Efficient Detection of Global Properties in
Distributed Systems Using Partial-Order
Methods*

Scott D. Stoller, Leena Unnikrishnan, and Yanhong A. Liu

Computer Science Dept., Indiana University, Bloomington, IN 47405-7104 USA

Abstract. A new approach is presented for detecting whether a particu-
lar computation of an asynchronous distributed system satisfies Poss &
(read “possibly @”), meaning the system could have passed through
a global state satisfying predicate @, or Def & (read “definitely @”),
meaning the system definitely passed through a global state satisfying
@. Detection can be done easily by straightforward state-space search;
this is essentially what Cooper and Marzullo proposed. We show that
the persistent-set technique, a well-known partial-order method for op-
timizing state-space search, provides efficient detection. This approach
achieves the same worst-case asymptotic time complexity as two special-
purpose detection algorithms of Garg and Waldecker that detect Poss ¢
and Def @ for a restricted but important class of predicates. For Poss &,
our approach applies to arbitrary predicates and thus is more gene-
ral than Garg and Waldecker’s algorithm. We apply our algorithm for
Poss @ to two examples, achieving a speedup of over 700 in one example
and over 70 in the other, compared to unoptimized state-space search.

1 Introduction

Detecting global properties (i.e., predicates on global states) in distributed sy-
stems is useful for monitoring and debugging. For example, when testing a dis-
tributed mutual exclusion algorithm, it is useful to monitor the system to detect
concurrent accesses to the critical sections. A system that performs leader el-
ection may be monitored to ensure that processes agree on the current leader.
A system that dynamically partitions and re-partitions a large dataset among a
set, of processors may be monitored to ensure that each portion of the dataset is
assigned to exactly one processor.

An asynchronous distributed system is characterized by lack of synchronized
clocks and lack of bounds on processor speed and network latency. In such a
system, no process can determine in general the order in which events on different
processors actually occurred. Therefore, no process can determine in general the

* The authors gratefully acknowledge the support of NSF under Grants CCR-
9876058 and CCR-9711253 and the support of ONR under Grants N00014-99-
1-0358 and N00014-99-1-0132. Email: {stoller,lunnikri,liu}@cs.indiana.edu ~ Web:
http://www.cs.indiana.edu/~ {stoller,lunnikri,liu}/

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 264-279, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Efficient Detection of Global Properties in Distributed Systems 265

sequence of global states through which the system passed. This leads to an
obvious difficulty for detecting whether a global property held.

Cooper and Marzullo’s solution to this difficulty involves two modalities,
which we denote by Poss (read “possibly”) and Def (read “definitely”) [CM9T].
These modalities are based on logical time as embodied in the happened-before
relation, a partial order that reflects causal dependencies [Lam78]. A history of an
asynchronous distributed system can be approximated by a computation, which
comprises the local computation of each process together with the happened-
before relation. Happened-before is useful for detection algorithms because, using
vector clocks [Fid88/Mat89SWRI|, it can be determined by processes in the
system.

Happened-before is not a total order, so it does not uniquely determine the
history. But it does restrict the possibilities. Histories consistent with a compu-
tation ¢ are those sequences of the events in ¢ that correspond to total orders
containing the happened-before relation. A consistent global state (CGS) of a
computation c is a global state that appears in some history consistent with c. A
computation c satisfies Poss @ iff, in some history consistent with ¢, the system
passes through a global state satisfying @. A computation c¢ satisfies Def @ iff, in
all histories consistent with ¢, the system passes through a global state satisfying
.

Cooper and Marzullo give centralized algorithms for detecting Poss @ and
Def ¢ [CM91]. A stub at each process reports the local states of that process
to a central monitor. The monitor incrementally constructs a lattice whose ele-
ments correspond to CGSs of the computation. Poss @ and Def @ are evaluated
by straightforward traversals of the lattice. In a system of N processes, the
worst-case number of CGSs, which can occur in computations containing little
communication, is @(S?), where S is the maximum number of steps taken by
a single process. Any detection algorithm that enumerates all CGSs—Ilike the
algorithms in [CM9TIMNI1JTMNI5JAVI4]—has time complexity that is at least
linear in the number of CGSs. This time complexity can be prohibitive. This mo-
tivated the development of efficient algorithms for detecting restricted classes of
predicates [TGI3IGWI4|GWIGICGIS]. The algorithms of Garg and Waldecker
are classic examples of this approach. A predicate is n-local if it depends on the
local states of at most n processes. In [GW94] and [GW96], Garg and Waldecker
give efficient algorithms that detect Poss @ and Def @, respectively, for predi-
cates @ that are conjunctions of 1-local predicates. Those two algorithms are
presented as two independent works, with little relationship to each other or to
existing techniques.

This paper shows that efficient detection of global predicates can be done
using a well-known partial-order method. Partial-order methods are optimized
state-space search algorithms that try to avoid exploring multiple interleavings
of independent transitions [PPH97]. This approach achieves the same worst-case
asymptotic time complexity as the two aforementioned algorithms of Garg and
Waldecker, assuming weak vector clocks [MN91], which are updated only by
events that can change the truth value of @ and by receive events by which

266 S.D. Stoller, L. Unnikrishnan, and Y.A. Liu

a process first learns of some event that can change the truth value of @, are
used with our algorithm. Specifically, we show that persistent-set selective se-
arch [God96] can be used to detect Poss® or Def @ for conjunctions of 1-local
predicates with time complexity O(N2S). In some non-worst cases, Garg and
Waldecker’s algorithms may be faster than ours by up to a factor of NV, because
their algorithms also incorporate an idea, not captured by partial-order methods,
by which the algorithm ignores local states of a process that do not satisfy the
1-local predicate associated with that process. For details, see [SUL99].

Our method for detecting Def @ handles only conjunctions of 1-local predi-
cates. Our method for detecting Poss @ handles arbitrary predicates and thus is
more general than Garg and Waldecker’s algorithm. Furthermore, our method
is asymptotically faster than Cooper and Marzullo’s algorithm for some clas-
ses of systems to which Garg and Waldecker’s algorithm does not apply. For
some other classes of systems, although our method has the same asymptotic
worst-case complexity as Cooper and Marzullo’s algorithm, we expect our me-
thod to be significantly faster in practice; this is typical of general experience
with partial-order methods. Our algorithm for detecting Poss @ can be further
optimized to sometimes explore sequences of transitions in a single step. This
can provide significant speedup, even reducing the asymptotic time and space
complexities for certain classes of systems.

We give simple specialized algorithms PSpess and PSper for computing per-
sistent sets for detection of Poss® and Def @, respectively. These algorithms
exploit the structure of the problem in order to efficiently compute small per-
sistent sets. One could instead use a general-purpose algorithm for computing
persistent sets, such as the conditional stubborn set algorithm (CSSA) [God96]
Section 4.7], which is based on Valmari’s work on stubborn sets [Val97]. When
CSSA is used for detecting Poss @, it is either ineffective (i.e., it returns the set
of all enabled transitions) or slower than PSposs by a factor of S (and possibly
by some factors of N) in the worst case, depending on how it is applied. The
cheaper algorithms for computing persistent sets in [God96] are ineffective for
detecting Poss®. When CSSA (or any of the other algorithms in [God96]) is
used for detecting Def @, it is ineffective. Detailed justifications of these claims
appear in [SUL99).

For simplicity, we present algorithms for off-line property detection, in which
the detection algorithm is run after the distributed computation has terminated.
Our approach can also be applied to on-line property detection, in which a
monitor runs concurrently with the system being monitored.

Property detection is a special case of model-checking of temporal logics
interpreted over partially-ordered sets of global configurations, as described in
[AMPIS8|[Wal98|. Those papers do not discuss in detail the use of partial-order
methods to avoid exploring all global states and do not characterize classes of
global predicates for which partial-order methods reduce the worst-case asym-
ptotic time complexity. Alur et al. give a decision procedure for the logic ISTL®.
Poss @ is expressible in ISTL® as 30®. Def & is expressible in ISTL as —~30-&
but appears not to be directly expressible in ISTL®.

Efficient Detection of Global Properties in Distributed Systems 267

An avenue for future work is to try to extend this approach to efficient
analysis of message sequence charts [MPS98/AY99].

2 Background on Property Detection

A local state of a process is a mapping from identifiers to values. Thus, s(v)
denotes the value of variable v in local state s. A history of a single process is
represented as a sequence of that process’s states. Let [m..n] denote the set of
integers from m to n, inclusive. We use integers [1..N] as process names.

In the distributed computing literature, the most common representation of
a computation c of an asynchronous distributed system is a collection of histories
c[1],...,¢[N], one for each constituent process, together with a happened-before
relation — on local states [GW94]. For a sequence h, let h[k] denote the k"
element of h (i.e., we use 1-based indexing), and let |h| denote the length of h.
Intuitively, a local state s; happened-before a local state sy if s finished before
so started. Formally, — is the smallest transitive relation on the local states in
¢ such that

1. Vi € [1.N],k € [1..|c[d]] = 1] : c[i][k] = c[i][k + 1]).

2. For all local states s; and ss in ¢, if the event immediately following s; is the
sending of a message and the event immediately preceding ss is the reception
of that message, then s; — so.

We always use S to denote the maximum number of local states per process,
i.e., max(|c[1]], ..., |¢[N]])-

Each process has a distinguished variable vt such that for each local state s,
s(vt) is a vector timestamp [Mat89], i.e., an array of N natural numbers such
that s(vt)[7] is the number of local states of process i that happened-before
s. Vector timestamps capture the happened-before relation. Specifically, for all
local states s; and sa, s1 — sg iff (Vi € [1..N] : s1(vt)[{] < s2(vt)[i]). Two local
states s; and sy of a computation are concurrent, denoted s; || sa, iff neither
happened-before the other: s1 || s2 = $1 74 s2 A $2 /A $1.

A global state s of a computation c is an array of N local states such that,
for each process 4, s[i] appears in c[i]. A global state is consistent iff its constitu-
ent local states are pairwise concurrent. Intuitively, consistency means that the
system could have passed through that global state during the computation.

Concurrency of two local states can be tested in constant time using vector
timestamps by exploiting the following theorem [FR94|: for a local state s; of
process i1 and a local state sp of process i, $1 || s2 iff sa(vt)[iz] > s1(vt)[ia] A
s1(vt)[i1] > s2(vt)[i1]. Thus, a global state s is consistent iff (Vi,j € [1..N] :
sld](vt)[i] = s[5](vt)[d]).

A computation ¢ satisfies Poss @, denoted ¢ = Poss &, iff there exists a CGS
of ¢ that satisfies @.

Introduce a partial order < on global states: s; <g s2 = (Vi € [1..N] :
s1[i] = s2li] V s1[i] — sz2[i]). A history consistent with a computation c is a finite
or infinite sequence o of consistent global states of ¢ such that, with respect to

268 S.D. Stoller, L. Unnikrishnan, and Y.A. Liu

D1 X Y 7

ot (1,1) (2,1) T (3,3)
ot (L,1) (2,2 (2,3) (2,4)
D2 A " B S C D

Fig. 1. Computation co.

=¢: (i) g[l] is minimal; (i¢) for all k& € [1..|o| — 1], o[k + 1] is an immediate
successonll] of o[k]; and (i) if o is finite, then o[|o|] is maximal.

A computation ¢ satisfies Def @, denoted ¢ |= Def &, iff every history consi-
stent with ¢ contains a global state satisfying ®.

Ezxample. Consider the computation c¢q shown in Figure [[l Horizontal lines cor-
respond to processes; diagonal lines, to messages. Dots represent events. Each
process has a variable vt containing the vector time. Variable p; contains the
rest of process i’s local state. Let si, 5, denote the global state comprising
the ki’th local state of process 1 and the ky’th local state of process 2. The
CGSs of Cp are {5171, 52,1, 52,2, 52,3, 53,3, 52 4, 5374}. Some properties of this com-
putation are: ¢y = Poss(p1 = Y Aps = D), ¢ E Def(pr =Y Aps = B),
co = Def (py =Y Apy = D), and ¢y [~ Poss (p1 = X Aps = B).

3 Background on Partial-Order Methods

The material in this section is paraphrased from [God96]. Beware! The system
model in this section differs from the model of distributed computations in the
previous section. For example, “state” has different meanings in the two models.
Sections @] and [{ give mappings from the former model to the latter.

A concurrent system is a collection of finite-state automata that interact via
shared variables (more generally, shared objects). More formally, a concurrent
system is a tuple (P, O, T, Sinit), where

— Pisaset {Py,..., Py} of processes. A process is a finite set of control points.

— O is a set of shared variables.

— T is a set of transitions. A transition is a tuple (L1, G, C, Lo), where: L; is
a set of control points, at most one from each process; Lo is a set of control
points of the same processes as L1, and with at most one control point from
each process; G is a guard, i.e., a boolean-valued expression over the shared
variables; and C' is a command, i.e., a sequence of operations that update
the shared variables.

— Sinit 1s the initial state of the system.

! For a reflexive or irreflexive partial order (S, <) and elements € S and y € S, y is
an tmmediate successor of ziff x #y AN x <y A =(Fz € S\ {z,y} :z < 2zAz2 <y).

Efficient Detection of Global Properties in Distributed Systems 269

A (global) state is a tuple (L, V), where L is a collection of control points, one
from each process, and V is a collection of values, one for each shared variable.
For a state s and a shared variable v, we abuse notation and write s(v) to denote
the value of v in s (the same notation is used in Section] but with a different
definition of “state”). Similarly, for a state s and a predicate ¢, we write s(¢) to
denote the value of ¢ in s. A transition (Lq, G, C, L) is enabled in state (L, V') if
L; C L and G evaluates to true using the values in V. Let enabled(s) denote the
set of transitions enabled in s. If a transition (Lq, G, C, Ly) is enabled in state
s = (L, V), then it can be executed in s, leading to the state ((L\ L1)UL2, C(V)),
where C'(V') represents the new values obtained by using the operations in C to

update the values in V. We write s % &' to indicate that transition ¢ is enabled
in state s and executing ¢ in s leads to state s’.

An ezxecution of a concurrent system is a finite or infinite sequence s; 4
So L 83+ - - such that s; = s;,;; and for all 4, s; Ly si+1- A state is reachable (in
a system) if it appears in some execution (of that system).

Suppose we wish to find all the “deadlocks” of a system. Following Godefroid
(but deviating from standard usage), a deadlock is a state in which no transitions
are enabled. Clearly, all reachable deadlocks can be identified by exploring all
reachable states. This involves explicitly considering all possible execution orde-
rings of transitions, even if some transitions are “independent” (i.e., executing
them in any order leads to the same state; formal definition appears in Appen-
dix). Exploring one interleaving of independent transitions is sufficient for finding
deadlocks. This does cause fewer intermediate states (i.e., states in which some
but not all of the independent transitions have been executed) to be explored,
but it does not affect reachability of deadlocks, because the intermediate states
cannot be deadlocks, because some of the independent transitions are enabled in
those states. Partial-order methods attempt to eliminate exploration of multiple
interleavings of independent transitions, thereby saving time and space.

A set T of transitions enabled in a state s is persistent in s if, for every
sequence of transitions starting from s and not containing any transitions in
T, all transitions in that sequence are independent with all transitions in 7.
Formally, a set T' C enabled(s) is persistent in s iff, for all nonempty sequences of
transitions s; b So iZ s3> fnsgt Sn In Snt1, 1f 81 =sand (Vi € [1l.n] : t; €T),
then ¢, is independent in s,, with all transitions in 7. As shown in [God96], in
order to find all reachable deadlocks, it suffices to explore from each state s a
set of transitions that is persistent in s. State-space search algorithms that do
this are called persistent-set selective search (PSSS). Note that enabled(s) is
trivially persistent in s. To save time and space, small persistent sets should be
used.

4 Detecting Poss @

Given a computation ¢ and a predicate @, we construct a concurrent system
whose executions correspond to histories consistent with ¢, express ¢ = Poss ®

270 S.D. Stoller, L. Unnikrishnan, and Y.A. Liu

as a question about reachable deadlocks of that system, and use PSSS to answer
that question. The system has one transition for each pair of consecutive local
states in ¢, plus a transition ty whose guard is @. ty disables all transitions, so
it always leads to a deadlock.

Each process has a distinct control point corresponding to each of its local
states. The control point corresponding to the k’th local state of process i is
denoted ¢; ;. Thus, for i € [1..N], process i is P; = Uy, _y .7 {¢ix}. We introduce
a new process, called process 0, that monitors ¢. Process 0 has a single transition
to, which changes the control point of process 0 from ¢y 4 (mnemonic for “not
detected”) to €y q (“detected”). Thus, process 0 is Py = {€o na,fo,a}- The set of
processes is P = |J,_, y{Fi} Initially, process 0 is at control point £g 4, and
for i > 0, process i is at control point /; ;.

The local state of process i is stored in a shared variable p;. The initial value
of p; is c[i][1]. For convenience, the index of the current local state of process i is
stored in a shared variable 7;. The initial value of 7; is 1, and 7; is incremented
by each transition of process i. Whenever process ¢ is at control point ¢; i, 7;
equals k. The set of shared variables is O = J,_; n{pi, 7}

Transition ¢; ,, takes process ¢ from its k’th local state to its (k + 1)’th local
state. t; 1, is enabled when process i is at control point ¢; j, process 0 is at control
point {o na, 7 equals k, and the (k + 1)’th local state of process ¢ is concurrent
with the current local states of the other processes. The set of transitions is 7 =
{to} UUiz1. npet.jefig -1 {tik}, where to = ({lona}, @(p1,- .-, pn), skip, {lo,a})
and

tik = ({lik, Lond}s (1)
Ti=k A (Vj € [L.NJ\A{i} : c[jllr](vt)[j] = cli][k + 1] (vt)[5]),
pii=cli]lk+1]; 7 :=k+1,

{li k41, %o na})

The guard can be simplified by noting that c[i][r;](vt)[i] always equals 7;. Tt
is easy to show that £y 4 is reachable iff a state satisfying & is reachable, and
that all states containing £y 4 are deadlocks. Thus, ¢ = Poss® iff a deadlock
containing ¢, 4 is reachable.

Ezample. The transitions of the concurrent system corresponding to ¢q of Figure
M are ¢y and

ti1={l1,%nit,1=1AN7>1p :=Y; 1n:=2 {l12,0ni})
tio= {2, lona}, 1 =2 N 172>3,p1:=2; 71 :=3, {{13,lond})
tor = {l1,lnit, o =1 AT >2 p:=DB; 70:=2,{la2,lna}) (2)
too = ({la2,lonat, o =2 AN 11 >2, po:=C; 70:=3, {la3,00.na})
toz = ({l23,lo,na}, 2 =3 N 71 > 2, p2 := D; 1 :=4, {{2.4,00nd})

An alternative is to construct a transition system similar to the one above
but in which both occurrences of £y 4 in t; ;, are deleted. As before, ¢ = Poss @
iff £y q is reachable (or, equivalently, ¢, is reachable), but now, states containing
£y,q are not necessarily deadlocks. PSSS can be used to determine reachability

Efficient Detection of Global Properties in Distributed Systems 271

of control points (or transitions), provided the dependency relation is weakly
uniform [God96, Section 6.3]. Showing that the dependency relation is weakly
uniform requires more effort than including ¢y 4 in ¢; ; and has no benefit: we
obtain essentially the same detection algorithm either way.

We give a simple algorithm PSpess that efficiently computes a small persi-
stent set in a state s by exploiting the structure of ¢. Without loss of generality,
we write @ as a conjunction: & = A,_; . ¢;, with n > 1. The support of a for-
mula ¢, denoted supp(¢), is the set of processes on whose local states ¢ depends.
Suppose @ is true in s. Then PSpess(s) returns enabled(s). When such a state
is reached, there is no need to try to find a small persistent set, because we can
immediately halt the search and return “c |= Poss @”. We return “c j= Poss ¢”
if the selective search terminates without encountering a state satisfying @; by
construction, this is equivalent to unreachability of deadlocks containing ¢y 4.
Suppose @ is false in s. The handling of this case is based on the following
theorem, a proof of which appears in the Appendix.

Theorem 1. Suppose @ is false in s. Let T' be a subset of enabled(s) such that,
for all sequences of transitions starting from s and staying outside T', ® remains

false; more precisely, for all sequences of transitions s1 4 So 3 S Sp Iny Sn+1,
if s1 =s and (Vi € [l.n] : t; €T), then @ is false in s,1. Then T is persistent
m s.

To construct such a set T', choose some conjunct ¢ of @ that is false in s.
Clearly, @ cannot become true until ¢ does, and ¢ cannot become true until
the next transition of some process in supp(¢) is executed. Note that the next
transition of process ¢ must be ¢; 4(r,). Thus, for each process i in supp(¢), if
process i is not in its final state (i.e., s(7) < |c[i]|), and if the next transition
ti,s(r;) Of process i is enabled, then add ¢; 4(-,) to T', otherwise find some enabled
transition ¢ that must execute before #; 4(-,), and add ¢ to T. To find such a
t, we introduce the wait-for graph WF(s), which has nodes [1..N], and has an
edge from 7 to j if the next transition of process j must execute before the next
transition of process i, i.e., if s(7;) < c[i|[s(7;) + 1](vt)[j] (we call this a wait-for
graph because of its similarity to the wait-for graphs used for deadlock detection
[SGY8| Section 7.6.1]). Such a transition ¢ can be found by starting at node i
in WF(s), following any path until a node j with no outedges is reached, and
taking ¢ to be t; 4(r,). The case in which ¢; s(,,) is enabled is a special case of
this construction, corresponding to a path of length zero, which implies i = j.
Pseudo-code appears in Figure 2l

The wait-for graph can be incrementally maintained in O(N) time per tran-
sition. Let d = max(|supp(¢1)], ..., |supp(¢n)|). PSposs(s) returns a set of size
at most d if @ is false in s. Computing PSpess(s) takes O(Nd) time, because
the algorithm follows at most d paths of length at most N in the wait-for graph.
Thus, the overall time complexity of the search is O(NdN,), where N, is the
number of states explored by the algorithm.

Suppose @ is a conjunction of 1-local predicates. Then PSpeoss returns sets
of size at most 1, except when @ is true in s, in which case the search is halted
immediately, as described above. Thus, at most one transition is explored from

272 S.D. Stoller, L. Unnikrishnan, and Y.A. Liu

if (@ holds in s) V enabled(s) = () then return enabled(s)
else choose some conjunct ¢ of @ such that ¢ is false in s;
T := 0
for all ¢ in supp(¢) such that s(7;) < |c[]|
start at node i in WF(s);
follow any path until a node j with no outedges is reached;
insert j,s(r;) in T
return T’

Fig. 2. Algorithm PSposs(s).

each state. Also, the system has a unique initial state. Thus, the algorithm
explores one linear sequence of transitions. Each transition in 7 appears at most
once in that sequence, because ¢y disables all transitions, and each transition ¢; j
permanently disables itself. |T| is O(NS), so N, is also O(NS), so the overall
time complexity is O(N2S).

Ezample. In evaluation of ¢y |= Poss (p1 = X Ape = B), t11, t2,1, and to 9 are
executed. In the resulting state so 3, PSposs(s2,3) may return {t1 2} or {t23},
causing ss 4 or s3 3, respectively, to be never visited.

Ezample. Consider evaluation of ¢ = Poss ¢1(p1) A ¢d2(p2, p3), for predicates
¢1 and ¢o such that ¢; is true in most states of process 1, and ¢ is true in
at most O(S) consistent states of processes 2 and 3. PSSS does not explore
transitions of process 1 in states where ¢5 is false and ¢, is true, so its worst-
case running time for such systems is ©(S?). Garg and Waldecker’s algorithm
[GW94] is inapplicable, because ¢ is not 1-local. The worst-case running time
of Cooper and Marzullo’s algorithm [CM91] for such systems is ©(S3).

Exploring Sequences of Transitions. The following optimization can be used to
reduce the number of explored states and transitions. In the else branch of
PSposs, if the next transition of process i is not enabled, and if process i is not
waiting for any other process in supp(¢), then insert in 7' a minimum-length
sequence w of transitions that ends with a transition of process ¢. For details
and an example, see [SUL99).

On-line Detection. For simplicity, the above presentation considers off-line pro-
perty detection. Our approach can also be applied to on-line property detection.
Local states arrive at the monitor one at a time. For each process, the local
states of that process arrive in the order they occurred. However, there is no
constraint on the relative arrival order of local states of different processes. For
on-line detection of Poss @, detection must be announced as soon as local states
comprising a CGS satisfying ¢ have arrived. This is easily achieved by modifying
the selective search algorithm to explore transitions as they become available:
there is no need for the selective search to proceed in depth-first order, so the

Efficient Detection of Global Properties in Distributed Systems 273

stack can be replaced with a “to-do set”, and in each iteration, any element of
that set can be selected. This does not affect the time or space complexity of
the algorithm.

5 Detecting Def @

As in Section H] we construct a concurrent system whose executions correspond
to histories consistent with ¢, express ¢ = Def @ as a question about reachable
deadlocks of that system, and use PSSS to answer that question. The construc-
tion in Section [for Poss is similar to well-known constructions for reducing
safety properties to deadlock detection [God96], but our construction for Def
seems novel. The transitions are similar to those in (), except the guard of each
transition is augmented to check whether the transition would truthify @; if so,
the transition is disabled. If s;,;:(®) holds, then ¢ = Def &, and no search is
performed. Thus, in a search, @ is false in all reachable states. If the final state
(i.e., the state satisfying A,_; n 7 = |c[i]|) is reachable, then each sequence of
transitions from sj,;¢ to the final state corresponds to a history consistent with
¢ and in which @ never holds, so ¢ [~ Def @.

The processes are the same as in Section [except with process 0 omitted.
Thus, P = U;—y n{Pi}, where P; = Uj_y |0 {6ir}- The shared variables are
the same as in Section @ Thus, O = J,_; n{pi,7}. The initial state is the
same as in Section H] except with the control point for process 0 omitted. The
transitions are 7 = U,_;_y j—1.|cjy)—1{ti.k}, where

tiw = ({lik}, 3)
Ti =k A (V5 € [L.N]\ {i} : e[j][m;](vt)[j] = c[i][k + 1](vt)[4])
A _\Q(ph ey PDi—1, C[Z][Tz + 1],pi+1, e ,p[ND,
pii=clil[k+1]; 7, = k+1,
{ik+1})

Tt is easy to show that ¢ & Def @ iff @ is false in s;,;; and the final state is a
reachable deadlock.

Ezxample. The transitions of the concurrent system corresponding to computa-
tion ¢g of Figure [l and the predicate (p1 =Y A ps = D) are

t171 = <{€1,1}, T = 1A T2 Z 1A P2 75 l)7 p1 = Y; T = 2, {6172}>

t172 = <{fl72}, T1 = 2 A T2 Z 3, pP1 = Z, T = 3, {6173}>

to1 = ({la1}, m=1 A 71 >2, pa:=B; 7:=2, {{a2}) (4)
tao = ({la2}, =2 A 71 > 2, po:=C; 19:=3, {{23})

t2’3 = <{€2,3}, =3 AT12>22ANpm 75 Y, P2 = D; =4, {Z274}>

Our algorithm PSper for computing persistent sets of such concurrent sy-
stems applies when & is a conjunction of 1-local predicates: & = A,_; y ¢,
where supp(¢;) = {i}. Pseudo-code for PSpes appears in Figure Bl where

stayfalse(i, k) = =c[i][k](¢:) A —cli][k + 1)(¢3)- ()

274 S.D. Stoller, L. Unnikrishnan, and Y.A. Liu

if enabled(s) = () then return enabled(s)

else choose some i € [1..N] such that stayfalse(i, s(7:));
start at node ¢ in WF(s);
follow any path until a node j with no outedges is reached;
return {t; s(-;)}

Fig. 3. Algorithm PSpet(s).

Theorem 2. PSper(s) is well-defined and is persistent in s.

Proof: To show that PSpet(s) is well-defined, we show that the following for-
mulas hold in the else branch:

(Fi € [1..N] : stayfalse(i, s(73))) (6)
tjs(r;) € enabled(s). (7)

Proofs that these formulas hold and that PSpet(s) is persistent in s appear in
the Appendix. O

The worst-case time complexity of PSper is the same as PSpogss for conjun-
ctions of 1-local predicates, namely O(N). Thus, the overall time complexity of
the search is O(NN,.), where N, is the number of states explored by the algo-
rithm. By the same reasoning as for PSposs, Ne is O(N.S). Thus, the overall
time complexity is O(N28S).

Ezample. In evaluation of ¢y = Def (p1 =Y Aps = D), t11, to1, and tg o are
executed. In the resulting state sg 3, to 3 is disabled by its guard (executing ¢ 3
would truthify @), so PSpef(s2,3) returns {t12}.

On-line Detection. For on-line detection of Def &, detection must be announced
as soon as all histories consistent with the known prefix of the computation con-
tain a CGS satisfying @. As for on-line detection of Poss @, this is easily achieved
by modifying the selective search algorithm to explore transitions as they be-
come available, i.e., by replacing the stack with a “to-do set”. The algorithm
announces that Def @ holds whenever the “to-do set” becomes empty.

6 Examples

We implemented our algorithm for detecting Poss® in Java and applied it to
two examples.

In the first example, called database partitioning, a database is partitioned
among processes 2 through N, while process 1 assigns task to these processes
based on the current partition. Each process ¢ € [1..N] has a variable partn; con-
taining the current partition. A process i € [2..N] can suggest a new partition
at any time by setting variable chg, to true and broadcasting a message contai-
ning the proposed partition and an appropriate version number. A recipient of

Efficient Detection of Global Properties in Distributed Systems 275

this message accepts the proposed partition if its own version of the partition
has a smaller version number or if its own version of the partition has the same
version number and was proposed by a process ¢’ with 7/ > i. An invariant Iy,
that should be maintained is: if no process is changing the partition, then all
processes agree on the partition.

Iy = (/\ —ichg;) = /\ partn; = partn, (8)
i€[2..N] i,j€[1..N],ij

The second example, called primary-secondary, concerns an algorithm desi-
gned to ensure that the system always contains a pair of processes that will act
together as primary and secondary (e.g., for servicing requests). This is expressed
by the invariant

I, = \/ isPrimary; A isSecondary; A\ secondary; = j N\ primary; =1. (9)
i,j€[1..N],i#j

Initially, process 1 is the primary and process 2 is the secondary. At any time,
the primary may choose a new primary as its successor by first informing the
secondary of its intention, waiting for an acknowledgment, and then multicasting
to the other processes a request for volunteers to be the new primary. It chooses
the first volunteer whose reply it receives and sends a message to that process
stating that it is the new primary. The new primary sends a message to the
current secondary which updates its state to reflect the change and then sends
a message to the old primary stating that it can stop being the primary. The
secondary can choose a new secondary using a similar protocol. The secondary
must wait for an acknowledgment from the primary before multicasting the
request for volunteers; however, if the secondary receives instead a message that
the primary is searching for a successor, the secondary aborts its current attempt
to find a successor, waits until it receives a message from the new primary, and
then re-starts the protocol.

We implemented a simulator that generates computations of these protocols,
and we used state-space search to detect possible violations of the given invariant
in those computations, i.e., to detect Poss —1;, or Poss —1,,,.. To apply PSposs,
we write both predicates as conjunctions. For =1y, we rewrite the implication
P = @ as =P V @ and then use DeMorgan’s Law (applied to the outermost
negation and the disjunction). For —I,,., we simply use DeMorgan’s Law. The
simulator accepts N and S as arguments and halts when some process has exe-
cuted S — 1 events. Message latencies and other delays are selected randomly
from the distribution 1 + exp(1), where exp(z) is the exponential distribution
with mean z. The search optionally uses sleep sets, as described in [God96], as
a further optimization. Sleep sets help eliminate redundancy caused by explo-
ring multiple interleavings of independent transitions in a persistent set. Sleep
sets are particularly effective for Poss @ because, if @ does not hold in s, then
transitions in PSpess($) are pairwise independent.

Search was done using four levels of optimization: no optimization, persi-
stent sets only, sleep sets only ([God96], Fig. 5.2] with PS = enabled), and both
persistent sets and sleep sets ([God96,, Fig. 5.2] with PS = PSposs).

276 S.D. Stoller, L. Unnikrishnan, and Y.A. Liu

Data collected by fixing the value of N at 3 or 5 and varying S in the range
[2..80] indicate that in all cases, Nt and Ng are linear in .S. This is because both
examples involve global synchronizations, which ensure that a new local state of
any process is not concurrent with any very old local state of any process.

The following table contains measurements for the database partitioning ex-
ample with N = 5 and S = 80 and for the primary-secondary example with
N =9 and S = 60. Using both persistent sets and sleep sets reduced Nt (and,
roughly, the running time) by factors of 775 and 72, respectively, for the two
examples.

Example INo optimization| Sleep Persistent |Persis. + Sleep
Nt Ng Nt Ng Nr Ng |Nr Ng
database partition |343170 88281 |88280 88281 |640 545 (443 444
primary-secondary|3878663 752035|752034 752035|91874 61773|53585 53586

To help determine the dependence of Ny on N, we graphed In Ny vs. N
and fit a line to it; this corresponds to equations of the form Np = eV +?. The
results are graphed in Figure @ The dependence on S is linear, so using different
values of S in different cases does not affect the dependence on N (i.e., it affects
b but not a). In one case, namely, the database partitioning example with both
persistent sets and sleep sets, the polynomial Ny = bN'?* yields a better fit
than an exponential for the measured region of N = [3..8]. The dependence of
Ng on N is similar.

— enabled — enabled

sleep 15K sleep
--- persistent --- persistent
- - psttsip 14} - - psttslp

14

In(numTrans)
= o
T
N

In(numTrans)

=)

Fig. 4. Datapoints and fitted curves for In Ny vs. N for all four levels of optimiza-
tion. Left: Database partitioning example with S = 25 for the two searches not using
persistent sets and S = 50 for the two searches using persistent sets. Right: Primary-
secondary example with S = 60.

Garg and Waldecker’s algorithm for detecting Poss @ for conjunctions of 1-
local predicates [GW94] is not applicable to the database partitioning example,

Efficient Detection of Global Properties in Distributed Systems 277

because —/g contains clauses like partn; # partn; which are not 1-local. Their
algorithm can be applied to the primary-secondary example by putting —I, in
disjunctive normal form (DNF) and detecting each disjunct separately. —I,, is
compactly expressed in conjunctive normal form. Putting —I,, in DNF causes
an exponential blowup in the size of the formula. This leads to an exponential
factor in the time complexity of applying their algorithm to this problem.

References

[AMPYS]

[AVO4]

[AY99)]

[CGOS]

[CM91]

[Fid8s)

[FR94]

[God96]

[GW94]

[GW96]

[TMN95]

[Lam78]

[Mat89]

[MNO1]

Rajeev Alur, Ken McMillan, and Doron Peled. Deciding global partial-order
properties. In Proc. 25th International Colloquium on Automata, Languages,
and Programming (ICALP), volume 1443 of Lecture Notes in Computer
Science, pages 41-52. Springer-Verlag, 1998.

Sridhar Alagar and S. Venkatesan. Techniques to tackle state explosion in
global predicate detection. In Proc. International Conference on Parallel
and Distributed Systems, pages 412-417, December 1994.

Rajeev Alur and Mihalis Yannakakis. Model checking of message sequence
charts. In Proc. 10th Int’l. Conference on Concurrency Theory (CONCUR),
volume 1664 of Lecture Notes in Computer Science, pages 114-129, 1999.
Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techni-
ques and their limitations. Distributed Computing, 11(4):169-189, 1998.
Robert Cooper and Keith Marzullo. Consistent detection of global predica-
tes. In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging,
1991. ACM SIGPLAN Notices 26(12):167-174, Dec. 1991.

C. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. In Proceedings of the 11th Australian Computer Science Confe-
rence, pages 5666, 1988.

Eddy Fromentin and Michel Raynal. Local states in distributed computati-
ons: A few relations and formulas. Operating Systems Review, 28(2), April
1994.

Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems, volume 1032 of Lecture Notes in Computer Science. Springer-
Verlag, 1996.

Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates
in distributed programs. IEEE Transactions on Parallel and Distributed
Systems, 5(3):299-307, 1994.

Vijay K. Garg and Brian Waldecker. Detection of strong unstable predicates
in distributed programs. IEEE Transactions on Parallel and Distributed
Systems, 7(12):1323-1333, 1996.

R. Jegou, R. Medina, and L. Nourine. Linear space algorithm for on-line
detection of global predicates. In J. Desel, editor, Proc. Int’l Workshop on
Structures in Concurrency Theory (STRICT ’95). Springer, 1995.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-564, 1978.

Friedemann Mattern. Virtual time and global states of distributed systems.
In M. Corsnard, editor, Proc. International Workshop on Parallel and Dis-
tributed Algorithms, pages 120-131. North-Holland, 1989.

Keith Marzullo and Gil Neiger. Detection of global state predicates. In
Proc. 5th Int’l. Workshop on Distributed Algorithms (WDAG), volume 579
of Lecture Notes in Computer Science, pages 254—272. Springer, 1991.

278 S.D. Stoller, L. Unnikrishnan, and Y.A. Liu

[MPS98] Anca Muscholl, Doron Peled, and Zhendong Su. Deciding properties of
message sequence charts. In FoSSaCS ’98, volume 1378 of Lecture Notes in
Computer Science, pages 226-242, 1998.

[PPH97] Doron Peled, Vaughan R. Pratt, and Gerard J. Holzmann, editors. Proc.
Workshop on Partial Order Methods in Verification, volume 29 of DIMACS
Series. American Mathematical Society, 1997.

[SGI8] Abraham Silberschatz and Peter B. Galvin. Operating System Concepts.
Addison Wesley, 5th edition, 1998.

[SUL99] Scott D. Stoller, Leena Unnikrishnan, and Yanhong A. Liu. Efficient detec-
tion of global properties in distributed systems using partial-order methods.
Technical Report 523, Computer Science Dept., Indiana University, 1999.

[SW89] A. Prasad Sistla and Jennifer Welch. Efficient distributed recovery using
message logging. In Proc. Eighth ACM Symposium on Principles of Distri-
buted Computing. ACM SIGOPS-SIGACT, 1989.

[TG93] Alexander I. Tomlinson and Vijay K. Garg. Detecting relational global pre-
dicates in distributed systems. In Proc. ACM/ONR Workshop on Parallel
and Distributed Debugging, 1993. ACM SIGPLAN Notices 28(12), Decem-
ber 1993.

[Val97] Antti Valmari. Stubborn set methods for process algebras. In Peled et al.
[PPHI7], pages 213-231.

[Wal98] Igor Walukiewicz. Difficult configurations - on the complexity of l¢trl. In Proc.
25th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 1443 of Lecture Notes in Computer Science, pages 140—
151. Springer-Verlag, 1998.

Appendix: Selected Definitions and Proofs

Definition of Independence [(God96)]. Transitions t; and ty are independent in a
state s if

1. Independent transitions can neither disable nor enabled each other, i.e.,

(a) if t1 € enabled(s) and s 5 ¢, then ty € enabled(s) iff to € enabled(s');
(b) condition (a) with ¢; and ts interchanged holds; and
2. Enabled independent transitions commute, i.e., if {t1,t2} C enabled(s),

then there is a unique state s’ such that s 12N s1 2 s and s B S9 b

Proof of Theorem [1 It suffices to show that for each transition ¢ in T, t is
independent with ¢, in s,. @ is false in s, so o & enabled(s), so t is t;, as
defined in (), for some ¢ and k. Note that ¢, # tg, because by hypothesis, @ is
false in s,,. The transitions of each process occur in the order they are numbered,
and t; € enabled(s), so the next transition of process ¢ that is executed after
state s is t; ;; in other words, from state s, no transition of process ¢ can occur
before ¢;;, does. Since ¢, € T and (Vi € [1.n] : t; ¢ T), it follows that ¢, is
a transition of some process i’ with i’ # ¢ A ¢’ # 0. From the structure of the
system, it is easy to show that, once ¢; , has become enabled, such a transition
t, cannot enable or disable ¢;; and commutes with ¢; ;, when both are enabled.
Thus, t; , and t,, are independent in s,. O

Efficient Detection of Global Properties in Distributed Systems 279

Proof of Theorem [2} First we show that (B) holds in the else branch. In
that branch, enabled(s) # 0, so enabled(s) contains some transition ¢; (. Let

tis(ry)

—"" s'. Suppose @¢; is true in s'. The guard of ¢; ,(,,) implies that ¢ is false
in s, so there exists ¢ # j such that ¢; is false in ¢’. A transition of process j
does not change the local state of process i, so s(p;) = s'(p;), so ¢; is false in s,
so stayfalse(i, s(7;)) holds.

Suppose ¢; is false in s'. If ¢; is false in s, then stayfalse(j,s(r;)) holds.
Otherwise, suppose ¢; is true in s. Since s is reachable, @ is false in s, so there
exists i # j such that ¢; is false in s. Note that s(p;) = s'(p;), so ¢; is false in
s', so stayfalse(i, s(7;)) holds.

Now we show that (7)) holds in the else branch. By (B), stayfalse(i, s(;))
holds for some 7. Let j be the node with no outedges that was selected by
the algorithm. If suffices to show that executing ¢; s(,,) from state s would not
cause ¢ to become true. If i = j, then this follows immediately from the second
conjunct in stayfalse(i, s(r;)). If i # j, then this follows immediately from the
first conjunct in stayfalse(i, s(7;)) and the fact that ¢; ,(,,) does not change the
local state of process i. Note that, in both cases, ¢; is false in s’.

Finally, we show that PSpef(s) is persistent in s. This is trivial if enabled(s) =
(). Suppose enabled(s) # 0, so stayfalse(i, s(7;)) holds. Let {t; s(r,)} = PSpet(s)-

tn—l

Let s1 12N S i 83+ — Sp In Sn+1 such that s; = s and (Vk € [1..n] : &y # t).
It suffices to show that ¢, and tjs(r;) are independent in s,,. As noted at the
end of the previous paragraph, executing t; ,(-,) in s leaves ¢; false. t1,... 1,
are not transitions of process i, because the next transition of process ¢ cannot
occur before t; (-,) occurs (this follows from the choice of j and the definition
of wait-for graph). Thus,

(Vk € [L.n+1] : sp(pi) = s(pi) A executing t; o(r,) in s5, leaves ¢; false). (10)
Consider the requirements in the definition of independence.

(1a) Supposet; (-, € enabled(s,). Let snt]’i;j)s’. By hypothesis, t,, € enabled(s,,),
so we need to show that ¢,, € enabled(s’). Since t,, is enabled in s,,, it suffices
to show that executing ¢, in s’ leaves @ false. By (I0), executing tj.s(r;) I
sn leaves ¢; false, and ¢, is not a transition of process i, so executing t,, in
s’ leaves ¢; false.

(1b) Suppose t,, € enabled(s,). Recall that s, In, Sn+1. We need to show that
tjs(r;) € enabled(sy) iff 1 7,y € enabled(s,11). t; s(r,) is enabled in s, and
by (I0), executing tj.s(r;) N Sy O in sp1q leaves ¢; and hence @ false. It
follows that ?; () is enabled in both s, and sp1.

(2) Tt is easy to show that t; (,,) and t,, commute.

Thus, t, and t; () are independent in s,, and PSpet(s) is persistent in s. O

	Introduction
	Background on Property Detection
	Background on Partial-Order Methods
	Detecting Poss 'Phi'
	Detecting Def 'Phi'
	Examples
	Appendix: Selected Definitions and Proofs

