
Efficient Algorithms for Model Checking
Pushdown Systems

Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon

Technische Universität München, Arcisstr. 21, 80290 München, Germany
{esparza,hanseld,rossmani,schwoon}@in.tum.de

Abstract. We study model checking problems for pushdown systems
and linear time logics. We show that the global model checking pro-
blem (computing the set of configurations, reachable or not, that violate
the formula) can be solved in O(gPgP3gBgB3) time and O(gPgP2gBgB2)
space, where gPgP and gBgB are the size of the pushdown system and
the size of a Büchi automaton for the negation of the formula. The glo-
bal model checking problem for reachable configurations can be solved in
O(gPgP4gBgB3) time and O(gPgP4gBgB2) space. In the case of pushdown
systems with constant number of control states (relevant for our applica-
tion), the complexity becomes O(gPgPgBgB3) time and O(gPgPgBgB2)
space and O(gPgP2gBgB3) time and O(gPgP2gBgB2) space, respectively.
We show applications of these results in the area of program analysis
and present some experimental results.

1 Introduction

Pushdown systems (PDSs) are pushdown automata seen under a different light:
We are not interested in the languages they recognise, but in the transition
system they generate. These are infinite transition systems having configurations
of the form (control state, stack content) as states.

PDSs have already been investigated by the verification community. Model
checking algorithms for both linear and branching time logics have been propo-
sed in [1,2,3,7,11]. The model checking problem for CTL and the mu-calculus
is known to be DEXPTIME-complete even for a fixed formula [1,11]. On the
contrary, the model checking problem for LTL or the linear time mu-calculus
is polynomial in the size of the PDS [1,7]. This makes linear time logics par-
ticularly interesting for PDSs. It must be observed, however, that the model
checking problem for branching time logics is only exponential in the number of
control states of the PDS; for a fixed number of states the algorithms of [2,11]
are polynomial.

Inspired by the work of Steffen and others on the connection between model
checking and dataflow analysis (see for instance [9]), it has been recently observed
that relevant dataflow problems for programs with procedures (so-called inter-
procedural dataflow problems), as well as security problems for Java programs
can be reduced to different variants of the model checking problem for PDSs
and LTL [5,6,8]. Motivated by this application, we revisit the model checking

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 232–247, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Efficient Algorithms for Model Checking Pushdown Systems 233

problem for linear time logics. We follow the symbolic approach of [1], in which
infinite sets of configurations are finitely represented by multi-automata. We
obtain an efficient implementation of the algorithm of [1], which was described
there as ‘polynomial’, without further details. Our algorithm has the same time
complexity and better space complexity than the algorithm of [7]. This better
space complexity turns out to be important for our intended applications to
dataflow analysis.

The paper is structured as follows. Sections 2 and 3 contain basic definitions,
and recall some results of [1]. The ‘abstract’ solution of [1] to the model-checking
problem is described and refined in Sections 4 to 6. In Section 7 we provide an
efficient implementation for this solution. Applications and experimental results
are presented in Section 9.

All proofs and some constructions have been omitted due to lack of space.
They can all be found in the technical report version of this paper [4].

2 Pushdown Systems and P-Automata

A pushdown system is a triplet P = (P, Γ, ∆) where P is a finite set of control
locations, Γ is a finite stack alphabet, and ∆ ⊆ (P × Γ) × (P × Γ ∗) is a finite
set of transition rules. If ((q, γ), (q′, w)) ∈ ∆ then we write 〈q, γ〉 ↪→ 〈q′, w〉 (we
reserve → to denote the transition relations of finite automata).

Notice that pushdown systems have no input alphabet. We do not use them
as language acceptors but are rather interested in the behaviours they generate.

A configuration of P is a pair 〈p, w〉 where p ∈ P is a control location and
w ∈ Γ ∗ is a stack content. The set of all configurations is denoted by C.

If 〈q, γ〉 ↪→ 〈q′, w〉, then for every v ∈ Γ ∗ the configuration 〈q, γv〉 is an imme-
diate predecessor of 〈q′, wv〉, and 〈q′, wv〉 an immediate successor of 〈q, γv〉. The
reachability relation ⇒ is the reflexive and transitive closure of the immediate
successor relation; the transitive closure is denoted by +=⇒. A run of P is a maxi-
mal sequence of configurations such that for each two consecutive configurations
cici+1, ci+1 is an immediate successor of ci.

The predecessor function pre : 2C → 2C of P is defined as follows: c belongs to
pre(C) if some immediate successor of c belongs to C. The reflexive and transitive
closure of pre is denoted by pre∗. Clearly, pre∗(C) = {c ∈ C | ∃c′ ∈ C. c ⇒ c′}.
Similarly, we define post(C) as the set of immediate successors of elements in C
and post∗ as the reflexive and transitive closure of post.

2.1 P-Automata

Given a pushdown system P = (P, Γ, ∆), we use so-called P-automata in order
to represent sets of configurations of P. A P-automaton uses Γ as alphabet,
and P as set of initial states (we consider automata with possibly many initial
states). Formally, a P-automaton is an automaton A = (Γ, Q, δ, P, F) where Q
is the finite set of states, δ ⊆ Q × Γ × Q is the set of transitions, P is the set of

234 J. Esparza et al.

initial states and F ⊆ Q the set of final states. We define the transition relation
→ ⊆ Q × Γ ∗ × Q as the smallest relation satisfying:

– q
ε−→ q for every q ∈ Q,

– if (q, γ, q′) ∈ δ then q
γ−→ q′, and

– if q
w−−→ q′′ and q′′ γ−→ q′ then q

wγ−−→ q′.

All the automata used in this paper are P-automata, and so we drop the P
from now on. An automaton accepts or recognises a configuration 〈p, w〉 if p

w−−→ q
for some p ∈ P, q ∈ F . The set of configurations recognised by an automaton A
is denoted by Conf (A). A set of configurations of P is regular if it is recognized
by some automaton.

Notation In the paper, we use the symbols p, p′, p′′ etc., eventually with indices,
to denote initial states of an automaton (i.e., the elements of P). Non-initial
states are denoted by s, s′, s′′ etc., and arbitrary states, initial or not, by q, q′, q′′.

3 Model-Checking Problems for Linear Time Logics

In this section we define the problems we study, as well as the automata-theoretic
approach.

Let Prop be a finite set of atomic propositions, and let Σ = 2Prop. It is well
known that the semantics of properties expressed in linear time temporal logics
like LTL or the linear-time µ-calculus are ω-regular sets over the alphabet Σ, and
there exist well-known algorithms which construct Büchi automata recognizing
these sets. This is all we need to know about these logics in this paper in order
to give model-checking algorithms for pushdown systems.

Let P = (P, Γ, ∆) be a pushdown system, and let Λ : (P × Γ) → Σ be a
labelling function, which intuitively associates to a pair 〈p, γ〉 the set of propo-
sitions that are true of it. We extend this mapping to arbitrary configurations:
〈p, γw〉 satisfies an atomic proposition if 〈p, γ〉 does.1

Given a formula ϕ of such an ω-regular logic we wish to solve these problems:

– The global model-checking problem: compute the set of configurations, re-
achable or not, that violate ϕ.

– The global model-checking problem for reachable configurations: compute
the set of reachable configurations that violate ϕ.

Our solution to these problems uses the automata-theoretic approach. We
start by constructing a Büchi automaton B = (Σ, Q, δ, q0, F) corresponding to
the negation of ϕ. The product of P and B yields a Büchi pushdown system
BP = ((P × Q), Γ, ∆′, G), where

– 〈(p, q), γ〉 ↪→ 〈(p′, q′), w〉 ∈ ∆′ if 〈p, γ〉 ↪→ 〈p′, w〉, q
σ−→ q′, and σ ⊆ Λ(〈p, γ〉).

– (p, q) ∈ G if q ∈ F .

1 We could also define Λ : P → Σ, but our definition is more general, and it is also
the one we need for our applications.

Efficient Algorithms for Model Checking Pushdown Systems 235

The global model checking problem reduces to the accepting run problem:

Compute the set Ca of configurations c of BP such that BP has an
accepting run starting from c (i.e., a run which visits infinitely often
configurations with control locations in G).

Notice that the emptiness problem of Büchi pushdown systems (whether the
initial configuration has an accepting run) also reduces to the accepting run
problem; it suffices to check if the initial configuration belongs to the set Ca.
The following proposition characterises the configurations from which there are
accepting runs.

Definition 1. Let BP = (P, Γ, ∆, G) be a Büchi pushdown system.
The relation r=⇒ between configurations of BP is defined as follows: c

r=⇒ c′

if c ⇒ 〈g, u〉 +=⇒ c′ for some configuration 〈g, u〉 with g ∈ G.
The head of a transition rule 〈p, γ〉 ↪→ 〈p′, w〉 is the configuration 〈p, γ〉. A

head 〈p, γ〉 is repeating if there exists v ∈ Γ ∗ such that 〈p, γ〉 r=⇒ 〈p, γv〉. The
sets of heads and repeating heads of BP are denoted by H and R, respectively.

Proposition 1. [1] Let c be a configuration of a Büchi pushdown system BP =
(P, Γ, ∆, G) and let RΓ ∗ denote the set { 〈p, γw〉 | 〈p, γ〉 ∈ R, w ∈ Γ ∗ }. BP has
an accepting run starting from c if and only if c ∈ pre∗(RΓ ∗).

Proposition 1 reduces the global model-checking problem to computing the
set pre∗(RΓ ∗); the global model-checking problem for reachable configurations
reduces to computing post∗({c}) ∩ pre∗(RΓ ∗) for a given initial configuration c.

In the next sections we present a solution to these problems. We first recall
the algorithm of [1] that computes pre∗(C) for an arbitrary regular language C
(observe that RΓ ∗ is regular since R is finite). Then we present a new algorithm
for computing R, obtained by modifying the algorithm for pre∗(C). We also
present an algorithm for computing post∗(C) which is needed to solve the model-
checking problem for reachable configurations.

4 Computing pre∗(C) for a Regular Language C

Our input is an automaton A accepting C. Without loss of generality, we assume
that A has no transition leading to an initial state. We compute pre∗(C) as
the language accepted by an automaton Apre∗ obtained from A by means of
a saturation procedure. The procedure adds new transitions to A, but no new
states. New transitions are added according to the following saturation rule:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′ w−−→ q in the current automaton,
add a transition (p, γ, q).

236 J. Esparza et al.

Fig. 1. The automata A (left) and Apre∗ (right)

Notice that all new transitions start at initial states. Let us illustrate the
procedure by an example. Let P = (P, Γ, ∆) be a pushdown system with P =
{p0, p1, p2} and ∆ as shown in in the left half of Figure 1. Let A be the automaton
that accepts the set C = {〈p0, γ0γ0〉}, also shown in the figure. The result of the
algorithm is shown in the right half of Figure 1.

The saturation procedure eventually reaches a fixpoint because the number
of possible new transitions is finite. Correctness was proved in [1].

5 Computing the Set R of Repeating Heads

We provide an algorithm more efficient than that of [1]. The problem of finding
the repeating heads in a Büchi pushdown system is reduced to a graph-theoretic
problem. More precisely, given a Büchi pushdown system BP = (P, Γ, ∆, G)
we construct a head reachability graph G = ((P × Γ), E) whose nodes are the
heads of BP. The set of edges E ⊆ (P × Γ) × {0, 1} × (P × Γ) generates the
reachability relation between heads. Define G(p) = 1 if p ∈ G and G(p) = 0
otherwise. E consists of exactly the following edges:

If 〈p, γ〉 ↪→ 〈p′′, v1γ
′v2〉 and 〈p′′, v1〉 ⇒ 〈p′, ε〉, then ((p, γ), G(p), (p′, γ′)) ∈ E.

If, moreover, 〈p′′, v1〉 r=⇒ 〈p′, ε〉, then ((p, γ), 1, (p′, γ′)) ∈ E.

The reachability relation → ⊂ (P × Γ) × {0, 1} × (P × Γ) is then defined as the
smallest relation satisfying

– (p, γ) 0−→(p, γ) for every (p, γ) ∈ (P × Γ).
– If ((p, γ), b, (p′, γ′)) ∈ E, then (p, γ) b−→(p′, γ′).

– If ((p, γ), b, (p′, γ′)) ∈ E and (p′, γ′) b′
−−→(p′′, γ′′), then (p, γ) b∨b′

−−−→(p′′, γ′′).

Once the graph is constructed, R can be computed by exploiting the fact that
some head 〈p, γ〉 is repeating if and only if (p, γ) is part of a strongly connected
component of G which has an internal 1-labelled edge. The instances for which
〈p, v〉 r=⇒ 〈p′, ε〉 holds can be found with a small modification of the algorithm
for pre∗.

Efficient Algorithms for Model Checking Pushdown Systems 237

p0, γ0 p1, γ1

p2, γ2p0, γ1

0

0

1

1

γ0
s1p0

γ0
s2

m1

m2

p1
γ1

p2 γ2

γ0

γ0

γ0

ε

fl1

Fig. 2. Left: The graph G. Right: Apost∗

Let BP = (P, Γ, ∆, G) be a Büchi pushdown system with P , Γ and ∆ as in
the previous example and G = {p2}. The left part of Figure 2 shows the graph G.

6 Computing post∗(C) for a Regular Set C

We provide a solution for the case in which each transition rule 〈p, γ〉 ↪→ 〈p′, w〉
of ∆ satisfies |w| ≤ 2. This restriction is not essential; our solution can easily
be extended to the general case. Moreover, any pushdown system can be trans-
formed into an equivalent one in this form, and the pushdown systems in the
application discussed in Section 9 directly satisfy this condition.

Our input is an automaton A accepting C. Without loss of generality, we
assume that A has no transition leading to an initial state. We compute post∗(C)
as the language accepted by an automaton Apost∗ with ε-moves. We denote the
relation (ε−→)∗ γ−→(ε−→)∗ by

γ
=⇒. Apost∗ is obtained from A in two stages:

– Add to A a new state r for each transition rule r ∈ ∆ of the form 〈p, γ〉 ↪→
〈p′, γ′γ′′〉, and a transition (p′, γ′, r).

– Add new transitions to A according to the following saturation rules:

If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ and p
γ

=⇒ q in the current automaton,
add a transition (p′, ε, q).

If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p
γ

=⇒ q in the current automaton,
add a transition (p′, γ′, q).

If r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ and p
γ

=⇒ q in the current automaton,
add a transition (r, γ′′, q).

Consider again the pushdown system P and the automaton A from Figure 1.
Then the automaton shown in the right part of Figure 2 is the result of the
algorithm above and accepts post∗({〈p0, γ0γ0〉}).

238 J. Esparza et al.

Algorithm 1
Input: a pushdown system P = (P, Γ, ∆) in normal form;

a P-Automaton A = (Γ, Q, δ, P, F) without transitions into P
Output: the set of transitions of Apre∗

1 rel ← ∅; trans ← δ; ∆′ ← ∅;
2 for all 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do trans ← trans ∪ {(p, γ, p′)};
3 while trans 6= ∅ do
4 pop t = (q, γ, q′) from trans;
5 if t /∈ rel then
6 rel ← rel ∪ {t};
7 for all 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ (∆ ∪∆′) do
8 trans ← trans ∪ {(p1, γ1, q

′)};
9 for all 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ ∆ do

10 ∆′ ← ∆′ ∪ {〈p1, γ1〉 ↪→ 〈q′, γ2〉};
11 for all (q′, γ2, q

′′) ∈ rel do
12 trans ← trans ∪ {(p1, γ1, q

′′)};
13 return rel

7 Efficient Algorithms

In this section we present efficient implementations of the abstract algorithms
given in sections 4 through 6. We restrict ourselves to pushdown systems which
satisfy |w| ≤ 2 for every rule 〈p, γ〉 ↪→ 〈p′, w〉; any pushdown system can be put
into such a normal form with linear size increase.

7.1 Computing pre∗(C)

Given an automaton A accepting the set of configurations C, we compute
pre∗(C) by constructing the automaton Apre∗ .

Algorithm 1 computes the transitions of Apre∗ , implementing the saturation
rule from section 4. The sets rel and trans contain the transitions that are known
to belong to Apre∗ ; rel contains the transitions that have already been examined.
No transition is examined more than once.

The idea of the algorithm is to avoid unnecessary operations. When we have
a rule 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, we look out for pairs of transitions t1 = (p′, γ′, q′) and
t2 = (q′, γ′′, q′′) (where q′, q′′ are arbitrary states) so that we may insert (p, γ, q′′)
– but we don’t know in which order such transitions appear in trans. If every
time we see a transition like t2 we check the existence of t1, many checks might
be negative and waste time to no avail. However, once we see t1 we know that all
subsequent transitions (q′, γ′′, q′′) must lead to (p, γ, q′′). It so happens that the
introduction of an extra rule 〈p, γ〉 ↪→ 〈q′, γ′′〉 is enough to take care of just these
cases. We collect these extra rules in a set called ∆′; this notation should make
it clear that the pushdown system itself is not changed. ∆′ is merely needed for
the computation and can be thrown away afterwards.

For a better illustration, consider again the example shown in Figure 1.
The initialisation phase evaluates the ε-rules and adds (p0, γ1, p0). When

the latter is taken from trans, the rule 〈p2, γ2〉 ↪→ 〈p0, γ1〉 is evaluated and

Efficient Algorithms for Model Checking Pushdown Systems 239

(p2, γ2, p0) is added. This, in combination with (p0, γ0, s1) and the rule 〈p1, γ1〉 ↪→
〈p2, γ2γ0〉, leads to (p1, γ1, s1), and ∆′ now contains 〈p1, γ1〉 ↪→ 〈p0, γ0〉. We now
have p1

γ1−−→ s1
γ0−−→ s2, so the next step adds (p0, γ0, s2), and ∆′ is extended by

〈p0, γ0〉 ↪→ 〈s1, γ0〉. Because of ∆′, (p0, γ0, s2) leads to (p1, γ1, s2). Finally, ∆′ is
extended by 〈p0, γ0〉 ↪→ 〈s2, γ0〉, but no other transitions can be added and the
algorithm terminates.

Theorem 1. Let P = (P, Γ, ∆) be a pushdown system and A = (Γ, Q, δ, P, F)
be an automaton. There exists an automaton Apre∗ recognising pre∗(Conf (A)).
Moreover, Apre∗ can be constructed in O(n2

Qn∆) time and O(nQn∆ +nδ) space,
where nQ = |Q|, nδ = |δ|, and n∆ = |∆|.

Observe that a naive implementation of the abstract procedure of section 4
leads to an O(n2

Pn3
A) time and O(nPnA) space algorithm, where nP = |P |+ |∆|,

and nA = |Q| + |δ|.

7.2 Computing the Set of Repeating Heads

Given a Büchi pushdown system (P, Γ, ∆, G) we want to compute the set R
introduced in section 3, i.e. the set of transition heads 〈p, γ〉 that satisfy 〈p, γ〉 r=⇒
〈p, γv〉 for some v ∈ Γ ∗.

Algorithm 2 runs in two phases. In the first phase, the cases for which
〈p, w〉 ⇒ 〈p′, ε〉 holds are computed. To this end, we employ the algorithm for
pre∗ on the set { 〈p, ε〉 | p ∈ P }. Then every resulting transition (p, γ, p′) signifies
that 〈p, γ〉 ⇒ 〈p′, ε〉 holds.

However, we also need the information whether 〈p, γ〉 r=⇒ 〈p′, ε〉 holds. To
this end, we enrich the automaton’s alphabet; instead of transitions of the form
(p, γ, p′) we now have transitions (p, [γ, b], p′) where b is a boolean. The meaning
of a transition (p, [γ, 1], p′) should be that 〈p, γ〉 r=⇒ 〈p′, ε〉.

The second phase of the algorithm constructs the graph G using the results of
the first phase. Finally, Tarjan’s algorithm [10] can be used to find the strongly
connected components of G and thus to determine the repeating heads.

In the example from Figure 2, the components of G are {(p0, γ0), (p1, γ1)},
{(p0, γ1)}, and {(p2, γ2)}. Of these, the first one has an internal 1-edge, meaning
that 〈p0, γ0〉 and 〈p1, γ1〉 are the repeating heads of this example.

Theorem 2. Let BP = (P, Γ, ∆, G) be a Büchi pushdown system. The set of
repeating heads R can be computed in O(n2

P n∆) time and O(nP n∆) space, where
nP = |P | and n∆ = |∆|.

A direct implementation of the procedure of [1] for computing the repeating
heads leads to O(n5

BP) time and O(n2
BP) space, where nBP = |P | + |∆|.

7.3 Computing post∗(C)

Given a regular set of configurations C, we want to compute post∗(C), i.e. the
set of successors of C. Without loss of generality, we assume that A has no
ε-transitions.

240 J. Esparza et al.

Algorithm 2
Input: a Büchi pushdown system BP = (P, Γ, ∆, G) in normal form
Output: the set of repeating heads in BP
1 rel ← ∅; trans ← ∅; ∆′ ← ∅;
2 for all 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do
3 trans ← trans ∪ {(p, [γ, G(p)], p′)};
4 while trans 6= ∅ do
5 pop t = (p, [γ, b], p′) from trans;
6 if t /∈ rel then
7 rel ← rel ∪ {t};
8 for all 〈p1, γ1〉 ↪→ 〈p, γ〉 ∈ ∆ do
9 trans ← trans ∪ {(p1, [γ1, b ∨G(p1)], p′)};

10 for all 〈p1, γ1〉 b′
↪−→ 〈p, γ〉 ∈ ∆′ do

11 trans ← trans ∪ {(p1, [γ1, b ∨ b′], p′)};
12 for all 〈p1, γ1〉 ↪→ 〈p, γγ2〉 ∈ ∆ do

13 ∆′ ← ∆′ ∪ {〈p1, γ1〉 b∨G(p1)
↪−−→ 〈p′, γ2〉};

14 for all (p′, [γ2, b
′], p′′) ∈ rel do

15 trans ← trans ∪ {(p1, [γ1, b ∨ b′ ∨G(p1)], p′′)};
16
17 R ← ∅; E ← ∅;
18 for all 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ do E ← E ∪ {((p, γ), G(p), (p′, γ′))};
19 for all 〈p, γ〉 b↪−→ 〈p′, γ′〉 ∈ ∆′ do E ← E ∪ {((p, γ), b, (p′, γ′))};
20 for all 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ do E ← E ∪ {((p, γ), G(p), (p′, γ′))};
21 find strongly connected components in G = ((P × Γ), E);
22 for all components C do
23 if C has a 1-edge then R ← R ∪ C;
24 return R

Algorithm 3 calculates the transitions of Apost∗ , implementing the saturation
rule from section 6. The approach is in some ways similar to the solution for pre∗;
again we use trans and rel to store the transitions that we need to examine. Note
that transitions from states outside of P go directly to rel since these states
cannot occur in rules.

The algorithm is very straightforward. We start by including the transitions
of A; then, for every transition that is known to belong to Apost∗ , we find its
successors. A noteworthy difference to the algorithm in section 6 is the treatment
of ε-moves: ε-transitions are eliminated and simulated with non-ε-transitions; we
maintain the sets eps(q) for every state q with the meaning that whenever there
should be an ε-transition going from p to q, eps(q) contains p.

Again, consider the example in Figure 2. In that example, m1 is the node as-
sociated with the rule 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉, and m2 is associated with 〈p1, γ1〉 ↪→
〈p2, γ2γ0〉. The transitions (p1, γ1, m1) and (m1, γ0, s1) are a consequence of
(p0, γ0, s1); the former leads to (p2, γ2, m2) and (m2, γ0, m1) and, in turn, to
(p0, γ1, m2). Because of 〈p0, γ1〉 ↪→ 〈p0, ε〉, we now need to simulate an ε-move
from p0 to m2. This is done by making copies of all the transitions that leave m2;
in this example, (m2, γ0, m1) is copied and changed to (p0, γ0, m1). The latter

Efficient Algorithms for Model Checking Pushdown Systems 241

Algorithm 3
Input: a pushdown system P = (P, Γ, ∆) in normal form;

a P-Automaton A = (Γ, Q, δ, P, F) without transitions into P
Output: the automaton Apost∗

1 trans ← δ ∩ (P × Γ ×Q);
2 rel ← δ \ trans; Q′ ← Q; F ′ ← F ;
3 for all r = 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ ∆ do
4 Q′ ← Q′ ∪ {qr};
5 trans ← trans ∪ {(p′, γ1, qr)};
6 for all q ∈ Q′ do eps(q)← ∅;
7 while trans 6= ∅ do
8 pop t = (p, γ, q) from trans;
9 if t /∈ rel then

10 rel ← rel ∪ {t};
11 for all 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do
12 if p′ /∈ eps(q) then
13 eps(q)← eps(q) ∪ {p′};
14 for all (q, γ′, q′) ∈ rel do
15 trans ← trans ∪ {(p′, γ′, q′)};
16 if q ∈ F ′ then F ′ ← F ′ ∪ {p′};
17 for all 〈p, γ〉 ↪→ 〈p′, γ1〉 ∈ ∆ do
18 trans ← trans ∪ {(p′, γ1, q

′)};
19 for all r = 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ ∆ do
20 rel ← rel ∪ {(qr, γ2, q)};
21 for all p′′ ∈ eps(qr) do
22 trans ← trans ∪ {(p′′, γ2, q)};
23 return (Γ, Q′, rel , P, F ′)

finally leads to (p1, γ1, m1) and (m1, γ0, m1). Figure 3 shows the result, similar
to Figure 2 but with the ε-transition resolved.

Theorem 3. Let P = (P, Γ, ∆) be a pushdown system, and A = (Γ, Q, δ, P, F)
be an automaton. There exists an automaton Apost∗ recognising post∗(Conf (A)).
Moreover, Apost∗ can be constructed in O(nP n∆(nQ + n∆) + nP nδ) time and
space, where nP = |P |, n∆ = |∆|, nQ = |Q|, and nδ = |δ|.

In [7] the same problem was considered (with different restrictions on the
rules in the pushdown system). The complexity of the post∗ computation for the
initial configuration was given as O(n3

P) where nP translates to nP + n∆. An
extension to compute post∗(C) for arbitrary regular sets C is also proposed. The
different restrictions on the pushdown rules make a more detailed comparison
difficult, but it is safe to say that our algorithm is at least as good as the one
in [7]. Also, we give an explicit bound for the computation of post∗ for arbitrary
regular sets of configurations.

242 J. Esparza et al.

γ0
s1p0

γ0
s2

m1

m2

p1
γ1

p2

γ0

γ2

γ0

γ0

γ0

ε

fl1

Fig. 3. Apost∗ as computed by Algorithm 3.

8 The Model-Checking Problem

Using the results from the previous section we can now compute the complexity
of the problems presented in section 3. The following steps are necessary to solve
the global model-checking problem for a given formula ϕ:

– Construct the Büchi automaton B = (Σ, Q, δ, q0, F) corresponding to ¬ϕ.
– Compute BP as the product of B and the pushdown system P = (P, Γ, ∆).
– Compute the set of repeating heads R of BP.
– Construct an automaton A accepting RΓ ∗. A has one final state r and

contains transitions (p, γ, r) for every 〈p, γ〉 ∈ R and (r, γ, r) for every γ ∈ Γ .
– Compute Apre∗ . A configuration 〈p, w〉 violates ϕ exactly if 〈(p, q0), w〉 is

accepted by Apre∗ .

The dominant factors in these computations are the time needed to compute
the repeating heads, and the space needed to store Apre∗ .

Theorem 4. Let gP denote the size of P and gB the size of B. The global model-
checking problem can be solved in O(gP3gB3) time and O(gP2gB2) space.

In [7] an algorithm is presented for deciding if the initial configuration satisfies
a given LTL property. (The problem of obtaining a representation for the set of
configurations violating the property is not discussed.) The algorithm takes cubic
time but also cubic space in the size of the pushdown system. More precisely,
it is based on a saturation routine which requires Θ(gP3gB3) space. Observe
that the space consumption is Θ, and not O. Our solution implies therefore
an improvement in the space complexity without losses in time. To solve the
problem for reachable configurations we need these additional steps:

– Rename the states (p, q0) into p for all p ∈ P and take P as the new set of
initial states.

– Compute post∗ for the initial configuration of P.
– Compute the intersection of Apre∗ and Apost∗ . The resulting automaton Ai

accepts the set of reachable configurations violating ϕ.

Theorem 5. The global model-checking problem for reachable configurations
can be solved in O(gP4gB3) time and O(gP4gB2) space.

Efficient Algorithms for Model Checking Pushdown Systems 243

9 Application

As an application, we use pushdown systems to model sequential programs with
procedures (written in C or Java, for instance). We concentrate on the con-
trol flow and abstract away information about data. The model establishes a
relation between the control states of a program and the configurations of the
corresponding pushdown system.

The model is constructed in two steps. In the first step, we represent the
program by a system of flow graphs, one for each procedure. The nodes of a flow
graph correspond to control points in the procedure, and its edges are annotated
with statements, e.g. calls to other procedures. Control flow is interpreted non-
deterministically since we abstract from the values of variables.

Given a system of flow graphs with a set N of control points, we construct a
pushdown system with N as its stack alphabet. More precisely, a configuration
〈p, nw〉, w ∈ N∗ represents the situation that execution is currently at control
point n where w represents the return addresses of the calling procedures. Pus-
hdown systems of this kind need only one single control state (called p in the
following). The transition rules of such a pushdown system are:

– 〈p, n〉 ↪→ 〈p, n′〉 if control passes from n to n′ without a procedure call.
– 〈p, n〉 ↪→ 〈p, f0n

′〉 if an edge between point n and n′ contains a call to
procedure f , assuming that f0 is f ’s entry point. n′ can be seen as the
return address of that call.

– 〈p, n〉 ↪→ 〈p, ε〉 if an edge leaving n contains a return statement.

Let us examine how the special structure of these systems affects the com-
plexity of the model-checking problem. Under the assumption that the number
of control states is one (or, more generally, constant), the number of states in
the Büchi pushdown system BP only depends on the formula, and we get the
following results:

Theorem 6. If the number of control states in P is constant, the global model-
checking problem can be solved in O(gPgB3) time and O(gPgB2) space, and the
problem for reachable configurations in O(gP2gB3) time and O(gP2gB2) space.

9.1 A Small Example

As an example, consider the program in Figure 4. This program controls a plot-
ter, creating random bar graphs via the commands go up, go right , and go down.
Among the correctness properties is the requirement that an upward movement
should never be immediately followed by a downward movement and vice versa
which we shall verify in the following.

The left side of Figure 5 displays the set of flow graphs created from the
original program. Calls to external functions are treated as ordinary statements.
(In this example we assume that the go... functions are external.) The procedure

244 J. Esparza et al.

main ends in an infinite loop which ensures that all executions are infinite. The
right side shows the resulting pushdown system. The initial configuration is
〈p, main0〉. The desired properties can be expressed as follows:

G(up → (¬down U right)) and G(down → (¬up U right))

where the atomic proposition up is true of configurations 〈p, m7w〉 and 〈p, s2w〉,
i.e. those that correspond to program points in which go up will be the next
statement. Similarly, down is true of configurations with m9 or s5 as the topmost
stack symbol, and right is true of m4. Analysis of the program with our methods
yields that both properties are fulfilled.

9.2 Experimental Results

Apart from the example, we solved the global model-checking problem on a
series of randomly generated flow graphs. These flow graphs model programs
with procedures. The structure of each statement was decided randomly; the
average proportion of sequences, branches and loops was 0.6 : 0.2 : 0.2 (these
numbers were taken from the literature). After generating one flow graph for each
procedure we connected them by inserting procedure calls, making sure that each
procedure was indeed reachable from the start. The formulas we checked were
of the form G(n → Fn′), where n and n′ were random control states.

Table 1 lists the execution times in seconds for programs with an average
of 20 resp. 40 lines per procedure. One fifth of the statements in these programs
contained a procedure call. Results are given for programs with recursive and
mutual procedure calls. The table lists the times needed to compute the sets of
repeating heads, pre∗, and the total time for the model-checking which includes
several other tasks. In fact, in our experiments the majority of time was spent
reading the pushdown system and computing the product with a Büchi auto-
maton. Also, memory usage is given. All computations were carried out on an
Ultrasparc 60 with sufficient amount of memory.

Obviously, these experiments can only give a rough impression of what the
execution times would be like when analysing real programs. However, these
experiments already constitute ‘stress tests’, i.e. their construction is based on

void m() { void s() {
double d = drand48(); if (drand48() < 0.5) return;
if (d < 0.66) { go up(); m(); go down();

s(); go right(); }
if (d < 0.33) m();

} else { main() {
go up(); m(); go down(); srand48(time(NULL));

} s();
} }

Fig. 4. An example program.

Efficient Algorithms for Model Checking Pushdown Systems 245

0

2

1

3

4

5

6

7

8

9

0

3 2

4

5

1

0

2

1

return

go_up

call m

go_down

call m

go_up

return

go_down

call m

main:m: s:

call s

d = drand48()

if d<0.66 else

if drand48() < 0.5

call s

else

return

go_right

if d<0.33 else

srand(...)
〈p, m0〉 ↪→ 〈p, m2〉 〈p, m9〉 ↪→ 〈p, m1〉
〈p, m2〉 ↪→ 〈p, m3〉 〈p, m1〉 ↪→ 〈p, ε〉
〈p, m3〉 ↪→ 〈p, s0 m4〉 〈p, s0〉 ↪→ 〈p, s2〉
〈p, m4〉 ↪→ 〈p, m5〉 〈p, s0〉 ↪→ 〈p, s3〉
〈p, m5〉 ↪→ 〈p, m1〉 〈p, s3〉 ↪→ 〈p, ε〉
〈p, m5〉 ↪→ 〈p, m6〉 〈p, s2〉 ↪→ 〈p, s4〉
〈p, m6〉 ↪→ 〈p, m0 m1〉 〈p, s4〉 ↪→ 〈p, m0 s5〉
〈p, m2〉 ↪→ 〈p, m7〉 〈p, s5〉 ↪→ 〈p, s1〉
〈p, m7〉 ↪→ 〈p, m8〉 〈p, s1〉 ↪→ 〈p, ε〉
〈p, m8〉 ↪→ 〈p, m0 m9〉
〈p, main0〉 ↪→ 〈p, main2〉
〈p, main2〉 ↪→ 〈p, s0 main1〉
〈p, main1〉 ↪→ 〈p, main1〉

Fig. 5. Flowgraph of the program in Figure 4 (left) and associated PDS (right)

certain exaggerated assumptions which affect execution times negatively. For
instance, the number of procedure calls is very high, and with mutual calls we
allowed every procedure to call every other procedure (which greatly increases
the time needed to find repeating heads). We have run preliminary experiments
with three real programs of ten to thirty thousand lines, and the time for the
model-checking was never more than a few seconds even for the largest program.

10 Conclusions

We have presented detailed algorithms for model-checking linear time logics
on pushdown systems. The global model-checking problem can be solved in
O(gP3gB3) time and O(gP2gB2) space. In the case of pushdown systems with one
single control state the problem can be solved in O(gPgB3) time and O(gPgB2)
space. Our results improve on [7], where the model-checking problem (i.e., deci-
ding if an initial configuration satisfies a property, without computing the set of
configurations violating the property) was solved in O(n3) time but also O(n3)
space in the size of the pushdown system.

Our work needs to be carefully compared to that on branching time logics.
For arbitrary pushdown systems, linear time logics can be checked in polynomial
time in the size of the system, while checking CTL provably requires exponential
time. However, in the case of pushdown systems with one single control state, a
modal mu-calculus formula of alternation depth k can be checked in time O(nk)
[3,11], where n is the size of the system. In this case, linear time formulas can
be checked in O(n) time, and so we obtain linear complexity in the size of the
system for both linear time logics and for the alternation-free mu-calculus.

The information provided by the branching-time and linear-time algorithms
is different. Walukiewicz’s algorithm [11] only says whether the initial configu-
ration satisfies the property or not. The algorithm of Burkart and Steffen [2,3]

246 J. Esparza et al.

avg. 20 lines/procedure avg. 40 lines/procedure

lines RH pre∗ total space RH pre∗ total space

recursive procedure calls
1000 0.05 0.02 0.23 0.91M 0.05 0.02 0.20 0.84M
2000 0.12 0.05 0.46 1.82M 0.14 0.05 0.48 1.84M
5000 0.36 0.13 1.23 4.46M 0.34 0.14 1.20 4.29M

10000 0.76 0.26 2.55 8.79M 0.74 0.30 2.52 8.62M
20000 1.64 0.55 5.43 17.56M 1.75 0.64 5.57 17.69M

mutual procedure calls
1000 0.06 0.03 0.24 0.97M 0.05 0.03 0.22 0.90M
2000 0.14 0.06 0.49 1.91M 0.14 0.08 0.49 1.87M
5000 0.43 0.18 1.35 4.72M 0.42 0.18 1.32 4.67M

10000 0.97 0.39 2.91 9.68M 0.95 0.39 2.84 9.39M
20000 2.10 0.81 6.21 19.27M 2.08 0.84 6.15 18.93M

Table 1. Results for programs with recursive and mutual procedure calls

returns a set of predicate transformers, one for each stack symbol; the predicate
transformer for the symbol X shows which formulas hold for a stack content Xα
as a function of the formulas that hold in α.2 Essentially, this allows to deter-
mine for each symbol X if there exists some stack content of the form Xα that
violates the formula, but doesn’t tell which these stack contents are. Finally, our
algorithm returns a finite representation of the set of configurations that violate
the formula.

Whether one needs all the information provided by our algorithm or not
depends on the application. For certain dataflow analysis problems we wish to
compute the set of control locations p such that some reachable configuration
〈p, w〉 violates the property. This information can be efficiently computed by the
algorithm of [2,3]. Sometimes we may need more. For instance, in [8] an approach
is presented to the verification of control flow based security properties. Systems
are modelled by pushdown automata, and security properties as properties that
all reachable configurations should satisfy. It is necessary to determine which
configurations violate the security property to modify the system accordingly.
The model checking algorithm of [2,3] seems to be inadequate in this case. It may
be possible to modify the algorithm in order to obtain an automata representa-
tion of the configurations that violate the formula. This is surely an interesting
research question.

2 Not for arbitrary formulas, but only for those in the closure of the original formula
to be checked.

Efficient Algorithms for Model Checking Pushdown Systems 247

References

1. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proceedings of CONCUR ’97, LNCS
1243, pages 135–150, 1997.

2. O. Burkart and B. Steffen. Composition, decomposition and model checking of
pushdown processes. Nordic Journal of Computing, 2(2):89–125, 1995.

3. O. Burkart and B. Steffen. Model–checking the full–modal mu–calculus for infinite
sequential processes. In Proceedings of ICALP’97, Bologna, LNCS 1256, pages
419–429, 1997.

4. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. Technical Report TUM-I0002, Technische Uni-
versität München, Department of Computer Science, Feb. 2000.

5. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
dataflow analysis. In Proceedings of TACAS ’99, LNCS 1578, pages 14 – 30, 1999.

6. J. Esparza and A. Podelski. Efficient algorithms for pre∗ and post∗ on interproce-
dural parallel flow graphs. In Proceedings of POPL ’00, 2000.

7. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. Electronic Notes in Theoretical Computer Science, 9,
1997.

8. T. Jensen, D. Le Métayer, and T. Thorn. Verification of control flow based security
properties. Technical Report 1210, IRISA, 1998.

9. D. Schmidt and B. Steffen. Program analysis as model checking of abstract inter-
pretations. In Proceedings of SAS’98, Pisa, LNCS 1503, pages 351–380, 1998.

10. R. E. Tarjan. Depth first search and linear graph algorithms. In SICOMP 1, pages
146–160, 1972.

11. I. Walukiewicz. Pushdown Processes: Games and Model Checking. In CAV’96.
LNCS 1102, 1996.

	Introduction
	Pushdown Systems and P-Automata
	P-Automata

	Model-Checking Problems for Linear Time Logics
	Computing pre*(C) for a Regular Language C
	Computing the Set R of Repeating Heads
	Computing pos^*(C) for a Regular Set C
	Efficient Algorithms
	Computing pre*(C)
	Computing the Set of Repeating Heads
	Computing post*(C)

	The Model-Checking Problem
	Application
	A Small Example
	Experimental Results

	Conclusions

