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Abstract. In this paper, we present a novel algorithm for adaptive fuzzy
segmentation of MRI data and estimation of intensity inhomogeneities
using fuzzy logic. MRI intensity inhomogeneities can be attributed to im-
perfections in the RF coils or some problems associated with the acqui-
sition sequences. The result is a slowly-varying shading artifact over the
image that can produce errors with conventional intensity-based classifi-
cation. Our algorithm is formulated by modifying the objective function
of the standard fuzzy c-means (FCM) algorithm to compensate for such
inhomogeneities and to allow the labeling of a pixel (voxel) to be influ-
enced by the labels in its immediate neighborhood. The neighborhood
effect acts as a regularizer and biases the solution towards piecewise-
homogeneous labeling. Such a regularization is useful in segmenting scans
corrupted by salt and pepper noise. Experimental results on both syn-
thetic images and MR data are given to demonstrate the effectiveness
and efficiency of the proposed algorithm.

1 Introduction

Spatial intensity inhomogeneity induced by the radio frequency (RF) coil in
magnetic resonance imaging (MRI) is a major problem in the computer analysis
of MRI data. Such inhomogeneities have rendered conventional intensity-based
classification of MR images very difficult, even with advanced techniques such
as non-parametric, multichannel methods.[1,2]. This is due to the fact that the
intensity inhomogeneities appearing in MR images produce spatial changes in
tissue statistics, i.e. mean and variance. In addition, the degradation on the
images obstructs the physician’s diagnoses because the physician has to ignore
the inhomogeneity artifact in the corrupted images [3].

The removal of the spatial intensity inhomogeneity from MR images is dif-
ficult because the inhomogeneities could change with different MRI acquisition
parameters from patient to patient and from slice to slice. Therefore, the cor-
rection of intensity inhomogeneities is usually required for each new image. In
the last decade, a number of algorithms have been proposed for the intensity
inhomogeneity correction. Meyer et al.[5] presented an edge-based segmentation
scheme to find uniform regions in the image followed by a polynomial surface fit
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to those regions. The result of their correction is, however, very dependent on
the quality of the segmentation step.

Several authors have reported methods based on the use of phantoms for
intensity calibration. Wicks et al.[4] proposed methods based on the signal pro-
duced by a uniform phantom to correct for MRI images of any orientation.
Similarly, Tincher et al.[6] modeled the inhomogeneity function by a second-
order polynomial and fitted it to a uniform phantom-scanned MR image. These
phantom approaches, however, have the drawback that the geometry relation-
ship of the coils and the image data is typically not available with the image
data. They also require the same acquisition parameters for the phantom scan
and the patient. In addition, these approaches assume the intensity corruption
effects are the same for different patients, an assumption which is not valid, in
general [3].

The homomorphic filtering approach to remove the multiplicative effect of the
inhomogeneity has been commonly used because of its easy and efficient imple-
mentation [2]. This method, however, is effective only on images with relatively
low contrast. Some researchers [6,7] reported undesirable artifacts.

Dawant et al.[7] used operator-selected reference points in the image to guide
the construction of a thin-plate spline correction surface. The performance of this
method substantially depends on the labeling of the reference points. Consid-
erable user interactions are usually required to obtain good correction results.
More recently, Gilles et al.[8] proposed an automatic and iterative B-spline fitting
algorithm for the intensity inhomogeneity correction of breast MR images. The
application of this algorithm is restricted to MR images with a single dominant
tissue class, such as the breast MR images. Another polynomial surface fitting
method [9] was proposed based on the assumption that the number of tissue
classes, the true means, and standard deviations of all the tissue classes in the
image are given. Unfortunately, the required statistical information is usually
not available.

A different approach to segment images with intensity inhomogeneities is to
simultaneously compensate for the shading effect while segmenting the image.
This has the advantage of being able to use intermediate information from the
segmentation while performing the correction. Recently, Wells et al.[1] developed
a new statistical approach based on the EM algorithm to solve the bias field cor-
rection problem and the tissue classification problem altogether in an alternative
fashion. Guillemaud and Brady [10] further refined this technique by introducing
an extra class, “other”. There are two main disadvantages of this EM approach.
First, the the EM algorithm is extremely computationally intensive, especially
for large problems. Second, the EM algorithm requires a good initial guess for
either the bias field or for the classification estimate. Otherwise, the EM algo-
rithm could be easily trapped in a local minimum, resulting in an unsatisfactory
solution [3]. Xu et al.[11] followed Wells’ approach and proposed a new adaptive
fuzzy c-means technique to produce fuzzy segmentation while compensating for
intensity inhomogeneities. Their method, however, is computationally intensive
and is also very sensitive to noise.



74 M. N. Ahmed et al.

In this paper, we present a different approach for adaptive fuzzy segmentation
of MRI data. Our algorithm is formulated by modifying the objective function
of the standard fuzzy c-means (FCM) algorithm to compensate for such inho-
mogeneities and to allow the labeling of a pixel (voxel) to be influenced by the
labels in its immediate neighborhood. Taking into account the neighborhood ef-
fect acts as a regularizer and biases the solution towards piecewise-homogeneous
labeling. Such a regularization is useful in segmenting scans corrupted by salt
and pepper noise.

2 Background

The observed MRI signal is modeled as a product of the true signal generated
by the underlying anatomy, and a spatially-varying factor called the gain field.

Yk = XkGk ∀k ∈ {1, 2, .., N} (1)

where Xk and Yk are the corrected and observed intensities at the kth voxel,
respectively, Gk is the gain field at the kth voxel, and N is the total number of
voxels in the MRI volume. The application of a logarithmic transformation to
the intensities allows the artifact to be modeled as an additive bias field [1]

yk = xk + βk ∀k ∈ {1, 2, .., N} (2)

where xk and yk are the corrected and observed log-transformed intensities at
the kth voxel, respectively, and βk is the bias field at the kth voxel. If the gain
field is known, then it is relatively easy to estimate the tissue class by applying
a conventional intensity-based segmentation to the corrected data. Similarly, if
the tissue classes are known, then we can estimate the gain field. It may be
problematic to estimate either without the knowledge of the other. We will show
that by employing an iterative algorithm based on fuzzy logic, we can estimate
both.

3 Modified Fuzzy C-means (MFCM) Objective Function

The standard FCM objective function for partitioning {xk}N
k=1 into c clusters is

given by

J =
c∑

i=1

N∑
k=1

up
ik||xk − vi||2 (3)

where {vi}c
i=1 are the prototypes of the clusters and the array [uik]=U represents

a partition matrix, U ∈ U , namely

U{ uik ∈ [0, 1] |
c∑

i=1

uik = 1 ∀k and 0 <

N∑
k=1

uik < N ∀i} (4)
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The parameter p is a weighting exponent on each fuzzy membership and deter-
mines the amount of fuzziness of the resulting classification. The FCM objective
function is minimized when high membership values are assigned to voxels whose
intensities are close to the centroid of its particular class, and low membership
values are assigned when the voxel data is far from the centroid. We propose to
modify Eq.(3) by introducing a term that allow the labeling of a pixel (voxel) to
be influenced by the labels in its immediate neighborhood. As mentioned before,
the neighborhood effect acts as a regularizer and biases the solution towards
piecewise-homogeneous labeling. Such a regularization is useful in segmenting
scans corrupted by salt and pepper noise. The modified objective function is
given by

Jm =
c∑

i=1

N∑
k=1

up
ik||xk − vi||2 +

α

NR

c∑
i=1

N∑
k=1

up
ik

( ∑
xr∈Nk

||xr − vi||2
)

(5)

where Nk stands for the set of neighbors of xk and NR is the cardinality of Nk.
The neighbors effect term is controlled by the parameter α. The relative impor-
tance of the regularizing term is inversely proportional to the signal to noise ratio
(SNR) of MRI signal. Lower SNR would require higher value of the parameter
α. Substituting Eq.(2) into Eq.(5), we have

Jm =
c∑

i=1

N∑
k=1

up
ik||yk − βk − vi||2 +

α

NR

c∑
i=1

N∑
k=1

up
ik


 ∑

yr∈Nk

||yr − βr − vi||2


(6)

Formally, the optimization problem becomes

min
U, {vi}c

i=1, {βk}N
k=1

Jm subject to U ∈ U (7)

4 Parameter Estimation

The objective function Jm can be minimized in a fashion similar to the standard
FCM algorithm. Taking the first derivatives of Jm with respect to uik, vi, and βk

and setting them to zero results in three conditions for Jm to be at a minimum.
In the following subsections, we will derive these three conditions.

4.1 Membership Evaluation

The constrained optimization in equation (7) will be solved using Lagrange mul-
tipliers

Jm =
c∑

i=1

N∑
k=1

(
up

ikDik +
α

NR
up

ikγi

)
+ λ(1 −

c∑
i=1

uik) (8)



76 M. N. Ahmed et al.

where Dik = ||yk − βk − vi||2 and γi =
(∑

yr∈Nk
||yr − βr − vi||2

)
. Taking the

derivative of Jm w.r.t. uik and setting the result to zero, we have[
δJm

δuik
= pup−1

ik Dik +
αp

NR
up

ikγi − λ

]
uik=u∗

ik

= 0 (9)

Solving for uik we have

u∗
ik =

(
λ

p(Dik + α
NR

γi)

) 1
p−1

(10)

Since
∑c

j=1 ujk = 1 ∀k, then

c∑
j=1

(
λ

p(Djk + α
NR

γj)

) 1
p−1

= 1 (11)

or

λ =
p(∑c

j=1

(
1

(Djk+ α
NR

γj)

) 1
p−1
)p−1 (12)

Substituting into equation (10), the zero-gradient condition for the membership
estimator can be rewritten as,

u∗
ik =

1

∑c
j=1

(
Dik+ α

NR
γi

Djk+ α
NR

γj

) 1
p−1

(13)

4.2 Cluster Prototype Updating

In the following derivation we use the standard Eucledian distance. Taking the
derivative of Jm w.r.t. vi and setting the result to zero we have;

 N∑
k=1

up
ik(yk − βk − vi) +

N∑
k=1

up
ik

α

NR

∑
yr∈Nk

(yr − βr − vi)




vi=v∗
i

= 0 (14)

Solving for vi we have;

v∗i =

∑N
k=1 up

ik

(
(yk − βk) + α

NR

∑
yr∈Nk

(yr − βr)
)

(1 + α)
∑N

k=1 up
ik

(15)
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4.3 Bias Field Estimation

In a similar fashion, taking the derivative of Jm w.r.t βk and setting the result
to zero we have [

c∑
i=1

∂

∂βk

N∑
k=1

up
ik(yk − βk − vi)

2

]
βk=β∗

k

= 0 (16)

Since only the kth term in the second summation depends on βk, we have[
c∑

i=1

∂

∂βk
up

ik(yk − βk − vi)
2

]
βk=β∗

k

= 0 (17)

Differentiating the distance expression, we obtain[
yk

c∑
i=1

up
ik − βk

c∑
i=1

up
ik −

c∑
i=1

up
ikvi

]
βk=β∗

k

= 0 (18)

Thus, the zero-gradient condition for the bias field estimator is expressed as

β∗
k = yk −

∑c
i=1 u

p
ikvi∑c

i=1 u
p
ik

(19)

5 MFCM Algorithm

The MFCM algorithm for correcting the bias field and segmenting the image
into different clusters can be summarized in the following steps:
Step 1 Select initial class prototypes {vi}c

i=1. Set {βk}N
k=1 to zero.

Step 2 Update the partition matrix using eq.13
Step 3 The prototypes of the clusters are obtained in the form of weighted
averages of the patterns using Eq.15.
Step 4 Estimate the bias term using Eq.19.
Repeat steps 2-4 until convergence.

6 Results

In this section we describe the application of the adaptive segmentation on syn-
thetic images corrupted with multiplicative gain and on brain MR images. All
of the MR images shown in this section were obtained using a General Elec-
tric Signa 1.5 Tesla clinical MR imager. Results show that intensity variations
across patients, scans, and equipment changes have been accommodated in the
estimated bias field without the need for manual intervention. We implemented
the MFCM algorithm on a Silicon Graphics Onyx Supercomputer. In all the ex-
amples, we set the parameter α (the neighbors effect) to be 0.7. Figure 1 shows
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Fig. 1. Results of the MFCM on a two-class synthetic image corrupted by sinusoidal

bias field. The original image is shown (left). The (Middle) presents the final results of

the bias field and (right) the segmentation.

a synthetic test image. This image contains a two-class pattern corrupted by a
sinusoidal gain field of higher spatial frequency. The test image is intended to
represent two tissue classes, while the sinusoid represents an intensity inhomo-
geneity. This model was constructed so that it would be difficult to correct using
homomorphic filtering or traditional FCM approaches. As shown in Figure 1,
the MFCM has succeeded in correcting and classifying the data.

Figure 2 shows the results of applying the MFCM algorithm to segment an
image of an axial-sectioned T1 MR brain. Strong inhomogeneities are apparent
in the image. The MFCM algorithm segmented the image into three classes cor-
responding to background, gray matter, and white matter. The figure illustrates
intensity profiles in the image before and after correction. These profiles corre-
spond to the 128th column extract from the original bias field corrupted image
and the corrected one using the MFCM algorithm. The figure demonstrates the
ability of the MFCM algorithm to correct for the bias field. Figure 3 shows an-
other example of T2 MR image where the MFCM was successful in recovering
the bias field and segmenting the image. Figure 4 shows the results of applying
the MFCM for the segmentation of a noisy brain image. The results of using
the traditional FCM without considering the neighborhood field effect and the
MFCM are presented. Notice that the segmentation of the MFCM, which uses
the the neighborhood field effect, is much less fragmented compared to the tra-
ditional FCM approach. As mentioned before, the relative importance of the
regularizing term is inversely proportional to the signal to noise ratio (SNR) of
MRI signal.

We compared our results with the Expectation-Maximization (EM) algo-
rithm developed by Wells et al.[1]. The MFCM algorithm produces similar re-
sults as the EM algorithm with faster convergence and the added advantage that
it requires no user interaction. Correct estimates of region statistics are crucial
for the convergence of the EM algorithm while in the MFCM, approximate val-
ues for class centers are sufficient. In noisy images, the MFCM technique greatly
outperforms the EM algorithm as it compensates for noise by including a reg-
ularization term. While only 2D results were presented in this summary, the
MFCM can be easily extended to 3D segmentation and bias field correction.
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Fig. 2. Brain MRI example: (a) the original MR image corrupted with intensity in-

homogeneities (b) the bias-field corrected image using the proposed algorithm. The

segmented image is shown in (c) while the recovered bias field is displayed in (d). The

cross section at the 128th column extract from (e) the original bias field corrupted

image and (f) the corrected image using the MFCM algorithm. Intensity uniformity is

clearly noticed in (f).

7 Conclusions

We have demonstrated a new modified fuzzy c-means (MFCM) algorithm for
adaptive segmentation and intensity correction of MR images. The algorithm
was formulated by modifying the objective function of the standard fuzzy c-
means (FCM) algorithm to compensate for such inhomogeneities and to allow
the labeling of a pixel (voxel) to be influenced by the labels in its immediate
neighborhood. Taking into account the neighborhood effect acts as a regularizer
and biases the solution towards piecewise-homogeneous labeling. Such a regu-
larization is useful in segmenting scans corrupted by salt and pepper noise. The
MFCM segmentation increases the robustness and level of automation available
for the segmentation of MR images into tissue classes by correcting interscan
intensity inhomogeneities. Via improved segmentation, this algorithm leads to
an improvement in the quality of 3D reconstruction of brain structures, and for
visualization, surgical planning, disease research, and for other purposes.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Brain MRI example: (a) the original MR image corrupted with intensity inho-

mogeneities (b) the bias-field corrected image using the proposed MFCM algorithm. (c)

Gray matter membership using traditional FCM. (d) Gray matter membership using

MFCM. The segmented image using MFCM is shown in (e) while the recovered bias

field is displayed in (f).
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Fig. 4. Brain Tumor MRI examples corrupted with noise: The original MR images
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