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Abstract. Several proof rules based on the assume-guarantee paradigm
have been proposed for compositional reasoning about concurrent sy-
stems. Some of the rules are syntactically circular in nature, in that
assumptions and guarantees appear to be circularly dependent. While
these rules are sound, we show that several such rules are incomplete,
i.e., there are true properties of a composition that cannot be deduced
using these rules. We present a new sound and complete circular rule. We
also show that circular and non-circular rules are closely related. For the
circular rules defined here, proofs with circular rules can be efficiently
transformed to proofs with non-circular rules and vice versa.

1 Introduction

In his landmark paper [Pnu77], Pnueli advocated the use of temporal logic as
a formalism for describing the correct operation of reactive systems [HP85].
To show that a reactive system, M, is correct, one specifies the correctness
condition for M as an assertion, f, of temporal logic and applies proof techniques,
either automatic [CERTIQS82ICESR6| or deductive [Pnuld/MPR4], to show that
M satisfies f (M = f).

Model checking [CE81/QS82] (¢f. [CES86] [VW86]) is an automatic technique
for showing that M |= f. It is efficient, with complexity linear in the size of M
(|]M|) for temporal logics such as Computation Tree Logic (CTL) [CES81] and
Linear Temporal Logic (LTL) [Puu77]. However, when M is given as the parallel
composition of n processes, each of size bounded by K, the size of M may be K™.
This state explosion problem is one of the main obstacles to the more wide-spread
application of model checking.

Compositional reasoning techniques form a promising approach to ameliora-
ting the state explosion problem. To prove that the parallel composition of M;
with My, written as M;//Ma, satisfies the correctness specification h, composi-
tional techniques provide proof rules that justify the above correctness assertion
from two proofs done in isolation, the first stating the correctness of M; and
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the second stating the correctness of M. For example, the following is a typical
rule:

{fIMi{h}
{h}Ma{g}

{f}yMy/[Ma{g}

This rule works as follows. First, show {f}M;{h}, that is, that M; satisfies
h under the assumption f. Second, show that {h}Ms{g}. Then the correctness
assertion { f}M7//M2{g} may be concluded as a consequence of the soundness of
the rule. Such compositional reasoning provides a benefit to the extent that direct
reasoning about M; //Ms has been avoided. In general, however, determining the
appropriate auxiliary assertion h may be highly non-trivial.

To ease the difficulty of determining the auxiliary assertions, several so called

circular proof rules have been proposed. For example, consider the following rule
(cf [McM99])

{fIMi{g21> g1}
{f}M2{ g1 > ga}

{fYM1/[M2{G(g1 A g2)}

Several points seem to differentiate this rule from the previous one. Firstly,
the form of the postconditions has been restricted to specific operators. The
property ¢ > p (read as “q constrains p”) is true of a computation if, for all
i, p is true at point ¢ of the computation if ¢ holds at all points j < ¢; this
can be expressed in LTL as —(q U —p). The property G(p) (read as “always p”)
is true of a computation if p holds at all points of the computation. Secondly,
in the first sub-goal, {f}M1{g2 > g1}, 91 is understood to be the correctness
assertion of M7 while go is a helper assertion. This may be justified by thinking
of M as an open system, which interacts with an environment over which it
has little control. Thus, the correct operation of M; may be dependent on the
correct operation of its environment My, therefore, g5 appears as a guarantee
of the correct operation of the environment in the proof of the correctness of
M. The appearance of g; in the proof sub-task for M5 can be similarly justified
— hence the use of the word “circular” in the name for such proof rules. The
circularity helps to more easily encode the back-and-forth handshake protocols
that designers typically use for connecting components of a system.

For any proof system, soundness is, of course, the most important property
— it should not be possible to deduce false facts. A measure of the quality or
usefulness of a proof system is obtained from an investigation into completeness
— is it possible to deduce all true facts using the rules of the system? Existing
compositional rules, including the circular ones, are known to be sound.

In this paper, we first investigate the completeness of existing compositional
reasoning rules, focusing on rules that are known to be sound for arbitrary linear
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temporal properties and which have been used successfully to verify large sy-
stems. Surprisingly, several such rules turn out to be incomplete; that is, there are
correctness assertions about Mj//Ms which are true but are not provable from
the proof rules. Typically these unprovable assertions are liveness properties, but
some rules may also be incomplete for safety properties. The counter-examples
for incompleteness are also quite simple, which indicates that the rules may be
inadequate for handling many compositions that arise in practice. We propose
a new circular reasoning rule similar to the one above and show that it is both
sound and complete. The new rule strengthens the previous rule in a manner
analogous to strengthening a proof of invariance by introducing auxiliary as-
sertions — to show Gp show G(p A h). Furthermore, our new rule is backward
compatible, in that any proof done using the previous rule is also a proof with
the new circular rule.

We then investigate whether circularity is, in itself, essential for reasoning
about composed systems. We show that the notion of circularity is a somewhat
weak one for LTL properties, in that proofs carried out with circular rules can
be efficiently translated to proofs with non-circular rules, and vice-versa.

The paper is organized as follows: Section 2] contains some preliminary defi-
nitions; Section [B] gives the details of several different styles of proof rules and
develops our new sound and complete circular proof rule; Section @ discusses
the translations between proofs carried out with circular and non-circular rules.
Finally, Section [} contains a brief conclusion and discusses related work.

2 Background

In this section, we define the computational model and provide examples of
circular and non-circular rules for compositional reasoning.

2.1 Temporal Logic

LTL was first suggested as a protocol specification language in [Pnu77]. Formulae
in the logic define sets of infinite sequences. We define LTL formulae w.r.t. a set
of variable symbols. As in first-order logic, one can construct terms over the set
of variables using function symbols from a vocabulary F, and atomic predicates
from terms, using relational symbols from a vocabulary R. We define atomic
predicates and temporal formulas below. A predicate is a boolean combination
of atomic predicates.

— For a relational symbol r € R of arity n and terms tq,... ,t,_1,
r(to,... ,tp—1) is an atomic predicate and a formula,

— for formulae f and g, (f A g) and —(f) are formulae,

— for formulae f and g, X(f),X~(f),(f U g), and (f U~ g) are formulae.

The temporal operators are X (next-time), X~ (previous-time), U (until), and
U~ (since). Given an interpretation Z (which we assume fixed from now on)
for the function and relation symbols, temporal formulae are interpreted w.r.t.
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infinite sequences of valuations of the variables. For a set of typed variables
W, let a W-state be a function mapping each variable in W to a value in its
type. The set of W-states is denoted by X (W). A W-sequence o is an infinite
sequence of W-states, which is represented as a function o : N — X (W) (N is
the set of natural numbers). We write 0,7 = f to say that the infinite sequence
o satisfies the formula f at position i. The language of f, denoted by L(f), is the
set {o : 0,0 = f}. The satisfaction relation can be defined by induction on the
structure of f. First, the value of a term ¢ at location ¢ on o, denoted as o;(¢),
may be defined by induction on the structure of terms. Next, the satisfaction
relation for formulas is defined as follows.

—o,i Er(te,... tn_1) iff (Z(r))(o:i(to),... ,0i(tn—1)) is true.

—o0,i = (f) iff 0,0 = f is false; 0,0 = (f A g) iff both 0,i = fand 0,i = g
are true.

o i EX(f)iffoyi 1S

— i =X(f)iffi >0and 00— 1 = f.

— 0,i = (f U g) iff there exists j, j > ¢, such that o,j | g and for every k,
i<k<j, okE/f.

— o0,i = (f U™ g) iff there exists j, j < ¢, such that o,j = g and for every k,
j<k<iokEf.

Other connectives can be defined in terms of these basic connectives: (fVg) is
—(=fAng), (f = g)is~f Vg, Fg (“eventually g”) is (true U g), F~ g (“previously
g”) is (true U™ g), Gf (“always f7) is =F(=f), (f W ¢) (“f holds unless g¢”)
is (G(f)V (f Uy)), OFop (“infinitely often p”) is GFp, O(?p (“finitely often —p”) is
FGp, and ¢ > p (read as “q constrains p”) is —(¢ U —p).

Quantified Temporal Logic: The expressive power of temporal logic can
be enhanced by allowing variable quantification. The formula (AW : f) is true
of a V-sequence o iff there is a V' UW-sequence  that agrees on the V-variables
with o and which satisfies f. In the finite case, the expressive power of quantified
temporal logic is that of w-regular expressions — see [Tho90| for a survey of these
issues.

2.2 Computational Model

We adopt a definition of a process similar to those in [Puu77/ALI5SIMcM99]. A
process is specified by giving an initial condition, a transition condition and a
fairness condition over a set of variables.

Definition 0 (Process) A process is specified by a tuple (V,1, T, F) where

— V is a finite, nonempty set of typed variables. We define a set of primed
variables V' that is in 1-1 correspondence with V.

I(V), the initial condition, is a predicate on V,

— T(V, V"), the transition condition, is a predicate on VUV’ which is left-total.
F(V,V"), the fairness condition, is a boolean combination of temporal for-

mulas OFo(p) and OGo(p), for predicates p on VUV,
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For W such that V C W, a W-computation o of a process is a W-sequence
such that I(op), and for each ¢ € N, T(0;,0;4+1). By considering 2’ € V' as a
term that specifies the value of x € V in the next state, the set of computations
can be defined by the temporal formula I A G(T'), interpreted over W-sequences.

Definition 1 (Language) For a set of variables W such that V. C W, the
W -language of a process M = (V,I,T,F), denoted by Ly (M), is the set of W -
computations of M that satisfy the fairness condition F. Thus, Ly (M) can be
expressed by the LTL formula I A G(T) A F, interpreted over W -sequences.

We define process composition so that the language of a composition M // M,
is the intersection of the languages of M7 and Ms. The semantics of most hard-
ware description languages follows this model. In addition, as shown in [AL95],
with some reasonable restrictions, it holds also of asynchronous models of com-
putation.

Definition 2 (Process Composition) The composition of processes My =
Vi, 11, Th, F1) and My = (Va, 15, Ts, Fy) is denoted by My//Ma, and is defined
as the process (V,1,T, F) where

V=V, U,
—I=05L NI,

- T=TNT5,
— F=FANF,

With this definition of composition, it is possible that 7" is not left-total even
though T and T are left-total. In the rest of the paper, we restrict ourselves to
those compositions where T is left-total.

Theorem 0 For a composition M = My //My and a set of variables W such
that (Vi U Vo) CW, Lw (M) = Lw (M) N Lw(Ms). O

Definition 3 (Model Checking) The model checking question is to deter-
mine if a property f defined over a variable set W 1is true of all computations of a
program M with a variable set that is a subset of W; i.e., if VW : Ly (M) = f)
holds.

2.3 Compositional Reasoning

The model checking question for a composition M;//Ms may be phrased as
(VW : Lw(M1//Ms) = f), which is equivalent, by Theorem 0] to (VIV :
Lw (M) A Ly (Ms) = f). Compositional reasoning rules convert this question
into two separate model checking questions, one explicitly involving M; and the
other explicitly involving Ms. This separation is typically required in the proofs
of large systems because even the symbolic representation (as BDD’s) of the
transition relation for M //M, is infeasible.
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Assume-guarantee rules for composition attempt to generalize the pre- and
post-condition reasoning of Hoare logic [Hoa69]. Informally, a triple {f} M {g} as-
serts the property that every computation of M which satisfies the assumption f
satisfies the guarantee g. Formally, this can be stated as (VW : fALw (M) = g).
We state below two typical compositional reasoning rules based on the assume-
guarantee formulation: the first is syntactically non-circular, while the second is
syntactically circular, in that the assumptions of one process form the guarantees
of the other and vice-versa.

Definition 4 (Non-circular Reasoning (NC)) Show {f}M1//Ma{g} holds
by picking an intermediate property h such that {f}M1{h} and {h}M>{g} hold.

Rule NC is sound, which can be shown with simple propositional reasoning
from the definitions. It is also (trivially) complete; if {f}M7//Ma{g} holds, then
choosing h = f A Ly (M), one may show {f}M1{h} = YW : f A Lw (M;1) =
A ﬁw(Ml)) = true, and {h}Mg{g} = (VW A Ew(Ml) A\ EW(MQ) = g),
which is true by the assumption.

The following rule is derived from the application of a property decomposition
theorem to compositional reasoning in [McM99] (¢f. Theorem 1 in [McM99]).
Below we make use of the following notation: let B = {f,..., fx} be a set of
LTL formulae, then the formula B is a shorthand for (A : f;).

Definition 5 (Syntactically Circular Reasoning (C1)) Consider the com-
position M = (//j : M;). Let {g;} be a set of properties. To show that

{fYM{G(Ai = gi)} holds,

— with each i, choose a composition M (i) = (//k : M) where k ranges over a
strict subset of the process indices,

— choose a well founded order < and subsets ©; and A; of the set of properties
{9:}, such that if g; € O;, then j <1,

and show that {f} M (i){ A; > (=6, V g;)} holds for all i.

The requirement that M(7) is a strict sub-composition of M is imposed to
prevent trivial applications of this rule with every M (7) equal to M.

3 (In)Complete Proof Rules

We have shown in the previous section that the non-circular rule NC is both
sound and complete. In this section, we consider the proof rule C1 and the
assume-guarantee rule from [AL95] and show that these circular rules are in-
complete, even for finite-state processes. Our choice of these rules is guided by
two considerations: (i) these rules, unlike many other compositional rules (as
discussed in Section (), are sound for arbitrary linear temporal properties and
(ii) they have been used successfully (cf. [McM98]) to verify large systems. We
then present a new sound and complete circular rule.
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3.1 Incompleteness

To demonstrate that rule C1 is incomplete, consider the programs below where,
informally, M7 and M, juggle four tokens by throwing them back and forth in an
circular pattern (the I, r variables indicate left and right “hands”, respectively).

program M; program M

variables l1, 71,72 : boolean variables l2, 72,71 : boolean
initially I3 A 71 initially l2 A 72

transition (1" = 72) A (r1' = I1) transition (o’ =71) A (r2’ = 12)

As can be checked easily, the property G(I; A l3) holds of the composition
My //M,. Applying the substitution f = true,g1 = li, g2 = l2 to rule C1, we
obtain the property {true}M;//M2{G(ly Al3)}. However, as can be checked by
enumeration, there is no way to define the well founded order <, and the subsets
O, and A; such that the sub-goals of rule C1 are satisfied. Intuitively, this is
because the next value of [ is determined by the current value of ro, which is
unconstrained by the assumptions. Hence, the original property, which is true of
the composition, cannot be shown using the proof rule C1.

One reason that this rule is incomplete is that it does not permit a choice
of auxiliary assertions, as in rule NC. If auxiliary assertions were allowed, it is
easy to see that the strengthened property G(l1 A r1 Ala A 1) can be shown
by properly instantiating rule C1. This is similar to the incompleteness of the
inductive invariance rule for establishing G(p); one often needs to strengthen p
to p A h and show that this strengthened formula is an inductive invariant. We
say more about strengthening in Section B2l

The circular proof rule presented in [AL95] is given below. In this rule, //
represents asynchronous composition and ﬁ(M ) is defined so that it is insensitive
to stuttering, however, £(M,//Ms) is defined so that it equals £(M;) A L(Ms).
Although this rule allows the choice of auxiliary assertions Fj, it turns out that
it is still incomplete, because of the restricted form of the hypotheses. In the
definition below, C(f), for an LTL property f, is the strongest safety property
that is weaker than f while f,, asserts that if the formula f should become false
then the variable v becomes constant (for more details see [AL95]).

Definition 6 (Circular Rule C2 [AL95]) To show that E A L(N1//Ny) =
L(M;//Ms) holds, pick E; and show that for each i in {1,2} all the following
hold.

= CB) A Njeqr,2y C(L(M) =
- C(

Ei)4o AC(L(N;)) = C(L(M, ))
— Ei ANL(N:) = L(M;)

Consider the programs M;, My, N7 and N» given below, all of which have
initial condition true and a weak-fairness condition on the actions a1, as.

program M, program Mo

variables x : boolean variables y : boolean

transition a1: x := true, bi: x := false  transition ag: y := true, ba: y := false

Thus, the specification programs M; and My define the properties GFz and
GFy respectively. The implementation programs N and Ny are as follows.
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program N program Na
variables x,y : boolean variables x, ¥y : boolean
transition ai: x :=y transition az: y := true, ba: y := " Ay

It is easy to check that E A L(Ny//Ny) = L(M,//My)) with E = true. By a
result in [AL95], C'(£(M)) is just the temporal formula for process M without the
fairness condition. Thus, C(L(M))) = true A G(z' = true V &’ = false V 2’ = ),
which simplifies to true, as does C(L£(Ms)). Hence, if the first hypothesis is
to hold, both F; and F5 must equal true. Therefore, by the third hypothesis,
L(Ny) = L(M), which is false as Ny admits computations where z is false at

every point. Hence, rule C2 is incomplete.

3.2 A Sound and Complete Circular Rule

We present a rule that allows the choice of auziliary properties over process in-
terfaces, while retaining the overall style of the proof obligations of rule C1. This
rule is shown to be sound and complete. For clarity, we restrict the discussion
below to the two process case — there is a straightforward generalization to the
n process case.

Definition 7 (Circular Reasoning (C3)) For properties g1 over Vi and go
over Vs, to show {f}My//M2{G(¢g1 A g2)}, pick properties hy and hy for which
the following obligations hold.

L AfYM{ (ha A g2) > ((ha = g1) A h1)}
2. {f}Ma{ (h1 A g1) > ((h1 = g2) A ha)}

Note that an instance of rule C1 can be obtained from C3 by making the
substitution hy = true, ho = true.

Theorem 1 (Soundness) Rule C3 is sound.

Proof. Assume that the hypotheses of the rule hold for some choice of hy and
ho. Then the guarantees of both hypotheses are true for any computation of
M //Mj that satisfies f. Consider any such computation o, and any point ¢ on
o. Assume inductively that for all points j, j < 4, the property (g1 Ahi AgaAhsg)
holds. By the first hypothesis of rule C3, (he = g1) A h; holds at point 4, and by
the second hypothesis, so does (h; = g2) A he. Hence, the inductive hypothesis
holds at point ¢+ 1. This shows that G(g1 A h1 A g2 A ha) holds of o, from which
it follows that the weaker property G(g; A g2) also holds of o. O

Theorem 2 (Completeness) Rule C38 is complete. Furthermore, if f is defi-
ned over the interface variables Vi N Vs, it is always possible to choose hy and
ho as properties over Vi N Vs.

Proof. In the following, let V = V4 U V5, and suppose that f is defined over
Vi N Va. Suppose that {f}M;//M2{G(g1 A g2)} holds. By definition, this is
equivalent to (VV : f A Ly (M) A Ly (Msz) = G(g1 A g2)), which is equivalent to
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(VV 2 fALy (My) ALy (Mz) = G(g1)) and (VV 2 fALy (My) ALy (Mz) = G(g2))
both being true. Consider the first property:

(VV i f ALy (M) ALy (Mz2) = G(g1)) (1)

Let ap = @V\Va: f A Ly (M) and ag = (AV\V; 1 f A Ly(Mz)). Define hy
as F~ay and hs as F~ag. As M and g1 are defined over Vi, expression [l can be
re-written as:

(VVi: Ly (M) A az = G(g1)) (2)
By definition of «aq, it is also true that:
(VV:f/\L'V(Ml):>a1) (3)

Consider the first hypothesis: { f}M1{ (h2 A g2)t>((ha = ¢1) A h1)}, and con-
sider any sequence satisfying f A Ly (M7). By equation [3], a7 is true initially, so
G(hy) is true. Now consider an arbitrary position ¢ on the sequence such that
(ha A g2) holds for all positions 7, j < i.

case i = 0: We have to show that (ha = g¢1) at position 0. If hy is true
initially, then ay is true initially. By equation 2, g; must then be true.

case i > 0: As i > 0, ho holds initially, which implies that s is true initially.
By equation 2, G(g1) holds at the origin, so that (hy = ¢1) is true at point i.

Hence, the first hypothesis is true. In a similar manner, one may argue that
the second hypothesis is also true; so the rule is complete. Note that the auxiliary
assertions hq and hg are defined over the common interface variables V73 N Vs, O

For the first example, which showed the incompleteness of rule C1, the fol-
lowing choices for hy and hy over the common variables {ry,r2} ensure that the
hypotheses of rule C3 hold: h; = r1, hg = 1.

For the second example, which showed the incompleteness of rule C2, the
property to be satisfied by N7//N2 may be written as G(GFxz A GFy). The fol-
lowing choices for hy and ho over the common variables x,y ensure that the
hypotheses of rule C3 hold: hy = true, ho = GFy.

Interestingl, if we modify the hypotheses of rule C3 so that they have
the form {f}M1{G(h1) A (g2 A he) > (he = g1)}, which is also sound and com-
plete, then these hypotheses may be obtained from rule C1 for the composi-
tion M7//Ms with the following substitutions: g1 = g1,92 = g2,93 = h1,94 =
ho, A1 = {g2,94},01 = {94}, A2 = {g1,93},02 = {g3}. The other ©® and A
variables equal (). We also choose M (1) = My, M(2) = My, M(3) = My, M(4) =
Ms and the relation <: 3 < 2,4 < 1. This shows that modifying rule C1 by
allowing the g¢;’s to be augmented with auziliary assertions h; to form (g; A h;),
results in a sound and complete rule.

! We thank an anonymous referee for this observation.
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4 Translating Proofs

In this section we show how proofs derived using the circular rule C3 can be
translated into proofs using the non-circular rule NC and vice-versa. We also
discuss some of the consequences of these translations. In the sequel, when W is
clear from the context, we will write (VW : f) simply as f.

Theorem 3 (From Circular to Non-Clircular) Suppose {f} M/ /Ma{G(g1 Ag2)}
has been derived from the circular rule C3. Then {f}M1//M2{G(g1 A g2)} may
be derived by application of the rule NC by letting the intermediate assertion h
equal f A (g2 A ha) > ((he = g1) A ha).

Proof. {f}Mi{f A (g2 A h2) > ((ha = g1) A h1)}, the first requirement of rule
NC, follows as a direct result of the first proof obligation from C3 in the premise.
We now show why the second requirement of rule NC also holds.

{f A (ha AN g2) > ((ha = g1) A ha)}M2{G(g1 A g2)}
( by the definition of {f}M{g} )
{fIM2A{ (h2 A g2) > ((h2 = g1) A h1) = G(g1 A g2)}
<= ( by the second proof obligation of rule C3 )
(hl /\91) > ((hl = gz) A h2) =
[(h2 A g2) & ((ha = g1) A h1) = G(g1 A g2)]
( re-arranging )
[(h1 A g1) > ((h1 = g2) Ah2)] A[(h2 A g2) > ((he = g1) A ba)] =
G(g1 A g2)
( temporal logic (see proof of Theorem [I) )
true

O

Theorem 4 (From Non-Circular to Circular) Suppose { f} M, //Ma{g} has been
derived from the non-circular rule NC using the intermediate assumption h.
Then the conclusion {f}M;//Ma{g} may be derived by application of the rule
C3 using the substitution hy = F~h, ho = true, g1 = true and go = F~g.

Proof. Firstly, we note that the conclusion of the rule is the desired one. It
is straightforward to show that, at the initial point, any computation satis-
fies GF~g iff it satisfies g. Therefore, {f}M1//M2{G(g1l A ¢g2)} is equivalent to

{f}My//Ma{g}.
Consider the first proof obligation.

{fIM{ (ha A g2) > ((he = g1) A ha)}
( substituting and simplifying )
{fIMi{ g2 > P}
&= ( > is anti-monotone in its first argument )

{fIM{true>F(h)}
(as true>F~(h)=GF~(h))
{F}M{GF™(h)}
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(‘as GF~(p) and p are equivalent at the initial point )
{fIMi{h}

( by the first premise in the supposition )
true

Now we show that the second premise is also true.

{fIM2{ (1 A g1) > ((h1 = g2) A ha)}
( substituting and simplifying )
{fIMa{ hy > (h1 = g2)}
( definition of hy,gs )
{fIMA F=(h) > (F~(h) = F~(9))}

This follows by an induction on positions of any sequence satisfying f A
L(Ms). At the initial position, by the second part of NC, (h = ¢) holds, thus,
(F-h = F~g) holds at the initial position. At any other position i, by the
assumption F~h for 0 up to ¢« — 1, h must be true initially, hence, g is true
initially by the second part of NC, so that F~ g is true at position . O

We note that the translations make no use of quantified formulae, which
justifies the following corollary.

Corollary 0 Compositional Rule C8 is complete for linear temporal logic.

Proof. As in the proof of the previous theorem, one can write a property f
as G(true AF~(f)) and apply rule C3. Since C3 was shown to be complete for
properties of the form G(g; A g2) it follows that C3 is sufficient for proving any
linear temporal logic property. We note that the proof of Theorem [2, presented
above, does make use of quantified temporal properties. This use of quantification
is beneficial, in that the properties constructed in the proof of completeness
may be restricted to the variables which are mentioned in the interface between
M, and Ms. However, it is possible to prove Theorem [2] without reference to
quantified formulae (this proof has been left out for space reasons) and hence
the result follows. O

4.1 The Cost of a Proof

In this section we discuss the computational cost of applying the various rules.
The goal is to calculate the cost of translating an instance of the use of one proof
rule into the use of another proof rule and to get a measure on the complexity
of a proof rule.

Consider the proof obligation {f}M{g} where f and g are pure LTL for-
mulae (they contain no quantifiers). If such a proof were done by hand then
any complexity measure would be, at best, highly subjective. Suppose, on the
other hand, that this proof were given to a model checker. The obligation amo-
unts to showing that every W-computation of M that satisfies f also satisfies
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g. Typically, this is done as follows [VW80]. First, translate f, M and —g into
automata Ay, Ay and A4, respectively, such that the set of sequences accepted
by the automaton is exactly the set of sequences accepted by the corresponding
formula. Then L£(Af N Ay N A-y) = 0 iff the set of computations of M which
satisfy f all satisfy g. The complexity of the translation is approximately linear
in |M| and exponential in the lengths of f and g [VWS86] [LPZ85]. This leads to
the following definition.

Definition 8 (Proof Cost) The cost of a proof obligation {f}M{g}, for tem-
poral logic formulae f and g and finite state structure M is 2‘f|+|g||M|.

Note that | ¢>p| = |-(¢ U =(p))|, which equals |p|+ |¢| + 3. Suppose that we
have translated a circular proof to a non-circular proof via the method outlined
in Theorem Bl Without loss of generality, assume that |M;| < |[Ma], [hi| < |ha]
and |g1| < |g2|. The cost, ¢, of showing the premises of rule C3

— {fIM{ (ha A g2) > ((ha = g1) A h1)} and
= {fIM2{ (h1 A g1) > (1 = g2) A h2)}

is bounded by 2/fI+3Ih21+2l921+8| AL, | The cost, ne, of showing the translated
premises for rule NC

— {fIM{f A (ha Ag2) > ((ha = g1) A h1)} and
= {f A (ha A g2) & ((h2 = g1) A h1)}Ma{G(g1 A g2)}

is bounded by 22f1+3lk2l+4lg21+11 | pr, |

So the cost of the circular proof is bounded by 2%|Ms|, where « is a function
linear in the sizes of f, g; and h; and the cost of the non-circular proof is bounded
by 22%| M|, so the translation process can be said to be efficient.

Now suppose that we have translated a non-circular proof to a circular proof

via the method outlined in Theorem [@ The cost, nc, of showing the premises
for rule NC

— {f}My{h} and
— {h}Ma{g}

is bounded by 2‘f|+|h‘+|g|+2|M2|. The cost, ¢ of showing the simplified translated
premises for rule C3

— {f}M{F~(g) > F~(h)} and
— {f}M{F=(h) > (F~(h) = F(g))}

is bounded by 2I/1+2I21+191+6| AL, | Hence translating from circular to non-circular
is, essentially, efficient.
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5 Related Work

There are several proposals for compositional reasoning rules in the literature,
but only a few investigations of the completeness of these rules — a good survey of
the field appears in the COMPOS97 proceedings [dRLP97|. The earliest propo-
sals for assume-guarantee reasoning are from [Jon8T[CMS8T] — these are concerned
with establishing safety properties of networks of processes. Zwiers’ book [Zwi89)
contains much of the groundwork necessary for reasoning about compositional
proof systems. Proofs of the completeness of compositional reasoning systems
for safety properties are found in [ZdRvER4][Pan88][P.J91] |[dRABHT99]. Other
assume-guarantee rules for safety properties are proposed in [Sta85] [Pnu&5)
[Kur87] [AHI6] [McM97]. More general rules that apply to both safety and liven-
ess properties are proposed in [Pnu85| [Jos87] [CLM89] [GL94] [AL95] McM99].

We have concentrated on the completeness question for general rules that
apply to both safety and liveness properties. As shown in Section[3], the circular
rules in [AT95] and the rule C1 derived from [McM99] are incomplete. The cir-
cular rule presented in [HQRT98] for the simulation-based verification paradigm
is also incomplete — for lack of space, this proof is left for the full paper. The
simplicity of the counter-examples suggests that the incompleteness may indeed
impact the verification of systems in practice. We present a new circular rule,
which is a modification of rule C1, and show it to be sound and complete for all
of LTL — in fact it is straightforward to generalize these ideas so that the rule
is complete for the w-regular languages. The proofs carried out using rule C1,
including that of the Tomasulo algorithm [McM9§], can be carried out in exac-
tly the same manner with the new rule. We also investigate whether circularity
is, in itself, essential for reasoning about composed systems, and show that for
assume-guarantee reasoning in LTL, the notion of circularity is a somewhat weak
one, in that proofs carried out with circular rules are efficiently translatable into
proofs with non-circular rules, and vice-versa.

The computational complexity of establishing an assume-guarantee triple
has been studied extensively in [GLI4KVISIKVIT7], for various combinations of
specification logics. We have considered a different question, that of the comple-
xity of translating between proofs obtained with different compositional rules,
whenever this is possible.

There are a number of ways one could choose to strengthen the circular proof
rules found in the literature in order to make them complete. We have chosen
one in particular, rule C3. Our choice was motivated by a desire to remain as
close as possible to the spirit of the original circular proof rule - namely, to avoid
the “direct” use of M7//Ms when proving properties about this composition.
Specifically, we have decided not to allow the use of temporal implication, h = g,
as a proof rule [MP95]. Our results show that implication is not necessary in order
to obtain a sound and complete rule. Furthermore, rules that include implication
may allow the proof of f A Ly (M1) A Lyw (Ms) = g to be instantiated directly
as an implication without use of the, hopefully, better rules mentioning only M;
or M. That this goal has been, to some extent, mitigated against in our proof
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of completeness should not come as a surprise in light of the difficulty of the

problem.

Acknowledgment: The authors thank Willem-Paul de Roever and the anony-
mous referees for many interesting and helpful comments.
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