have different methods to verify a system: an approach
can be very efficient over some classes of systems while another one works well
for other classes. This last point is crucial for hybrid systems as model-checking
is undecidable: for instance the so-called forward and backward reachability ana-
lysis algorithms [ACHT95/AHH96] are complementary.

Compositional Model-Checking. An alternative method to standard model-
checking is compositional model-checking [And95ILLIBILPY95]. Given a system
S = (Hy|---|Hp) and a property ¢, the method consists in building a quotient

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 373-B88, 2000.
© Springer-Verlag Berlin Heidelberg 2000



374 F. Cassez and F. Laroussinie

formula ¢/H, s.t. (Hy|---|Hy) = ¢ iff (Hy|---|Hn-1) E ¢/Hp. Some simpli-
fication techniques can be applied in order to keep a small size for ¢/H,. By
quotienting every component of the system one after the other, the remaining
problem (if the last formula is not reduced to tt nor ff by simplifications) is to
check a quotient property ¢’ on the mil process which is an automaton that
cannot do any action. Figure [I] describes the two steps of the method.

(Hil...[Hn)f —=| Quotient tt
+ — ¢ ff : - os
pell — Simplifications , |nil-model checking y
= or no
constraints solving ?
| | | |
Step 1 Step 2

Fig. 1. Compositional Model Checking overview.

Our contribution. We propose here a compositional algorithm for linear hy-
brid automata. First we introduce a new modal logics L (a kind of hybrid
p-calculus) which uses variables. L allows us to express many kinds of pro-
perties, in particular it can be used to do compositional model-checking. Then
we present reduction strategies to simplify L" formulas. When H;’s are hybrid
automata, the two steps of the compositional method may not terminate (they
require to compute fixed points over polyhedras), but it is possible to use ab-
stractions for the first step in such a way that (1) termination is ensured and (2)
S = ¢ & nil = /S still holds. Then any problem (Hq|...|H,) = ¢ can be re-
duced to a nil-model-checking problem. Moreover we will see that this last step
can be seen as a kind of constraints solving problem. Finally we present results
obtained with a prototype HCMC which deals with hybrid automata where the
slopes of variables belong to {0,1}.

2 Hybrid Automata

Notations. Let V and V' be two finite sets of variables with VNV’ = (. A
valuation is a mapping from a set V of variables into R. For two valuations
v e RY, v € RV, we define the valuation v.v/ € RYYY' by (v./)(z) = v(z)
if x € Vand (v')(z) = v'(z) if x € V. I |V| = n, a valuation v can be
interpreted as a vector v of R™. We also recall the following useful definitions:

— A linear expression over V' is of the form a+)", a;v; with a,a; € Z,v; € V.
The set of linear constraints C(V') over V is the set of formulas built using
boolean connectives over expressions of the form e; > es where e; and es
are linear expressions and i belongs to {=, <, >, <,>}. Given a valuation
v and a linear constraint -, the boolean value v(v) describes whether ~ is
satisfied by v or not.



Model-Checking for Hybrid Systems 375

— A linear assignment over V is of the form v := A0 + b where Aisan xn
matrix with coefficients in Z and b is a vector of Z". We denote an assignment
a by a pair (A,b) and write T := () for v := AT+ b. L(V) is the set of
linear assignments.

— A continuous change of variables is defined w.r.t. an element d of Z"" (hereaf-
ter referred to as the activity vector or direction) corresponding to the first
derivative of each variable: given t € R>(, the valuation v + d.t is defined by
(v+dt)(x) =v(x)+d(z).t.

We will need a particular property on subsets of R™ we refer to as d-strongly
connection for some d € Z™: A region r C R"™ is d-strongly connected iff Vv, v € r
v/ = v+ d.t (for some t € Rx() implies V0 < ' < ¢,v + d.t' € r. This means
that if one can go from one point in r to another also in r following the direction
d then all the intermediate points along the path are in r. If Future(r, d) (resp.
Past(r,d)) denotes the future (resp. past) extension of r in direction d, then r
is d-strongly connected is equivalent to r = Future(r,d) N Past(r,d) (then this
condition can be effectively checked for).

The model. Hybrid automata |ACHT95[AHHI6|Hen96] are used to model sy-
stems which combine discrete and continuous evolutions.

Definition 1 (Hybrid automaton) A hybrid automaton H is a 7-tuple (N,
lo,V, A, E, Act, Inv) where:

— N is a finite set of locations,

— lp € N s the initial location,

— V is a finite set of real-valued variables,

— A is a finite set of actions,

— ECNxXxC(V)xAxL(V) XN is a finite set of edges; e =(l,v,a,a,l'y € E
represents an edge from the location | to the location I with the guard -y, the
label a and the linear assignment c.

— Act € (ZV)N assigns an activity vector for V to any location. Act(l)(x)
represents the first derivative of x in location [.

— Inv € C(V)N assigns an invariant to any location. We require that for any
I, Inv(l) is Act(l)-strongly connected. O

Ezample 1. As a running example we will use the scheduler given in [AHH96]
and depicted] on Figures Bl and Bl This scheduler Sched (Figure B) can handle
two types of tasks: type 71 and type T5. Priority is given to tasks of type 75 and
in case a task of type T} is currently running it is preempted: then measuring
the execution time of tasks of type T} requires the use of a stopwatch y;. We also
use a stopwatch y» to measure the execution time of tasks of type T (although
it is not necessary as tasks of type Ty cannot be preempted.) Obviously, y; will

! The automata are designed using the GasTeX package available at
http://www.liafa.jussieu.fr/"gastin/gastex.



376 F. Cassez and F. Laroussinie
x1 > 10; Inty x2 > 20; Inte
x1:=0 z2:=0

Fig. 2. Automaton of the environment: Env

k:2:1/\y2:8/\k1:()

k1=1/\y1=4 Enda; ke :=0

tt; Inty
kit

tt; ]nt¢:1’2

ke=1ANy2=8Ak1 >0
E?’Ldg;k‘g =0

k‘1>1/\y1=4 k:2>1/\y2=8
Endy;y =05k Enda;yz :=0;ky —

Fig. 3. Automaton of the scheduler: Sched

be running at rate 1 in location T; and 0 otherwise. Tasks of type T} take 4 time
units and 8 time units for T5. The initial state of Sched is Idle.

The number of pending and running tasks of type i is given by the integerfﬂ
k; (integers are implemented as stopwatch with slope 0 in every location). The
arrivals (events Int; and Inty) of the tasks are described by the (timed) auto-
maton Env (Figure P)). This automaton specifies that the interval between two
consecutive arrivals of tasks of type T} (resp. T2) is more than 10 (resp. 20) time
units. O

Semantics of hybrid automata. The semantics of a hybrid automaton is given
by an (infinite) transition system. At any time, the configuration of the system
is a pair (I,v) where [ is a location and v a valuation. The configuration can

% On the figures, k; ™ stands for k; := k; + 1 and k; ~ for k; :=k; — 1 .



Model-Checking for Hybrid Systems 377

change in two different ways: a discrete change can occur when a transition
in F is enabled in the configuration (I, v), and a continuous change can occur
according to the evolution law of the variables (given by Act(l)) and as long
as the invariant Inv(l) remains true. The initial configuration of the hybrid
automaton is (lg, vo) with vg = {0}V (i.e. vo(z) = 0 Vz € V).

Definition 2 (Semantics of a hybrid automaton) The semantics of a hy-
brid automaton H = (N, 1o, V, A, E, Act, Inv) is a labeled transition system Sg =
(Q, qo, —) with Q@ = N xRV, qo = (lo, vo) is the initial state (vo(xz) =0, Vz € V)
and — 1is defined by:

~y(v) = tt, v = a(v) and
Inv(l") (V') = tt

=0 v =v+ Act(l).t and

Vo<t <t Inv(l)(v+ Act(l).t') = tt

(Lv) == (",v") if3(l,y,a,0,l') € E s.t. {
e(t) ;O
(l,v) —— (", v') iff
A run of a hybrid automata H is a path in Sp. a

Remark 1. Due to the Act(l)-connectedness, the condition
VO <t <t, Inv(l)(v+ Act(l).t') = tt
is equivalent to Inv(l)(v + Act(l).t) = tt whenever Inv(l)(v) = tt.

Parallel composition of hybrid automata. It is convenient to describe a system as
a parallel composition of hybrid automata. To this end, we use the classical com-
position notion based on a synchronization function & la Arnold-Nivat [Arn94].
Let Hy, ..., H, be n hybrid automata with H; = (N;,1; 0, Vi, A, E;, Act;, Inv;).
A synchronization function f is a partial function from (AU {e})™ < A where o
is a special symbol used when an automaton is not involved in a step of the glo-
bal system. Note that f is a synchronization function with renaming. We denote
by (Hi|...|Hy)s the parallel composition of the H;’s w.r.t. f. The configurati-
ons of (Hyl|...|Hy); are pairs (I,v) with [ = (I1,...,l,) € Ny x ... x N, and
v =00, withd v; € RV (we assume that all sets V; of variables are disjoint.)
Then the semantics of a synchronized product is also a transition system: the
synchronized product can do a discrete transition if all the components agree to
and time can progress in the synchronized product also if all the components
agree to. This is formalized by the following definition:

Definition 3 (Parallel composition of hybrid automata) Let Hy, Ho, ...,
H,, be n hybrid automata with H; = (N;,l; 0, Vi, A, By, Act;, Inv;), and f a (par-
tial) synchronization function (AU {e})™ — A. The semantics of (H1|...|Hy)s
is a labeled transition system S = (Q, qo,—) with @ = Ny x ... x N, x RV, qo
is the initial state ((l10,... ,1ln,0),v0) and — is defined by:

3 v; is the restriction of v to V;.



378 F. Cassez and F. Laroussinie

- (I,v) SN (I',0") iff there exists (ay,. .., a,) € (AU{e})" s.t. f(a1,...,a,) =
b and for any ¢ we have:
. Ifa; = e, then l, =1; and v} = v;,
cIfa; € A, then (I;,v;) —=— (I}, v}).
- (I,v) _w, (1,0") iff Vi € [1..n], we have {l;,v;) v, (I3, v)) O
Ezample 2. The synchronization function f for the parallel composition (Sched |
Env) of the scheduler and the environment of example [l is given by:

flnt;, Int;) = Int; and f(End;,e) = End;
for any ¢ in {1,2}.

3 L": A Modal Logic for Hybrid Automata

3.1 Syntax of L’l}

We use a fixed point logic L” to specify the properties of hybrid automata. This
logic is an extension (with variables) of the logic L, presented in [LL95]. It allows
only maximal fixed points and consequently the specification of safety properties
(this includes time-bounded liveness properties).

Definition 4 (L": L, for hybrid systems) Let K be a finite set of variables,
Id a set of identifiers, and A an alphabet of actions. The set of L formulas over
K, A and Id is defined inductively by:

Lysgy == oVlony|{ae|lde| Gae|Bde| Zlaine]|y
where a € A, a € L(K), v € C(K), d € ZX and Z € Id. O

3.2 Semantics of Ll’f

It is straightforward to define the tt and ff operators and moreover implication
© = 1 whenever no identifier occurs in ¢ (for example, ¢ = ¢ with ¢ € C(K))
since this fragment is closed under negation. The meaning of identifiers is given
by a declaration D : Id — L.

Given a parallel composition S of hybrid automata, we interpret L? formula
w.r.t. extended states (I,v,u) where (I,v) is a state of S and u is valuation for
K variables (namely formula variables). Intuitively (a) (resp. [a]) denotes the
existential (resp. universal) quantification over a-transitions, (64) (resp. [04]) de-
notes the existential (resp. universal) quantification over continuous transitions
of S w.r.t. the direction d for the variables of K. The « in ¢ formula means that
after the change of formula variables according to a (o € L(K)), the new exten-
ded state verifies . The linear constraint v over K variables holds for (I,v,u)
whenever v(u) = tt. Finally Z holds for an an extended state, if it belongs to the
largest solution of the equation Z = D(Z). For formula of the type x := 0 in ¢
we simply write x in ¢. Moreover when no formula variable occur in a formula,
we write (&) (resp. [6]) instead of (Jp) (resp. [dp]). Formally the semantics of L"
is given in Table [T1



Model-Checking for Hybrid Systems 379

@uu) EppAg iff @v,u) Ep ¢ and 7<Z,v,u) Ep ¢

(Lv,u) oV ¢ i (l,v,u) Ep @ or (l,v,u) Fp ¢

(Iv,u) =p (a)e I, v, u) s.t. (I,v) —— {",v") and (I',v",u) =p @
(v,u) o falp WV T, 0'u), (1 v) — (I, 0) implies (7,0, u) = ¢
(I,v,u) =p (Ja)p iff 3t € RZC s.t. (I, v) i) (I,v + Act(l).t) and

(I,v+ Act(l).t,u +d.t) Ep @

(,v,0) = [Bae EVEe R, 7, 0) — 2 (1, v+ Act(l).t) implies

(I,v+ Act(l).t,u +d.t) Ep ¢
{I,v,u) =p v iff y(u) =tt
Z7U7u> ':D ain ¢ iff <27’U7 a(u)> ':'D ¥
{I,v,u) Ep Z iff (I,v,u) belongs to the maximal solution of Z = D(Z)

—

Table 1. Semantics of the modal logic L”

3.3 Examples of ij Formulas

As L is a conservative extension of L,, we can derive classical temporal opera-
tors as in the examples below:

— To express that the action error is never performed, we can use the following
equation:

X 2 A [a]X A [error|ff A [6] X
acA

We denote this formula by ALWAYS 4([error]ff). In this example there is no
formula variable and the [§] deals only with continuous transitions [ of the
system S which is being specified.

— To express that the number of a-transitions is less than 100 along any run,
we can use the formula: z := 0 in X with X defined by:

X2 (@<100)A N\ BIXAla(z:=2+1in X) A [§—0)) X
beA\{a}

In this case, x is just a discrete formula variable.

— More generally ALWAYS 4 z(¢) with A C A and E C ZK a finite set of
directions for K wvariables, states that ¢ holds from any reachable state
using actions transition in 4 and delay transitions with derivatives in F
for K variables. ALWAYS 4 g(¢) can be defined with the following equation:

X=Zon NBIX A N [6]X
be A ecE

4 the operator does not contain the evolution law of automata variables since they
only depend on the system.



380 F. Cassez and F. Laroussinie

— In the same manner, the weak until operator ¢;Until 4 g @2 is defined as the
largest fixed point of:

XV (en \BIX A N B]X)
be A ecE

— As for timed automata, the following fixed point equation interpreted over
a parallel composition of two hybrid automata (without invariant iP:s 1 and
H, with the synchronization function f(a,e) = a; and f(e,a) = as for any
a € A, expresses the (strong) bisimilarity of H; and Hs:

X< A [a1](a2) X A /\ [as]{a1) X A [8]X
a€A acA

Example 3. We want to specify on our scheduling system that a task of type
T, never waits: as a new arrival of a task Tb will preempt a running 73 task,
this amounts to check that ks < 1 as ko gives the number of pending and
running T, tasks; we would also like to prove that at most one task of type Ty
may be pending i.e. k1 < 2. We express the previous property as a reachability
property of an error transition. Let Sched’ be the hybrid automaton obtained
from Sched by adding error-transitions (I, (k; > 2V ko > 1),error,,l) for
l € {Idle, Ty, T>}. It remains to check that error-transitions can not be fired i.e.
(Env|Sched’) ;= ALWAYS 4([error]ff) that is:

X 2 [Int1)X A [Inty] X A [Endi]X A [Ends) X A [error|ff A [6] X

4 Compositional Verification of Hybrid Automata

4.1 Quotient Construction

Given a hybrid system (H; | -+ | H,)s and a L formula ¢, we want to build
a formula <p/an st.(Hy |-+ | Hp)f E@iff (Hi |-+ | Hhoa) ¢/ Hy. The
definition of the quotient construction is given in Table[2l Note that it is easier to
define it w.r.t. a binary synchronization function between (Hy | --- | Hp,—1) and
H, but it is straightforward to decompose (H; | --- | Hp)s in such a manner.
For the no-action label, the conventions are the following: (e} = [e]p = .
Note that the variables in V,, become formula variables in the quotient formula;
this entails that the operators (d4) and [04] occurring in <p/f H,, deal with KUV,,.

Moreover given d € ZX and d' € Z'~, d.d’ denotes the corresponding integer
activity vector over K U V,,. Finally note that the quotienting of identifiers may
increase [ the number of fixed point equations in D’; in the worst case, the size of
D' is |D|.|N| where |N| is the number of locations of the quotiented automaton.
This will motivate the use of reduction methods. Now we have:

5 The case of automata with invariant can be handled by a more complex formula

based on the same idea.
5 A new Z! identifier can be added to D’ for any location ! and any Z€ Id.



Model-Checking for Hybrid Systems 381

(pr Ap2)/ L= (p1/ 1) A(p2/1) (p1 V2) /1= (p1/ D)V (p2/1)

(@)1= V ¥ A (ain Inv(l) A (B)(ain (/1))
(L,y,¢,0,l')EER) / f(b,c)=a
(lal)/1 = A (A ain Fro) ) = B in (o)1)
(Ly,c,a,l'YEER) / f(b,c)=a
(<5d><ﬁ)/fl = (ba.actry) (Inv(l) A go/f 1)
([5d]90)4l = [0q.acty](Inv(l) = go/fl) Z/fl =7
(ain tp)/fl:ozin (tp/fl) ,y/fl:,y

Table 2. Quotienting rules to obtain gp/f l

Theorem 1. Let ((Hy |--- | Ho—1)s | Hn)s be a system of n hybrid automata
H; = (N, lo:, Vi, Ai, Ei, Acti, Inv;) and @ an L formula over K. If ((p,1),v.w)
is a configuration of (Hy |-+ | Ho—1)p | Hp)p with v € Uj<,,RY:, w € RY" and

u € RE s.t. Inv(l)(w) = tt, then we have:
(D vww) Fo e ifandonlyif  (7v,0) For o/l .

A sketch of the proof of Theorem [T] is given in appendix [A] The following defi-
nition shifts the meaning of the quotient to hybrid automata:

Definition 5 (Quotient of ¢ by a hybrid automaton) Let H = (N,ly,V,
A,E; Act,Inv) and H = (NI}, V', A", E', Act’, Inv') be hybrid automata with
vo, vy their initial valuations and f a synchronization function for H and H'. Let
@ be an L formula with clocks over K, D a declaration and v the valuation
{0}K. Then (H | H") ¢ Ep ¢ iff ((lo,1), (vo.v}),u0)) Ep . We also define
the quotient ga/fH to be cp/f lo. Consequently (H | H') s =p ¢ iff H = (cp/f H)
where D' deals with the set of identifiers which are introduced during quotienting.
O

Then verifying a system can be reduced to a nil-model checking problem [A:

Corollary 1. Let (--- (Hi|H2)y, -+ |Hy) g, . be an hybrid system, (lo, vo) its
initial configuration, ¢ an L" formula, D a declaration and ug the valuation
{0}, If Inv(lo)(vo) = tt, we have: {(lo.1,--- ,lo.n) Vo, u0) Ep ¢ & nil Epr
0/ o Hn -+ / o Hy) O

" nil can only let time elapse without performing any action, this is an automaton
with no variable and no edge.



382 F. Cassez and F. Laroussinie

4.2 Simplification Strategies

The size of ¢/H is in O(|p|.|H|) if we consider the formula as a dag (viz. repre-
sented by a data structure with sharing of sub-formula). Therefore the final quo-
tient formula ¢/H, /... /H; may be in size exponential in |Hy|+. ..+ |Hy,|+|o|.
This blow-up of the quotient formula corresponds to the state explosion problem
which occurs in classical model-checking approach (for example, complexity of
model-checking for alternation free p-calculus over product of classical automata
is EXPTIME-complete [KVW98] while it is only P-complete for one automaton).
We are going to apply syntactical and semantical reductions over the quotient
formula after each quotienting in order (to try) to keep in the quotient formula
@/H only the part of the behavior of H which is relevant w.r.t. the property ¢
we want to check.

Many simplifications used for timed automata also apply here: Boolean Simpli-
fications (tt A = p, (a)ff = ff, etc), Trivial Equation Elimination (equations of
the form X = [a] X A[04)X have X = tt as solution etc.), Equivalence Reduction
(if two identifiers X and Y are equivalent we may collapse them into a single
identifier).

Hitzone Reduction consists in computing, for any atomic constraint £ € C(K)
occurring in ¢, an upper approximation of the set of valuations for K (i.e. a
linear constraint S¢ over the formula variables) where the truth value of £ is nee-
ded to decide the truth value of ¢ for the initial configuration. These S¢ sets are
obtained by a (forward) fixed point computation. Afterwards, £ can be replaced
by tt (resp. ff) whenever B S¢ C[ €] (vesp. Sen [ € ]=0).

We illustrate the hitzone reduction with the following example. Consider the
formula ¢ 2 X, with:

Xy M (;1;2 < 3= [a](22:=0in Xl)) A(b)(z1:=0in Xo) A [6(1,1)] X0
X1 2 (221 = [B]X2) A [So)(z2<4 = X))
X Z (] Xy A (22 > 21—3)

First we compute Sx, (resp. Sx,, Sx,) corresponding to the set of K valuations
where the truth value of Xy (resp. X1, X2) is needed to decide whether ¢ holds
for the initial configuration. This is done by a forward fixed point computation:
we start with S§ =[ 1 =22 =0 ] and S% = S%, =[ ff ], 4 iterations are
necessary to obtain the result:

— }(0 :H(Elz.’tg]],S}(l :II;L’lsz:O]]aHd S}(g :[[ff]]7

_Sg(o :[[g;lzxg\/x1=0§1’2]]7
S%, =l =0<21<3Var=0<ay<4]and 8%, =[21 =22 = 0],

~ %, =[0< @ <2 ], 8%, =[0< 21 <3N0 <2 <4]and §%, =[ 25=
0<z;<z3Va =0<m<1],

~ S, =l0<a <as], 5%, =[0< 21 <3N0 <@ <4]and S, =[0 <
1’1§3/\0§$2§1]]7

8 [ €] denotes the set of valuations satisfying the linear constraint £.



Model-Checking for Hybrid Systems 383

This computation of sets Sg( is done by a forward propagation of linear con-
straint, the sub-formulas (a in ¢), ([d4]¢) and (y = @) are seen as predicate
transformers.

Figure flshows the final value of Sx,, Sx, and Sx,. Therefore the constraint
(2 > 21—3) in X5 can be reduced to tt since Sy, C[ zo2 > x1—3 ]. Then trivial
equation elimination allows us to reduce X5 (resp. Xi) to tt. Finally we can
simplify Xo to (b)(z1:=0in Xo) A [6(1,1)] Xo-

SX() SXl SX2

Fig. 4. Example of hitzones computation.

Of course, the computation of S¢ is based on operations over polyhedra and
may not terminate (contrary to other simplifications). Nevertheless it is pos-
sible to use coarser over-approximation of the S¢’s to ensure termination, this
clearly leads to less efficient simplifications (i.e. allowing less atomic constraints
reductions).

Sharing variables. In the definitions of L and H;, we assume that the variables
sets V; and K are disjoint. This hypothesis is important only if hitzone simpli-
fication is applied because this reduction assumes that transitions of automata
which have not yet been quotiented do not modify the value of formula varia-
bles (for ex. the sub-formula (x < 10) A {a)(z > 10) is reduced to ff because
it is assumed that z is not updated by performing the a-transition). If we do
not apply the hitzone simplification, automata variables can be used inside the
formula and variables can even be shared between several automata. In these
cases, the hitzone reduction can only be applied after the quotienting of the last
automaton that uses the shared variables (i.e. when all the control part they are
concerned with is present in the quotient formula).

Nil-model-checking and constraints solving. Let ¢’ be ¢/Hy/ ... /H;. Note that
¢’ expresses a property over nil and then we can assumeﬁ that no (a) and no
[a] occur in ¢'. In fact, deciding whether ¢’ holds for nil requires to compute
the fixed point of equations X; = D'(X;) where D’ is the definition of identifiers
occurring in ¢’. But an extended configuration of nil is just an |K’|-tuple of real

9 For nil process, we have (a)p = ff and [a]p = tt.



384 F. Cassez and F. Laroussinie

numbers and then nil = ¢’ can be seen as a constraints problem over sets of
| K'|-tuple of real numbers. For example, nil = X, with the following declaration:

Xo = (xg = 1) = (.’L‘Q =01in Xl) AN (.731 <lVvz > 1) N [5(071)](332 <l= Xo)
X1 = ($2 = 1) = (IEQ =0 in Xo) A [5(1,1)](1‘2 <l= Xl)

is equivalent to the problem of deciding whether (0,0) € Sy where Sy and Sy
(C R x R) are defined as the maximal sets verifying:

If (x1,22) € Sp Then (z2 =1 = (21,0) € S1) and (x1 <1V 2, > 1) and
(Vt >0,z +t<1= (I1,$2 +t) S So)

If (x1,22) € S1 Then (z2 =1= (21,0) € Sp) and
(Vt> 0,20+t < 1= (z1+t,z2+1t) €51)

Therefore in the compositional verification, the first step deals with an high level
description of the problem (a parallel composition of hybrid automata and a spe-
cification written with L") while the second step treats a more basic description
and could be analyzed by a constraints solver over real numbers.

In [ACH™95| reachability problems of the form “is it possible to reach a
configuration verifying ¢q ?” (where ¢¢ is an atomic constraint) are reduced to
a fixed point computation of an equation system which encodes the behavior of
the hybrid system. In fact if we apply our quotient technique over the reachability
formula ALWAYS (—¢y), we obtain the same kind of equations (it can be smaller
thanks to the simplification step), and then the compositional method can be
seen as an extension of the previous results over hybrid system since it deals
with any kind of property which can be expressed with alternation-free modal
p-calculus.

5 Hybrid CMC and Examples

Hybrid CMC . We extended CMC (a tool implementing the compositional me-
thod for timed automata [LLI]]) in order to handle a subclass of hybrid systems
where variables have slopes in {0,1}. Moreover we use classical constraints of
TA (viz. z xxm or  — y < m) and assignments are of the form x := y +m or
2 := m. The same restrictions apply to the modal logic handled by HCMC. This
subclass of hybrid system remains very expressive (model checking is clearly un-
decidable) and allows to model a large variety of systems [BF99a].

Given an hybrid system and a modal specification, HCMC allows us to build the
simplified quotient formula. Moreover there is a procedure to (try to) solve nil
model-checking problems. We use a DBM-like data structure to represent con-
straints over variables in the algorithms [Dil89]. This choice motivates the restric-
tion to slopes in {0, 1} (other slopes would require extended forms of constraints)
but even in this framework some operations (like Future(d,z) = {v +d.t|v €

1 .
0 Here the answer is “ no”.



Model-Checking for Hybrid Systems 385

z,t € R}) can only be approximated. These abstractions ensures termination
of the two steps (simplifications and nil model-checking algorithm) of the com-
positional approach. However the problem being undecidable, an answer not in
{yes,no} may occur. This third result corresponds to cases where the abstrac-
tions used for the second step are too large to be able to conclude. The prototype
HCMC is available at the web address: http://www.lsv.ens-cachan.fr/ fl.

Examples. The current version of HCMC has been applied over several examples.
Here are the results:

— The scheduler described in Example [1 has been successfully verified: the
quotienting of the formula in Example[3 by the two components is directly
reduced to tt by the simplifications.

— We applied the method over a verification problem for two Petri Nets con-
sidered in the MARS project |X}] and verified by HyTech (following the me-
thod of [BF99b]). Here the problem consists in verifying that a place always
contains less than 2 tokens. The verification succeeds in every case (either
directly after the first step, or after the nil model-checking computation).

— We have tried to verify the ABR protocol. We adapted the model used
in [BE99a] for HyTech to HCMC. Here the first step gave a specification with
25 equations but the second step couldn’t conclude due to approximations.

6 Conclusion and Future Work

In this paper we have extended the compositional model-checking method defi-
ned in [LL95] for timed automata to hybrid automata. Our work is two fold:

1. on the theoretical aspects we have proven that it is possible to do compo-
sitional model-checking for hybrid automata; we have defined the logic L,
i.e. an extension of modal p-calculus, so that this logic can express many
properties for specification of reactive systems and is expressively complete
for linear hybrid automata.

2. we have implemented a prototype tool HCMC to handle verification of hybrid
automata where variables have slopes in {0,1}.

As described in section [Bl, our method consists in two distinct steps: quoti-
enting and then constraints solving. Our current implementation uses DBMs as
a data structure to represent the regions of R™. Obviously we are only able to
manipulate over-approximation of the actual regions of our hybrid automata.

If this is no harm for step 1 as we only miss some simplifications, it is a real
impediment for step 2: if the approximation is too coarse we are not able to
prove some properties.

Our future work will consist in extending HCMC in order to deal with integer
slopes without approximations (this could be done by using a tool like HyTech

Y http://www.loria.fr/ xie/Mars.html



386 F. Cassez and F. Laroussinie

and a polyhedra library to do the final nil-model-checking and simplifications
or a constraints solver over the reals). We can also easily extend our logic and
algorithm to cope with slopes within integers intervals i.e. & € [I, u] so that we
will be able to use HCMC on real-life examples and compare the performances
with other related tools.

Acknowledgment

The authors would like to thank Béatrice Bérard, Kim Guldstrand Larsen and
the anonymous referees for their useful comments on this work.

References

[ACDY3]

[ACH™95]

[AHH96]

[ALYY]

[And95]
[Arn94]
[BF99a]

[BF99b)]

[BGK™96]

[BLP*99]

[BTY97]

R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-
time. Information and Computation, 104(1):2-34, 1993.

R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science B, 137, January 1995.

R. Alur, T. A. Henziger, and P. H. Ho. Automatic symbolic verifica-
tion of embedded systems. IFEFE Transactions On Software Engineering,
22(3):181-201, March 1996.

L. Aceto and F. Laroussinie. Is your model checker on time ? In Proc.
24th Int. Symp. Math. Found. Comp. Sci. (MFCS’99), Szklarska Poreba,
Poland, Sep. 1999, volume 1672 of Lecture Notes in Computer Science,
pages 125-136. Springer, 1999.

H. R. Andersen. Partial Model Checking. In Proc. of LICS’95, 1995.
André Arnold. Finite Transition System. Prentice Hall, 1994.

B. Bérard and L. Fribourg. Automated verification of a parametric real-
time program: the ABR conformance protocol. In Proc. 11th Int. Conf.
Computer Aided Verification (CAV’99), Trento, Italy, July 1999, volume
1633 of Lecture Notes in Computer Science, pages 96—107. Springer, 1999.
B. Bérard and L. Fribourg. Reachability analysis of (timed) Petri nets
using real arithmetic. In Proc. 10th Int. Conf. Concurrency Theory (CON-
CUR’99), Eindhoven, The Netherlands, Aug. 1999, volume 1664 of Lec-
ture Notes in Computer Science, pages 178-193. Springer, 1999.

J. Bengtsson, W. O. David Griffioen, K. J. Kristoffersen, K. G. Larsen,
F. Larsson, P. Pettersson, and W. Yi. Verification of an audio protocol
with bus collision using uppaal. In Proc. of the 8th International Confe-
rence on Computer-Aided Verification, LNCS 1102, pages 244-256, 1996.
G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Effi-
cient timed reachability analysis using clock difference diagrams. In 11th
Computer-Aided Verification, Trento, Italy, July 1999.

A. Bouajjani, S. Tripakis, and S. Yovine. On-the-Fly Symbolic Model
Checking for Real-Time Systems. In Proc. of the 18th IEEE Real-Time
Systems Symposium, RTSS’97. IEEE Computer Society Press, December
1997.



[Dil89)]

[Hen96]

[HHWT97]

[HKPV98]

[HNSY94]

[KVWO8]

[LLY5]

[LL9g]

[LPY95]

[LPY97]

[MY96)

[Yov97]

Model-Checking for Hybrid Systems 387

D.L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Proc. Workshop Automatic Verification Methods for Finite
State Systems, Grenoble, LNCS 407, 1989.

T. A. Henzinger. The theory of hybrid automata. In Proceedings, 1
Annual IEEE Symposium on Logic in Computer Science, pages 278—292,
New Brunswick, New Jersey, 27-30 July 1996. IEEE Computer Society
Press.

T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HYTECH: A model checker
for hybrid systems. Lecture Notes in Computer Science, 1254:460-77,
1997.

T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decida-
ble about hybrid automata? Journal of Computer and System Sciences,
57(1):94-124, August 1998.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. Information and Computation,
111(2):193-244, 1994.

O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking, 1998. Full version of the
CAV’94 paper, accepted for publication in J. ACM.

F. Laroussinie and K.G. Larsen. Compositional Model-Checking of Real
Time Systems. In Proc. CONCUR’95, Philadelphia, USA, LNCS 962,
pages 27—41. Springer-Verlag, August 1995.

F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-
checking of real-time systems. In Proc. IFIP Joint Int. Conf. Formal
Description Techniques & Protocol Specification, Testing, and Verification
(FORTE-PSTV’98), pages 439-456. Kluwer Academic Publishers, 1998.

K. G. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic
model-checking of real-time systems. In Proc. of the 16th IEEE Real-
Time Systems Symposium, RTSS’95, 1995.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Journal
of Software Tools for Technology Transfer, 1(1/2):134-152, October 1997.
O. Maler and S. Yovine. Hardware timing verification using KRONOS.
In Proc. 7th Israeli Conference on Computer Systems and Software En-
gineering, Herzliya, Israel, June 1996.

S. Yovine. Kronos: A Verification Tool for real-Time Systems. Journal of
Software Tools for Technology Transfer, 1(1/2):123-133, October 1997.

Ith

A Proof of Theorem [1]

For simplicity we restrict the proof to the case of two hybrid automata H; and
H, and a synchronization function f. The proof is carried out by induction on
the formula of L". For all inductive definitions except [04]¢ and its dual (34)¢p
the induction steps are exactly the same as for timed automata (see [LL95]).
We here focus on the case of the rule [§z]¢ (the case (04)p works in the same
manner) involving continuous evolution as this case involves the main difference
between hybrid and timed automata: the rates of the variables are values of Z
and not always 1.



388 F. Cassez and F. Laroussinie

Proof (Rule [64)¢.). Let ((l1,12),v1.v2) be a configuration of (H|Hz) . Given a
t >0, v} (resp. v}) will denote vy + Act(ly).t (resp. va + Act(l2).t) and given an
activity vector d, ' will denote u + d.t.

=. Assume ((I1,12),v1.v2,u) Ep [0a]p and Inv(lz)(ve) = tt.
Then by definition of L? semantics (Table [T, we have:
VE 2 0, (L, o), vrve) — s (L1, 1a), v).0p) implies (11, 15), v}.vh, o) Ep ¢
We have to show: (l1,v1,v2.u) Fpr [0 act(1,)] (Inv(l2) = <p/f la).
Let t > 0 s.t. (I1,v1) 0, (l1,v]), there are two cases:
— Inv(ly)(vh) = ff: therefore (Inv(ly) = <p/f l2) holds for (Iy, v}, vh.u'),

— Inw(l2)(vy) = tt: therefore there exists (11, 1), v1.v9) — s (11, Ia), v}.v})

because Inv(ly)(ve) = Inv(ly)(vh) = tt and Inv(ly) is Act(l)-strongly con-
nected. Moreover ((I1,13),v].v5,u) Ep ¢ entails that (go/f l3) holds for
(I, v}, vh.u") because we have the induction hypothesis:

(1, 12), v105, ') p @ & (l,vp,05.0) Fpr @/ 12
Then we have: (1, v}, v5.u") Ep (Inv(ly) = ©/, l2).

Therefore we have: (l1,v1,v2.u) Fpr [04. Act(1,)](Inv(l2) = go/f l2).

<. Assume (I1,v1,v2.u) Fpr [04 Act(s)](Inv(l2) = cp/f l2).

We want to show ((I1,12),v1.v2,u) Ep [d4]ep.

Let t > 0 s.t. ((I1,12), v1.v2) v, ((I1,12),v].vh). This entails that there exists

(I1,v1) v, (I1,v}) and then (ly,v],v5.u") Ep (Inv(l) = ap/flg). Moreover

we know Inv(ly)(vh) = Inv(le)(ve) = tt and then we have (Iy,v],v5.u') Epr
((p/f l2). Therefore by i.h. we obtain: {(I1,12),v].v5,u’) Ep ¢.
Then we have: ((I1,12),v1.v2,u) =p [04]p.



	Introduction
	Hybrid Automata
	L^h_v : A Modal Logic for Hybrid Automata
	Syntax of L
	Semantics of L
	Examples of L Formulas

	Compositional Verification of Hybrid Automata
	Quotient Construction
	Simplification Strategies

	CMC and Examples
	Conclusion and Future Work
	Proof of Theorem 1



