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Abstract. The Available Bit Rate protocol (ABR) for ATM networks
is well-adapted to data traffic by providing minimum rate guarantees
and low cell loss to the ABR source end system. An ABR conformance
algorithm for controlling the source rates through an interface has been
defined by ATM Forum and a more efficient version of it has been de-
signed in [13]. We present in this work the first complete mechanical
verification of the equivalence between these two algorithms. The proof
is involved and has been supported by the PVS theorem-prover. It has
required many lemmas, case analysis and induction reasoning for the
manipulation of unbounded scheduling lists. Some ABR conformance
protocols have been verified in previous works. However these protocols
are approximations of the one we consider here. For instance, the algo-
rithms mechanically proved in [10] and [5] consider scheduling lists with
only two elements.

Introduction

The Available Bit Rate protocol (ABR) for ATM networks is well-adapted to
data traffic by providing minimum rate guarantees and low cell loss to the ABR
source end system. The protocol relies on a contract between the operator who
ensures a minimum rate and the source who must respect a rate that is dyna-
mically allocated to him, according to the resources available in the networks.
Due to its flexibility the ABR service admits elaborated traffic management me-
chanisms. To avoid congestion the operator should control in real-time that the
actual rate consumed by every ABR application is consistent with the allowed
rate. Several algorithms for this conformance control have been proposed and
discussed in standardization committees.
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It is essential for an operator to give evidence that the conformance control of
the service he proposes does not jeopardize the quality of service (QoS) provided
by the ATM network. For such a task formal validation through mathematical
arguments is required. However conformance control verification often involves
complex case analysis or inductions. This has motivated some operators to em-
ploy automated verification tools such as proof-assistants or model-checkers to
process these proof obligations.

The algorithm Acr that has been defined by ATM Forum is considered to give
the optimal conformance control, in that it computes the minimal allowed rate
among the other algorithms. An algorithm (B’) for computing an approximation
of the optimal control has been designed by C. Rabadan from France-Telecom
[12]. It is more efficient since the next two rates to be controlled are scheduled
and are updated when receiving RM-cells. This incremental algorithm has been
generalized in [13] to the scheduling of an arbitrary number of rates in the future.
Our goal here is to derive a mechanical proof that this ideal incremental algo-
rithm is indeed equivalent to the reference algorithm Acr. By this we mean that
every step in the equivalence proof has been verified mechanically. The theorem
prover we use is PVS [11]. Although PVS is interactive and operates under the
direct control of the user it is capable of large autonomous deduction steps by
appealing to decision procedures for arithmetics, to rewriting and induction.

Related works Some ABR conformance protocols have been automatically ve-
rified in previous works. However all these protocols are approximations of Acr.
In particular unlike our case they assume a bound on the number of rates to
be scheduled. For instance Algorithm B’ of C. Rabadan [12] admits scheduling
lists with only two elements. It has been proved recently in [10]. This proof is
based on the calculus of weakest preconditions [6] (inductive invariants) and
has been completely formalized with the COQ proof-assistant [2]. According to
[10] the correctness proof of Algorithm B’ has been a key argument in the stan-
dardization process of ABR. Several proof techniques have been experimented
in the FORMA project (http://www-verimag.imag.fr) for the validation of
ABR protocols. But the model checking approaches have been hindered by the
numerical parameters of the algorithm. L. Fribourg has also obtained good re-
sults with extended timed automata [7]. A successful proof of protocol B’ with
the parameterized temporized automata of Hytech [8] has been reported in [5].

Layout of the paper We first describe the principle of ABR Conformance
in Section 1. Then we introduce the algorithms Acr and Acr1 for controlling
the ABR Conformance in Section 2 and 3 respectively. The rest of the paper is
devoted to the equivalence proof of these two algorithms. We first introduce some
key properties in Section 4, then an overview of the proof in Section 5. Since
the PVS proof is too complex to be presented in extenso we give a skeleton that
follows closely the mechanical proof. We comment about the mechanical proof in
Section 6. For the interested reader, the full PVS specification and proof scripts
can be found at http://www.loria.fr/˜stratula/abr.

http://www-verimag.imag.fr
http://www.loria.fr/~stratula/abr
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1 ABR Conformance Control

ATM (Asynchronous Transfer Mode) technology allows networks to transmit on
the same media various applications whose needs are different in term of data-
flow rate or quality of services. ATM is a connection-oriented technology since
users should declare service requirements and traffic parameters to all interme-
diates switches when initializing connections. They also may agree to control
these parameters on demand. In order to guarantee QoS a traffic contract spe-
cifying a traffic mode is negotiated when the connection is set up. Traffic mana-
gement should ensure that users get their desired QoS although traffic demand
is constantly varying. In other words traffic management should ensure that all
contracts are met.

In order to solve the critical issue of congestion control the effective rate of
cells emitted by user applications is controlled by a conformance algorithm called
GCRA (Generic Control of Cell Rate Algorithm). Among the possible traffic
modes, Constant Bit Rate (CBR) and Variable Bit Rate (VBR) were designed
mainly for traffic like voice and video. The Available Bit Rate (ABR) service
class is especially adapted for standard data traffic, where timing constraints
are not tight. Target applications for ABR are email, WWW, file transfer and
variable quality video and voice. The principle of ABR is to divide the available
bandwidth1 fairly among active traffic sources so that the network should provide
each user with the best rate that is compatible with the current traffic (best-
effort service principle). In ABR connections the allowed cell rate (ACR) is
determined by the network from load information and may vary during the
same connection. The network informs periodically the user about the new rate
he can apply by sending back to him Resource Management (RM) cells. Hence
the source rate is dynamically adjusted according to the available resources of
the network by a feedback control loop (see Fig. 1). Since the allocated rate varies
during a connection with ABR mode, the conformance control is performed by
a dynamic GCRA (DGCRA).

Several ABR conformance algorithms have been proposed to the normaliza-
tion committees. Algorithm Acr [4] can be viewed as a reference for defining the
control of the user data-flow in the case of ABR. Each time a data cell arrives
from the ABR terminal into the control interface Algorithm Acr computes the
rate that should be applied to this cell. The computational cost induced by Acr
has been considered too high and there were several proposals to improve it.

For instance it was noticed that the rate change is only determined by the
departure of RM-cells leaving the control interface towards the ABR terminal
(called backward RM-cells) and these RM-cells are much less frequent than data
cells. Hence there is much improvement in scheduling rate changes in advance
when receiving backward RM-cells in the interface. This is the motivation for
1 left-over by CBR,VBR, e.g.
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Fig. 1. Time delays between the network and an ABR terminal

the so-called incremental algorithm Acr1 which has been designed to maintain a
list of planned rates. This list is updated each time the interface receives a new
backward RM-cell. Also controlling the rates with the scheduling list of Acr1
seems to be less expensive than computing the maximum of a list of rates with
Acr.

2 Data-Flow Control Definition with ABR (Algorithm
Acr)

We shall give the data-flow control definition called here Acr. It has been first
introduced in ATM Forum by [4] and since then it has been considered as a
reference for the other algorithms.

The principle of the algorithm Acr running in the interface is to manage
the list of backward RM-cells received from the network (Fig. 1) in order to
determine the rate that has to be controlled at some instant. We shall associate
with each RM-cell a couple (t, er) where t is the time when the backward RM-cell
leaves the interface (where conformance control is performed) towards the ABR
terminal and er is the new rate imposed by the network to the ABR terminal.
For our discussion we identify a cell with its associated couple. By convention
we call time (resp. rate) of c the first (resp. second) component of a cell c. The
control device receives the new expected rate value before the ABR terminal.
Hence due to the transmission delays in the networks, the control device should
apply at time t a value received at time t − τ where τ represents a propagation
delay equal to the time taken by an RM-cell to go from the interface to the
ABR terminal and back to the interface. However the propagation times in the
network may vary according to the traffic load. In order to take into account
variations of these delays, the ITU-T has proposed that the rate to be controlled
at time t is computed as the maximum among the rates received by the interface
within a temporal window limited by t− τ2 and t− τ3 and the rate received just
before or at t−τ2. The window parameters τ2, τ3 satisfy τ2 > τ3. They have been
negotiated during the establishment of the traffic contract.
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More formally, let l = [(t1, er1), (t2, er2), . . . , (tn, ern)] be a list of RM-cells.
The first cell of l is (t1, er1). The list l is time-decreasing (t.d. in short) if i <
j ⇒ ti ≥ tj , for all i ∈ [1..n − 1] and j ∈ [2..n]. In order to handle limit cases
in the definitions below we shall define t0 = +∞. We denote by · (resp. @) the
cons (resp. append) operator on lists.

The rate to be controlled at time t w.r.t. the t.d. list l =
[(t1, er1), (t2, er2), . . . , (tn, ern)] of backward RM-cells leaving the interface is:

Acr(l, t) =

{
MaxEr(Wind(l, t)) if Wind(l, t) 6= ∅,

0 otherwise

where

Wind(l, t) = {(ti, eri) ∈ l| (t − τ2 < ti ≤ t − τ3) or (ti ≤ t − τ2 < ti−1)}
MaxEr(s) = max{er|(t, er) ∈ s}
For instance, with this rate control policy the end user can benefit at time

t+ τ3 from a rate increase received on a backward cell at time t by the interface,
that is, as soon as possible. On the other hand a rate decrease will be taken into
account only at time t + τ2, that is, as late as possible. Hence this is a policy
in favour of the user and based on worst-case situations. It can be noticed that
for a fixed list l, Acr(l, t) is decreasing on t after t + τ3 since the window is (non
strictly) decreasing for the inclusion relation.

3 Incremental Conformance Checking (Algorithm Acr1)

We now introduce an ideal incremental algorithm Acr1 for conformance control.
Unlike Acr the algorithm Acr1 computes a list of rates to be controlled in the
future. Hence it maintains a list Prog(l) of cells (l is as above) (tj , erj) containing
a future rate erj to be controlled together with the time tj it comes into effect.
Similar to l, Prog(l) will be sorted in decreasing order on time. This list is
updated when receiving a backward RM-cell. An important gain over Acr is due
to the fact that the RM-cells are much less frequent than the data cells. The
ratio of RM-cells to all cells recommended by the ATM Forum2 is 1/32. Let
us assume that the list Prog(l) is constructed. We shall prove later that it is
time-decreasing as l. Then the rate to be controlled at time t is:

Acr1(l, t) = Prog(l)t

where pt is a function that computes by extrapolation the rate at time t from a
list of scheduled rates p. This function simply extracts from p the first rate value
that is scheduled at or immediately before the time t. This rate is the one to be
controlled at t. Formally:

2 ATM Forum Traffic Management Specification Version 4.0.
ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.ps
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pt =




eri if there exists a cell (ti, eri) ∈ p such that t ≥ ti and
there is no cell (tj , erj) ∈ p with t ≥ tj , i > j and i, j ∈ [1..n]

0 otherwise

We now describe how the list Prog(l) is updated. A list l′ is a prefix of a list l if
there exists a list l′′ such that l = l′@l′′. Given a list l′ and a time t we denote by
l′>τ t the maximal prefix of l′ containing cells with time greater than t. Similarly
we define l′≤ρer as the maximal prefix of l′ containing cells with rate less or equal
than er. This gives the following recursive definition of Prog(l):

Prog((t, er) · l) =




if er ≥ Prog(l)t+τ3 then (t + τ3, er) · l′

where Prog(l) = Prog(l)>τ t+τ3@l′.

else if Prog(l)≤ρer is empty then (t + τ2, er) · Prog(l)

else (t′, er) · l′′

where Prog(l) = Prog(l)≤ρer@l′′

and Prog(l)≤ρer = L@[(t′, er′)]

Prog(l) is by definition the empty list when l is the empty list.

Our goal in the remaining of the paper is to show that the incremental
algorithm Acr1 delivers the same rate values as the reference algorithm Acr, i.e.

∀t ∀l Acr1(l, t) = Acr(l, t)

4 Two Key Properties

Two properties were used abundantly in the main proof. The first one time dec
states that Prog(l) is sorted in decreasing order on its time components. The
second one rate inc specifies a prefix of Prog(l) that is sorted in increasing
order on its rate component. Both assume that l is time-decreasing (t.d.). We
denote by Timel(l) the time of its first cell (0 if l is empty).

Property 1 (time dec) Given a t.d. cell list l the list Prog(l) is also t.d..

Proof. By induction on l. When l is empty Prog(l) is empty hence t.d.. Assume
by induction hypothesis that for any t.d. list l1 of length less or equal than
the length of l, Prog(l1) is t.d.. Let us prove that Prog((t, er) · l) is t.d. when
t ≥ Timel(l). We perform a case analysis guided by the definition of Prog from
Section 3. Note that any sublist of a t.d. list is also t.d..

1. assume that er ≥ Prog(l)t+τ3 . Let l′ be such that Prog(l) =
Prog(l)>τ t+τ3@l′. Then Prog((t, er) · l) is equal to (t + τ3, er) · l′ which is t.d.
since t + τ3 ≥ Timel(l′) and l′ is t.d..



350 M. Rusinowitch, S. Stratulat, and F. Klay

2. otherwise, let Prog(l) = Prog(l)≤ρer@l′′. If Prog(l)≤ρer is empty then the
list (t + τ2, er) · Prog(l) is t.d. because t + τ2 ≥ Timel(Prog(l)). This can be
deduced from (i) the time-decreasing property of (t, er) · l, and (ii) the fact that
for any nonempty t.d. list L = (t, e) ·L′ we have t+ τ2 ≥ Timel(Prog(L)). (This
can be proved by a simple induction on L.)

If Prog(l)≤ρer is a nonempty list of the form L′′@[(t′, er′)] then (t′, er) · l′′ is a
t.d. list as it can be deduced from the time-decreasing property of Prog(l). 2

We denote by lyt the maximal prefix l′ of l such that the time of any cell
from l′ except possibly the last one is greater than t. We remark that for any
nonempty t.d. list l, the prefix lyt and l have the same first cell. We say that
a cell list l = [(t1, er1), (t2, er2), . . . , (tn, ern)] is strictly rate-increasing (s.r.i. in
short) if the rate-values of its cells are strictly increasing: i < j ⇒ eri < erj ,
for all i, j ∈ [1..n]. We can observe that given an s.r.i. list l and two time values
t > t′ we have lt ≤ lt′ .

Property 2 (rate inc) Given a t.d. cell list l the prefix Prog(l)
yTimel(l)+τ3 of

Prog(l) is s.r.i..

Proof. By induction on l. If l is empty then Prog(l) is empty hence s.r.i.. Other-
wise by induction hypothesis we assume that Prog(l)

yTimel(l)+τ3 is s.r.i.. If
t ≥ Timel(l) we will prove that Prog((t, er) · l)yt+τ3 is also s.r.i. by case analy-
sis according to the definition of Prog.

1. if er ≥ Prog(l)t+τ3 then Prog((t, er) · l) = (t+ τ3, er) · l′ where l′ is such that
Prog(l) = Prog(l)>τ t+τ3@l′. It results that Prog((t, er) · l)yt+τ3 = [(t + τ3, er)]
which is s.r.i..

2. otherwise let l′′ be such that Prog(l) = Prog(l)≤ρer@l′′:

2.1. if Prog(l)≤ρer is empty then Prog((t, er) · l) = (t + τ2, er) · Prog(l).
We have Prog((t, er) · l)yt+τ3 = (t + τ2, er) · Prog(l)yt+τ3 . Moreover,
Prog(l)yt+τ3 is a prefix of Prog(l)

yTimel(l)+τ3 because t ≥ Timel(l). By con-
sequence (t + τ2, er) · Prog(l)yt+τ3 is s.r.i..

2.2. otherwise Prog(l)≤ρer = L@[(t′, er′)] for some L and Prog((t, er) · l) =
(t′, er) · l′′. If l′′ is empty, Prog((t, er) · l)yt+τ3 consists of the unique cell (t′, er′)
and is obviously s.r.i. Since l′′ is a sublist of Prog(l) the list l′′

yt+τ3
is a sublist

of Prog(l)yt+τ3 . Therefore it is s.r.i.. Moreover er is less than the rate of the
first cell of l′′ (or l′′

yt+τ3
) when l′′ is not empty. We conclude that Prog((t, er) ·

l)yt+τ3 = (t′, er) · l′′
yt+τ3

is s.r.i.. 2

5 The Main Proof

We will employ the following notations. Assume that x is a cell, Time(x) its
time, Er(x) its rate and τ2, τ3 the two window parameters. The model checking
approaches with MEC [1] and UPPAAL [3] had to assign values to these para-
meters in order to proceed. Here we only assume all over the proof that τ2 > τ3
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without any further mention of this hypothesis. We introduce T2(x) to denote
Time(x) + τ2 and T3(x) to denote Time(x) + τ3. The predicate S≥τ (l), resp.
S<ρ(l), is true if l is t.d., resp. s.r.i.. We will omit the quantifier prefixes of the
formulas since all the variables are considered as universally quantified.

The proof of the conjecture Acr1(l, t) = Acr(l, t) is immediate if we prove
the main lemma P (l), where:

P (l) : S≥τ (l) ⇒ Prog(l)t = MaxEr(Wind(l, t))

We apply an induction on the length of l. When l is empty, the proof is imme-
diate, by expanding the definitions of Prog, MaxEr and Wind. In the step case,
we suppose P (l) and we try to prove P (a′ · l). More precisely, we should prove
that Prog(a′ · l)t = MaxEr(Wind(a′ · l, t)) follows from S≥τ (a′ · l). From the
hypothesis S≥τ (a′ · l) we deduce S≥τ (l) since l is a sublist of (a′ · l). Hence, we
can assume that Prog(l)t = MaxEr(Wind(l, t)). The arguments for proving the
step case are also based on the following property depending on the induction
hypothesis:

Property 3 The list Prog(l)
yT3(a′) is s.r.i..

Proof. From Property 2 we have S≥τ (l) ⇒ S<ρ(Prog(l)
y(Timel(l)+τ3)). Together

with the hypothesis S≥τ (l), we deduce S<ρ(Prog(l)
y(Timel(l)+τ3)). We also have

Time(a′) ≥ Timel(l) since
S≥τ (a′ ·l) and by consequence Prog(l)

yT3(a′) is a prefix of Prog(l)
y(Timel(l)+τ3).

Hence Prog(l)
yT3(a′) is s.r.i.. 2

By Tm we denote Prog(l)t. Then t ≥ Tm and no cell from the list Prog(l) has
its time in the interval (Tm, t]. Let Ia′ be the time of the first cell of Prog(a · l).
We have the following facts about Ia′ .

1. Ia′ ∈ {T2(t′), T3(t′) | t′ is the time of an (a′ · l) cell}, as can be easily proved
by induction on l.

2. Ia′ ∈ [T3(a′), T2(a′)]. Since a′ · l is t.d., from the first fact it results that
Ia′ ≤ T2(a′). Moreover from the definition of Prog: (i) if Er(a′) < Acr1(l, T3(a′))
then the prefix Prog(l)≤ρEr(a′) contains only cells with rates ≤ Er(a′) which
therefore occur at a time > T3(a′). If Prog(l)≤ρEr(a′) is empty, then Ia′ = T2(a′),
otherwise Ia′ is the time of the last cell of it. By consequence, Ia′ > T3(a′). (ii) if
Er(a′) ≥ Acr1(l, T3(a′)) then Ia′ = T3(a′).

The domain where Ia′ can take its value for each case is included in the
hachured time interval of the corresponding figure. From the definition of Prog,
it can be shown that the rate of the first cell of Prog(a′ · l) is Er(a′). Hence
Prog(a′ · l) = (Ia′ , Er(a′)) · L′′ for some list L′′.
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We perform a case analysis according to the position of t w.r.t. the values
T2(a′) and T3(a′):

1. If T2(a′) ≤ t (see Fig. 2) then Acr1(a′ · l, t) = Acr(a′ · l, t)(= Er(a′)) because

• MaxEr(Wind(a′ · l, t)) = Er(a′) since Wind(a′ · l, t) = [a′].
• Prog(a′ · l)t = Er(a′) because (Ia′ , Er(a′)) is the first cell of Prog(a′ · l) and

Ia′ ≤ T2(a′) ≤ t.

timeIa′ T2(a′)T3(a′) Tm tT ime(a′)

rate

Er(a′)
Acr1(a′.l, time)

Acr1(l, time)

Fig. 2. T2(a′) ≤ t

2. If T3(a′) > t (see Fig. 3) then

• a′ is not member of Wind(a′ · l, t). Therefore, Acr(a′ · l, t) = Acr(l, t) , and
• Acr1(a′ · l, t) = Acr1(l, t) because Ia′ ∈ [T3(a′), T2(a′)].

timeIa′ T2(a′)T3(a′)t

rate

Er(a′)

Time(a′) Tm

Acr1(a′.l, time)

Acr1(l, time)

Fig. 3. T3(a′) > t

By the induction hypothesis Acr1(l, t) = Acr(l, t). It results that Acr1(a′ · l, t) =
Acr(a′ · l, t).

3. If T2(a′) > t ≥ T3(a′) we deduce that a′ ∈ Wind(a′ · l, t), by definition of
Wind.
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3.1. If Wind(l, t) is empty then the list l is also empty. Otherwise, the first cell
of l belongs to Wind(l, t). Then Prog([a′]) = [(Er(a′), T3(a′))] since t ≥ T3(a′)
and Wind([a′], t) = [a′]. Therefore Acr1([a′], t) = Acr([a′], t) = Er(a′).

3.2. If Wind(l, t) is nonempty, let ERm be the value of the maximal rate of the
Wind(l, t) cells. According to the induction hypothesis Acr(l, t) = Acr1(l, t).
Thus the rate of the Prog(l) cell situated at Tm equals ERm.

In order to schedule Er(a′), we perform a case analysis according to the definition
of Prog:

3.2.1. If the condition

Acr1(l, T3(a′)) ≤ Er(a′) (Cond.1)

is true (see Fig. 4), then Ia′ = T3(a′). Moreover (Ia′ , Er(a′)) is the first cell of
Prog(a′ · l). Then Acr1(a′ · l, t) = Er(a′) because T3(a′) ≤ t.

timeT2(a′)TmI
a′ = T3(a′) tT ime(a′)

Acr1(l, time)

Acr1(a′.l, time)Er(a′)
rate

Fig. 4. T2(a′) > t ≥ T3(a′) and Acr1(l, T3(a′)) ≤ Er(a′)

It remains to prove that Acr(a′ · l, t) also equals Er(a′) or equivalently ERm ≤
Er(a′).

Again from T3(a′) ≤ t together with the fact that the sublist Prog(l)
yT3(a′) is

s.r.i. according to Property 3 we deduce Acr1(l, t) ≤ Acr1(l, T3(a′)). Therefore
by the condition Cond.1 and the induction hypothesis we have ERm ≤ Er(a′).

3.2.2. If the condition

Acr1(l, T3(a′)) > Er(a′) (Cond.2)

is true we know that Ia′ > T3(a′). We distinguish the following cases:

3.2.2.1 Tm ≤ T3(a′) (see Fig. 5). Since T3(a′) ≤ t it results that t ≥ T3(a′) ≥ Tm.
By the definition of Tm, no cell of Prog(l) has its time in the interval (Tm, t].
Hence Acr1(l, T3(a′)) = ERm. On the one hand by the condition Cond.2 we
have ERm > Er(a′). Consequently Acr(a′ · l, t) = ERm. On the other hand the
instant Ia′ can be either T2(a′) or the time of a Prog(l) cell. T2(a′) also cannot be
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inside the interval (Tm, t] since T2(a′) > t. If Ia′ = T2(a′) then Ia′ > t. Assume
now that Ia′ is the time of a Prog(l) cell. Since Ia′ > T3(a′), t ≥ T3(a′) ≥ Tm

and there is no Prog(l) cell located in the interval (Tm, t] we deduce that Ia′ > t.
Therefore Acr1(a′ · l, t) is also equal to ERm.

timeIa′ T2(a′)T3(a′)tTm

rate

Time(a′)

Er(a′)
Acr1(a′.l, time)

Acr1(l, time)

Fig. 5. T2(a′) > t ≥ T3(a′), Acr1(l, T3(a′)) > Er(a′) and Tm ≤ T3(a′)

3.2.2.2. Tm > T3(a′) (see Fig. 6). It results that t ≥ Tm > T3(a′). We have the
following cases to consider:

– if Er(a′) < ERm then Acr(a′ · l) = ERm. From Property 3 we deduce that
Ia′ ≥ Tm. Ia′ can be either T2(a′) or the time of a Prog(l) cell which is greater
than t since there is no Prog(l) cell in the interval (Tm, t]. Hence Ia′ > t and
we can conclude that Acr1(a′ · l, t) = Acr1(l, t) = ERm.

– if Er(a′) ≥ ERm then Acr(a′ · l) = Er(a′). Again from Property 3 we
obtain Ia′ ≤ Tm. Let Prog(l) = Prog(l)≤ρEr(a′)@l′′. Then (Tm, ERm) ∈
Prog(l)≤ρEr(a′). It results that Acr1(a′ · l, t) = Acr1(a′ · l, Tm) = (Ia′ , Er(a′)) ·
l′′t = Er(a′).

6 Comments on the Mechanical Proof

The equivalence theorem has been successfully developed within PVS [11] en-
vironment. PVS provides an expressive specification language that builds on
classical typed higher-order logic with mechanisms for defining abstract dataty-
pes. Hence the specification of the algorithms already given in functional style
was relatively easy. In this work we deliberately restricted ourselves to first-order
features of the language since our final goal is to prove the equivalence theorem
with a first-order prover in a more automatic way, i.e. with less input from the
user.

The first difficult proof step we encountered was to show that if a list of
cells l is time-decreasing then its associated scheduling list Prog(l) is also time-
decreasing: this property is expressed by Property 1. We have tried to apply
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time

time

Ia′

Ia′

0 T3(a′) T2(a′)Tm t

rate

0 T3(a′) T2(a′)Tm t

rate
Er(a′) ≥ ERm

Er(a′)

ERm

Er(a′)

ERm

Er(a′) < ERm

Acr1(l, time)

Acr1(a′.l, time)

Acr1(a′.l, time)

Acr1(l, time)

Fig. 6. Cases for T2(a′) > t ≥ T3(a′), Acr1(l, T3(a′)) > Er(a′) and Tm > T3(a′)

induction on the length of the list but it failed because the scheduling list in the
induction conclusion is not a sublist of the one in the induction hypothesis. The-
refore, the direct application of the induction hypothesis was impossible. After a
closer analysis, we discovered that auxiliary lemmas concerning time properties
of cell lists were needed. However the initial functions were not sufficient to ex-
press them. Hence an important decision was to enrich the initial specification
with auxiliary functions such as Timel.

The formal verification of time dec follows closely the semi-formal proof from
Section 5. By the rules ASSERT and GRIND, the theorem prover PVS applies
its decision procedures to perform arithmetic reasoning, employs congruence
closure for equality reasoning, installs theories and rewrite rules along with all
the definitions relevant to the goal in order to prove the trivial cases, to simplify
complex expressions and definitions, and to perform matching. In detail, the
formal proof of time dec requires 32 user-steps in PVS, 6 of which are ASSERT,
5 are GRIND and 4 are LEMMA, which introduce instances of previously proved
lemmas as new formulas.

The proof of main conj, which codes the main lemma, is the most complex
that was elaborated for this specification. It follows the skeleton of the semi-
formal proof described in Section 5. We have applied an INDUCT rule to perform
induction on the length of the cell list. The basic case was completed by a
GRIND operation. However, the proof of the step case has needed 27 invocations
of lemmas and for 6 times the application of the CASE rule, to perform case
reasoning. The analysis of each particular case was a source for the development
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of new lemmas that in turn may require new lemmas for their proofs. The depth
of the lemmas dependency graph is 7.

The analysis of some particular cases presented in the proof of the main conj
lemma suggested other auxiliary functions to express additional properties. For
instance, the auxiliary functions ListUpTo(l,t) and SortedE(l) denoted res-
pectively lyt and S<ρ(l) that have been introduced in Section 4 to formalize
Property 2. Some of the cases follow very closely the corresponding cases from
the informal proof, as 1, 2, 3.1 and 3.2.1. The cases 3.2.2.1 and 3.2.2.2 are more
complex and have required 17 lemma invocations. The proof of main conj con-
sists of 120 user-guided steps, seven of which are GRIND operations and 29
are ASSERT commands and indicate that the arithmetic and equality reasoning
have been intensively used.

The whole proof takes 78.97s on a PC featured with an Intel Pentium II
processor at 333 MHz and 128 Mbytes of RAM memory. The effort to design
the mechanical proof took about two months including the time to get familiar
with PVS.

7 Conclusions and Perspectives

Our objective was to derive the first mechanical proof of an ideal incremental
ABR conformance algorithm. A proof by hand of the algorithm has been desi-
gned before [13]. However this kind of manual proofs is not fully convincing in
general since limit cases or apparently trivial arguments are often omitted and
they may be source of mistakes. In this respect our machine proof gives more
evidence of the correctness of the algorithm since every single step has been
verified by PVS.

On the one hand, the specification of the algorithm as a recursive function
in PVS was relatively easy. The proof we obtained on the other hand was rather
involved. It has required about 80 intermediate lemmas and the introduction
of auxiliary definitions. We feel that there is space for optimization and many
inference steps can possibly be simplified. It is also our plan to search for a
proof with more automated tools. We expect to derive entirely automatic proofs
for many lemmas. In another direction we also think about using higher-order
specification and reasoning techniques to derive a proof that is more synthetic
and therefore easier to grasp. Finally we should prove that by limiting the size
of the scheduling lists the ideal ABR conformance algorithm indeed reduces to
approximate algorithms such as B’.
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