
WEB SERVICES

Mohand-Said Hacid
University Claude Bernard Lyon 1 - France

Abstract: In the emerging world of Web services, services will be combined in
innovative ways to form elaborate services out of building blocks of other
services. This is predicated on having a common ground of vocabulary and
communication protocols operating in a secured environment. Currently,
massive standardization efforts are aiming at achieving this common ground.
We discuss aspects related to services, such as possible architectures,
modeling, discovery, composition and security.

Key words: Web services architecture, Web services modeling, Web services discovery.

1. INTRODUCTION

A Web service is programmable application logic accessible using
standard Internet protocols. Web services combine the best aspects of
component-based development and the Web. Like components, Web
services represent functionality that can be easily reused without knowing
how the service is implemented. Unlike current component technologies
which are accessed via proprietary protocols, Web services are accessed via
ubiquitous Web protocols (ex: HTTP) using universally accepted data
formats (ex: XML).

In practical business terms, Web services have emerged as a powerful
mechanism for integrating disparate IT systems and assets. They work using
widely accepted, ubiquitous technologies and are governed by commonly
adopted standards. Web Services can be adopted incrementally at low cost.
Today, enterprises use Web services for point-to-point application
integration, to reuse existing IT assets, and to securely connecting to



214 Mohand-Said Hacid

business partners or customers. Independent Software Vendors embed Web
services functionality in their software products so they are easier to deploy.

From a historical perspective, Web services represent the convergence
between the service-oriented architecture (SOA) and the Web. SOAs has
evolved over the last years to support high performance, scalability,
reliability, and availability. To achieve the best performance, applications
are designed as services that run on a cluster of centralized application
servers. A service is an application that can be accessed through a
programmable interface. In the past, clients accessed these services using a
tightly coupled, distributed computing protocol, such as DCOM, CORBA, or
RMI. While these protocols are very effective for building a specific
application, they limit the flexibility of the system. The tight coupling used
in this architecture limits the reusability of individual services. Each of the
protocols is constrained by dependencies on vendor implementations,
platforms, languages, or data encoding schemes that severely limit
interoperability. Additionally, none of these protocols operates effectively
over the Web.

The Web services architecture takes all the best features of the service-
oriented architecture and combines it with the Web. The Web supports
universal communication using loosely coupled connections. Web protocols
are completely vendor-,platform-, and language-independent. The resulting
effect is an architecture that eliminates the usual constraints of distributed
computing protocols. Web services support Web-based access, easy
integration, and service reusability.

A Web service is an application or information resource that can be
accessed using standard Web protocols. Any type of application can be
offered as a Web service. Web services are applicable to any type of Web
environment: Internet, intranet, or extranet. Web services can support
business-to-consumer, business-to-business, department-to-department, or
peer-to-peer interactions. A Web service consumer can be a human user
accessing the service through a desktop or wireless browser, it can be an
application program, or it can be another Web service. Web Services support
existing security frameworks.

1.1 Characteristics of Web Services

A Web service exhibits the following characteristics:

A Web service is accessible over the Web. Web services
communicate using platform-independent and language-neutral Web



Web Services 215

protocols. These Web protocols ensure easy integration of
heterogeneous environments.
A Web service provides an interface that can be called from another
program. This application-to-application programming interface can
be invoked from any type of application client or service. The Web
service interface acts as a liaison between the Web and the actual
application logic that implements the service.
A Web service is registered and can be located through a Web
service Registry. The registry enables service consumers to find
services that match their needs.
Web services support loosely coupled connections between systems.
They communicate by passing messages to each other. The Web
service interface adds a layer of abstraction to the environment that
makes the connections flexible and adaptable.

1.2 Web Services Technologies

Web services can be developed using any programming language and can
be deployed on any platform. Web services can communicate because they
all speak the same language: the Extensible Markup Language (XML). Web
services use XML to describe their interfaces and to encode their messages.
XML-based Web services communicate over standard Web protocols using
XML interfaces and XML messages, which any application can interpret.

However, XML by itself does not ensure effortless communication. The
applications need standard formats and protocols that allow them to properly
interpret the XML. Hence, three XML-based technologies are emerging as
the standards for Web services:

Simple Object Access Protocol (SOAP) [1] defines a standard
communications protocol for Web services.
Web Services Description Language (WSDL) [3] defines a
standard mechanism to describe a Web service.
Universal Description, Discovery and Integration (UDDI) [2]
provides a standard mechanism to register and discover Web
services.

The rest of the chapter is organized as follows: Section 2 gives an
overview of the classical approach to Web services (architecture and
components). Section 3 introduces semantic Web services. We conclude in
section 4.



216 Mohand-Said Hacid

2. WEB SERVICES ARCHITECTURE

Distributed computing has always been difficult. Now the business world
has lined up behind the term “Web services” to try and build services that
are highly reliable and scalable.

Many Web services architectures today are based on three components
(figure 1): the service requestor, the service provider, and the service
registry, thereby closely following a client/server model with an explicit
name and directory service (the service registry). Although simple, such an
architecture illustrates quite well the basic infrastructure necessary to
implement Web services: a way to communicate (SOAP), a way to describe
services (WSDL), and a name and directory server (UDDI). SOAP, WSDL
and UDDI are nowadays the core of Web services. Specifications covering
other aspects are typically designed based on SOAP, WSDL and UDDI. This
is similar to the way conventional middleware platforms are built, where the
basic components are interaction protocols, IDLs, and name and directory
services.

Figure 1. Web Services Architecture

Figure 2 shows how the main components of a Web service architecture
relate to one another. When a service provider wants to make the service



Web Services 217

available to service consumers, he describes the service using WSDL and
registers the service in a UDDI registry. The UDDI registry will then
maintain pointers to the WSDL description and to the service. When a
service consumer wants to use a service, he queries the UDDI registry to
find a service that matches his needs and obtains the WSDL description of
the service, as well as the access point of the service. The service consumer
uses the WSDL description to construct a SOAP message with which to
communicate with the service.

Figure 2. Web services Components – current technologies

2.1 SOAP

SOAP is an extensible XML messaging protocol that forms the
foundation for Web Services. SOAP provides a simple and consistent
mechanism that allows one application to send an XML message to another
application. Fundamentally, SOAP supports peer-to-peer communications
(figure 3). A SOAP message is a one-way transmission from a SOAP sender
to a SOAP receiver, and any application can participate in an exchange as
either a SOAP sender or a SOAP receiver. SOAP messages may be
combined to support many communication behaviors, including request/
response, solicit response, and notification.



218 Mohand-Said Hacid

SOAP was first developed in late 1999 by DevelopMentor, Microsoft,
and UserLand as a Windows-specific XML-based remote procedure call
(RPC) protocol. In early 2000 Lotus and IBM joined the effort and helped
produce an open, extensible version of the specification that is both
platform-and language-neutral. This version of the specification, called
SOAP 1.1 (see http://www.w3.org/TR/SOAP/), was submitted to the World
Wide Web Consortium (W3C). W3C subsequently initiated a
standardization effort.

Figure 3. Clients can invoke Web services by exchanging SOAP
messages

A pictorial representation of the SOAP message is given in figure 4.
Clients can invoke Web services by exchanging SOAP messages.

SOAP Envelope. The SOAP envelope provides a mechanism to
identify the contents of a message and to explain how the
message should be processed. A SOAP envelope includes a
SOAP header and a SOAP body. The SOAP header provides an
extensible mechanism to supply directive or control information
about the message. For example, a SOAP header could be used
to implement transactions, security, reliability, or payment
mechanisms. The SOAP body contains the payload that is being
sent in the SOAP message.



Web Services 219

SOAP Transport Binding Framework. It defines bindings for
HTTP and the HTTP Extension Framework.
SOAP Serialization Framework. All data passed through
SOAP messages are encoded using XML, but there is no default
serialization mechanism to map application-defined datatypes to
XML elements. Data can be passed as literals or as encoded
values. Users can define their own serialization mechanism, or
they can use the serialization mechanism defined by the SOAP
encoding rules. The SOAP encoding style is based on a simple
type system derived from the W3C XML Schema Part
2:Datatypes Recommendation (see
http://www.w3.org/TR/xmlschema-2/). It supports common
features found in the type systems of most programming
languages and databases. It supports simple scalar types, such as
“string ”, “integer ”, and “enumeration ”, and it supports complex
types, such as “struct” and “array ”.
SOAP RPC Representation. SOAP messaging supports very
loosely coupled communications between two applications. The
SOAP sender sends a message and the SOAP receiver
determines what to do with it. The SOAP sender does not really
need to know anything about the implementation of the service
other than the format of the message and the access point URI. It
is entirely up to the SOAP receiver to determine, based on the
contents of the message, what the sender is requesting and how
to process it. SOAP also supports a more tightly coupled
communication scheme based on the SOAP RPC representation.
The SOAP RPC representation defines a programming
convention that represents RPC requests and responses. Using
SOAP RPC, the developer formulates the SOAP request as a
method call with zero or more parameters. The SOAP response
returns a return value and zero or more parameters. SOAP RPC
requests and responses are marshaled into a “struct” datatype and
passed in the SOAP body.



220 Mohand-Said Hacid

Figure 4. Structure of SOAP messages

2.1.1 SOAP Message Exchange

SOAP is a simple messaging framework for transferring information
specified in the form of an XML infoset between an initial SOAP sender and
an ultimate SOAP receiver. The more interesting scenarios typically involve
multiple message exchanges between these two nodes. The simplest such
exchange is a request-response pattern. Some early uses of SOAP
emphasized the use of this pattern as means for conveying remote procedure
calls (RPC), but it is important to note that not all SOAP request-response
exchanges can or need to be modeled as RPCs. The latter is used when there
is a need to model a certain programmatic behavior, with the exchanged
messages conforming to a pre-defined description of the remote call and its
return. A much larger set of usage scenarios than that covered by the
request-response pattern can be modeled simply as XML-based content
exchanged in SOAP messages to form a back-and-forth “conversation”,
where the semantics are at the level of the sending and receiving
applications.



Web Services 221

2.2 WSDL

WSDL is an XML format for describing network services as a set of
endpoints operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message
format to define an endpoint. Related concrete endpoints are combined into
abstract endpoints (services). WSDL is extensible to allow description of
endpoints and their messages regardless of what message formats or network
protocols are used to communicate. WebMethods’ Web Interface Definition
Language (WIDL), one of the pioneering specifications for description of
remote Web services, was an XML format that took familiar approach
(which was accessing functionality on a remote machine as if it were on a
local machine) to users of remote procedural technologies, such as RPC and
CORBA. There was some fit between WIDL and the XML-RPC system by
UserLand. The former has since faded away, as message-based XML
technologies have proven more popular than their procedural equivalents.
The latter seems to be giving way to SOAP, which has support for message-
oriented as well as procedural approaches.

The Web services Description Language (WSDL) is an XML-based
language used to describe the services a business offers and to provide a way
for individuals and other businesses to access those services electronically.
WSDL is the cornerstone of the Universal Description, Discovery, and
Integration (UDDI) initiative spearheaded by Microsoft, IBM, and Ariba.
UDDI is an XML-based registry for businesses worldwide, which enables
businesses to list themselves and their services on the Internet. WSDL is the
language used to do this.

WSDL is derived from Microsoft’s Simple Object Access Protocol
(SOAP) and IBM’s Network Accessible Service Specification Language
(NASSL). WSDL replaces both NASSL and SOAP as the means of
expressing business services in the UDDI registry.

2.2.1 WSDL Document Types

To assist with publishing and finding WSDL service descriptions in a
UDDI Registry, WSDL documents are divided into two types: service
interfaces and service implementations (see figure 5).



222 Mohand-Said Hacid

Figure 5. WSDL document types

A service interface is described by a WSDL document that contains the
types, import, message, portType, and binding elements. A service interface
contains the WSDL service definition that will be used to implement one or
more services. It is an abstract definition of a Web service, and is used to
describe a specific type of service.

A service interface document can reference another service interface
document using an import element. For example, a service interface that
contains only the message and portType elements can be referenced by
another service interface that contains only bindings for the portType.

The WSDL service implementation document will contain the import and
service elements. A service implementation document contains a description
of a service that implements a service interface. At least one of the import
elements will contain a reference to the WSDL service interface document.
A service implementation document can contain references to more than one
service interface document.

The import element in a WSDL service implementation document
contains two attributes. The namespace attribute value is a URL that
matches the targetNamespace in the service interface document. The
location attribute is a URL that is used to reference the WSDL document
that contains the complete service interface definition. The binding attribute
on the port element contains a reference to a specific binding in the service
interface document.



Web Services 223

The service interface document is developed and published by the service
interface provider. The service implementation document is created and
published by the service provider. The roles of the service interface provider
and service provider are logically separate, but they can be the same business
entity.

A complete WSDL service description is a combination of a service
interface and a service implementation document. Since the service interface
represents a reusable definition of a service, it is published in a UDDI
registry as a tModel. The service implementation describes instances of a
service. Each instance is defined using a WSDL service element. Each
service element in a service implementation document is used to publish a
UDDI businessService.

When publishing a WSDL service description, a service interface must
be published as a tModel before a service implementation is published as a
businessService.

2.3 UDDI

Just before WSDL emerged, a consortium of 36 companies, including
IBM, Ariba, and Microsoft, launched the Universal Description, Discovery
and Integration (UDDI) system, an initiative to provide a standard directory
of on-line business services with an elaborate API for querying the
directories and service providers.

The key item of consideration in the UDDI specifications is the “Web
service.” A Web service describes specific business functionality exposed by
a company, usually through an Internet connection, for the purpose of
providing a way for another company or software program to use the service.
The UDDI specifications define a way to publish and discover information
about Web services. UDDI aims to automate the process of publishing your
preferred way of doing business, finding trading partners and have them find
you, and interoperate with these trading partners over the Internet.

Prior to the UDDI project, no industry-wide approach was available for
businesses to reach their customers and partners with information about their
products and Web services. Nor was there a uniform method that detailed
how to integrate the systems and processes that are already in place at and
between business partners. Nothing attempted to cover both the business and
development aspects of publishing and locating information associated with
a piece of software on a global scale.



224 Mohand-Said Hacid

Conceptually, a business can register three types of information into a
UDDI registry. The specification does not call out these types specifically,
but they provide a good summary of what UDDI can store for a business:

White pages. Basic contact information and identifiers about a
company, including business name, address, contact information,
and unique identifiers such as tax IDs. This information allows
others to discover your Web service based upon your business
identification.
Yellow pages. Information that describes a Web service using
different categorizations (taxonomies). This information allows
others to discover your Web service based upon its categorization
(such as being in the manufacturing or car sales business).
Green pages. Technical information that describes the behaviors
and supported functions of a Web service hosted by your business.
This information includes pointers to the grouping information of
Web services and where the Web services are located.

2.3.1 Why UDDI?

Most eCommerce-enabling applications and Web services currently in
place take divergent paths to connecting buyers, suppliers, marketplaces and
service providers. Without large investments in technology infrastructure,
businesses of all sizes and types can only transact Internet-based business
with global trading partners they have discovered and who have the same
applications and Web services.

UDDI aims to address this impediment by specifying a framework which
will enable businesses to:

Discover each other.
Define how they interact over the Internet.
Share information in a global registry that will more rapidly
accelerate the global adoption of B2B eCommerce.

2.3.2 UDDI Business Registry

UDDI relies upon a distributed registry of businesses and their service
descriptions implemented in a common XML format.

The UDDI Business Registry provides an implementation of the UDDI
specification. Any company can access the registry on the Internet, enter the
description of its business, reach a UDDI site and search through all the
business services listed in the UDDI registry. There is no cost to access



Web Services 225

information in the registry. Though based on XML, the registry can also
describe services implemented in HTML, CORBA, or any other type of
programming model or language.

3. TOWARDS SEMANTIC WEB SERVICES

3.1 Introduction

Semantic Web services are emerging as a promising technology for the
effective automation of services discovery, combination, and management
[25, 21, 20]. They aim at leveraging two major trends in Web technologies,
namely Web services and Semantic Web :

Web services built upon XML as vehicle for exchanging messages
across applications. The basic technological infrastructure for Web
services is structured around three major standards: SOAP, WSDL,
and UDDI [33, 16]. These standards provide the building blocks for
service description, discovery, and communication. While Web
services technologies have clearly influenced positively the potential
of the Web infrastructure by providing programmatic access to
information and services, they are hindered by lack of rich and
machine-processable abstractions to describe service properties,
capabilities, and behavior. As a result of these limitations, very little
automation support can be provided to facilitate effective discovery,
combination, and management of services. Automation support is
considered as the cornerstone to provide effective and efficient
access to services in large, heterogeneous, and dynamic
environments [10, 33, 20]. Indeed, until recently the basic Web
services infrastructure was mainly used to build simple Web services
such as those providing information search capabilities to an open
audience (e.g. stock quotes, search engine queries, auction
monitoring).
Semantic Web aims at improving the technology to organize, search,
integrate, and evolve Web-accessible resources (e.g., Web
documents, data) by using rich and machine-understandable
abstractions for the representation of resources semantics.
Ontologies are proposed as means to address semantic heterogeneity
among Web-accessible information sources and services. They are
used to provide meta-data for the effective manipulation of available
information including discovering information sources and
reasoning about their capabilities. Efforts in this area include the



development of ontology languages such as RDF, DAML, and
DAML+OIL [18]. In the context of Web services, ontologies
promise to take interoperability a step further by providing rich
description and modeling of services properties, capabilities, and
behavior.

By leveraging efforts in both Web services and semantic Web, semantic
Web services paradigm promises to take Web technologies a step further by
providing foundations to enable automated discovery, access, combination,
and management of Web services. Efforts in this area focus on providing
rich and machine understandable representation of services properties,
capabilities, and behavior as well as reasoning mechanisms to support
automation activities [25, 11, 21, 20, 13, 8]. Examples of such efforts
include DAML-S, WSMF (Web services Modeling Framework) [21], and
METEOR-S (http://lsdis.cs.uga.edu/proj/meteor/SWP.tm).Work in this area
is still in its infancy. Many of the objectives of the semantic Web services
paradigm, such as capability description of service, dynamic service
discovery, and goal-driven composition of Web services remain to be
reached.

226 Mohand-Said Hacid

3.2 Web Services and their Complexity

Many Web service description languages distinguish between elementary
and complex Web services. Elementary Web services are simple
input/output boxes, whereas complex Web services break down the overall
process into sub-tasks that may call other web services. Strictly speaking,
such a distinction is wrong and may lead to mis-conceptualizations in a Web
service modeling framework. It is not the complexity of the Web service that
makes an important distinction. It is rather the complexity of its description
or its interface (in terms of static and dynamic) that makes a difference. A
complex Web service such as a logical inference engine with a web interface
can be described as rather elementary. It receives some input formulas and
derives--after a while--a set of conclusions. A much simpler software
product such as a simple traveling information system may be broken down
into several Web services around hotel information, flight information, and
general information about a certain location. Therefore, it is not the inherent
complexity of a Web service, it is the complexity of its external visible
description that makes the relevant difference in our context. This insight
may look rather trivial, however, it has some important consequences:

Many Web service description approaches do not make an explicit
distinction between an internal description of a Web service and its
external visible description. They provide description means such as



Web Services 227

data flow diagrams and control flow descriptions without making
clear whether they should be understood as interface descriptions for
accessing a Web service, or whether they should be understood as
internal descriptions of the realization of a Web service. Often, the
internal complexity of a Web service reflects the business
intelligence of a Web service provider. Therefore, it is essential for
him not to make it publicly accessible. This is the major conceptual
distinction between an internal description of the workflow of a Web
service and its interface description.
The dichotomy of elementary and complex Web services is too
simplistic. As we talk about the complexity of the description of a
Web service it is necessary to provide a scale of complexity. That is,
one starts with some description elements and gradually upscale the
complexity of available description elements by adding additional
means to describe various aspects of a Web service.

3.3 Functionalities Required for Successful Web
Services

UDDI, WSDL, and SOAP are important steps in the direction of a web
populated by services. However, they only address part of the overall stack
that needs to be available in order to eventually achieve the semantic Web
services vision. [9] identifies the following elements as being necessary to
achieve scalable Web service discovery, selection, mediation and
composition:

Document types. Document types describe the content of business
documents like purchase orders or invoices. The content is defined
in terms of elements like an order number or a line item price.
Document types are instantiated with actual business data when a
service requester and a service provider exchange data. The payload
of the messages sent back and forth is structured according to the
document types defined.
Semantics. The elements of document types must be populated with
correct values so that they are semantically correct and are
interpreted correctly by the service requesters and providers. This
requires that vocabulary is defined that enumerates or describes
valid element values. For example, a list of product names or
products that can be ordered from a manufacturer. Further examples
are units of measure as well as country codes. Ontologies provide a
means for defining the concepts of the data exchanged. If ontologies
are available document types refer to the ontology concepts. This



228 Mohand-Said Hacid

ensures consistency of the textual representation of the concepts
exchanged and allows the same interpretation of the concepts by all
trading partners involved. Finally, the intent of an exchanged
document must be defined. For example, if a purchase order is sent,
it is not clear if this means that a purchase order needs to be created,
deleted or updated. The intent needs to make semantically clear how
to interpret the sent document.
Transport binding. Several transport mechanisms are available like
HTTP/S, S/MIME, FTP or EDIINT. A service requester as well as a
service provider has to agree on the transport mechanism to be used
when service requests are executed. For each available transport
mechanism the layout of the message must be agreed upon and how
the document sent shall be represented in the message sent. SOAP
for example defines the message layout and the position within the
message layout where the document is to be found. In addition,
header data are defined, a requirement for SOAP message
processing.
Exchange sequence definition. Communication over networks is
currently inherently unreliable. It is therefore required that service
requester and service provider make sure themselves through
protocols that messages are transmitted exactly once. The exchange
sequence definition achieves this by defining a sequence of
acknowledgment messages in addition to time-outs, retry logic and
upper retry limits.
Process definition. Based on the assumption that messages can be
exchanged exactly once between service requester and service
provider, the business logic has to be defined in terms of the
business message exchange sequence. For example, a purchase order
might have to be confirmed with a purchase order acknowledgment.
Or, a request for quotation can be responded to by one or more
quotes. These processes define the required business message logic
in order to derive to a consistent business state. For example, when
goods are ordered by a purchase order and confirmed by a purchase
order acknowledgment they have to be shipped and paid for, too.
Security. Fundamentally, each message exchange should be private
and unmodified between the service requester and service provider
as well as non-reputable. Encryption, as well as signing, ensures the
unmodified privacy whereby non-repudiation services ensure that
neither service requester nor service provider can claim not to have
sent a message or to have sent a different one.



Web Services 229

Syntax. Documents can be represented in different syntaxes
available. XML is a popular syntax, although non-XML syntax is
used, too (e.g. EDI).
Trading partner specific configuration. Service requesters or
service providers implement their business logic differently from
each other. The reason is that they establish their business logic
before any cooperation takes place. This might require adjustments
once trading partners are found and the interaction should be
formalized using Web services. In case modifications are necessary,
trading partner specific changes have to be represented. Current
Web service technology scares rather low compared to these
requirements. Actually, SOAP provides support on information
binding. Neither UDDI nor WSDL add any support in the terms
enumerated above. Many organizations had the insight that message
definition and exchange are not sufficient to build an expressive
Web services infrastructure. In addition to UDDI, WSDL and SOAP
standards for process definitions as well as exchange sequence
definitions are proposed such as WSFL [23], XLANG [32], ebXML
BPSS [35], BPML [5] and WSDL [12]. Still, there are important
features missing in all of the mentioned frameworks. Very important
is to reflect the loose coupling and scalable mediation of Web
services in an appropriate modeling framework. This requires
mediators that map between different document structures and
different business logics as well as the ability to express the
difference between publicly visible workflows (public processes)
and internal business logics of a complex Web service (private
processes). Therefore, a fully-fledged Web service Modeling
Framework (WSMF) [4] was proposed.

3.4 Semantic Markup for Web Services

To make use of Web service, a software agent needs a computer-
interpretable description of the service, and the means by which it is
accessed. An important goal for Semantic Web markup languages, then, is to
establish a framework within which these descriptions are made and shared.
Web sites should be able to employ a set of basic classes and properties for
declaring and describing services, and the ontology structuring mechanisms
of DAML+OIL provide the appropriate framework within which to do this.

Services can be simple or primitive in the sense that they invoke only a
single Web-accessible computer program, sensor, or device that does not
rely upon another Web service, and there is no ongoing interaction between



the user and the service, beyond a simple response. Alternatively, services
can be complex, composed of multiple primitive services, often requiring an
interaction or conversation between the user and the services, so that the user
can make choices and provide information conditionally. DAML-S is meant
to support both categories of services, but complex services have provided
the primary motivations for the features of the language. The following tasks
are expected from DAML-S [14, 27, 14, 15]:

230 Mohand-Said Hacid

Automatic Web service Discovery. Automatic Web service
discovery involves the automatic location of Web services that
provide a particular service and that adhere to requested
constraints. For example, the user may want to find a service that
makes hotel reservations in a given city and accepts a particular
credit card. Currently, this task must be performed by a human
who might use a search engine to find a service, read the Web
page, and execute the service manually, to determine if it
satisfies the constraints. With DAML-S markup of services, the
information necessary for Web service discovery could be
specified as computer-interpretable semantic markup at the
service Web sites, and a service registry or ontology-enhanced
search engine could be used to locate the service automatically.
Alternatively, a server could proactively advertise itself in
DAML-S with a service registry, also called middle agent [17,
37, 24], so that the requesters can find it when they query the
registry.

Automatic Web service Invocation. Automatic Web service
invocation involves the automatic execution of an identified Web
service by a computer program or agent. For example, the user
could request the purchase of an airline ticket from a particular
site on a particular flight. Currently a user must go to the Web
site offering that service, fill out a form, and click on a button to
execute the service. Alternatively, the user might send an HTTP
request directly to the service with the appropriate parameters in
HTML. In either case, a human is necessary in the loop.
Execution of a Web service can be thought of as a collection of
function calls. DAML-S markup of Web services provides a
declarative, computer-interpretable API for executing these
function calls.

Automatic Web service Composition and Interoperation.
This task involves the automatic selection, composition, and



Web Services 231

interoperation of Web services to perform some task, given a
high-level description of an objective. For example, the user may
want to make all the travel arrangements for a trip to a
conference. Currently, the user must select the Web services,
specify the composition manually, and make sure that any
software needed for the interoperation is custom-created. With
DAML-S markup of Web services, the information necessary to
select and compose services will be encoded at the service Web
sites.

Automatic Web service Execution Monitoring. Individual
services and, even more, compositions of services, will often
require some time to execute completely. A user may want to
know during this period what the status of his or her request is, or
plans may have changed, thus requiring alterations in the actions
the software agent takes.

3.5 Services Composition

Composition of Web services that have been previously annotated with
semantics and discovered by a mediation platform is another benefit
proposed by Semantic Web for Web services. Composition of services can
be quite simple sequence of service calls passing outputs of one service to
the next and much more complex, where execution path (service workflow)
is not a sequence but more sophisticated structure, or intermediate data
transformation is required to join outputs of one service with inputs of
another. Within traditional approach such service composition can be created
but with limitations: since semantics of inputs/outputs is not introduced
explicitly, the only way to find matching service is to follow data types of its
inputs and/or know exactly what service is required. This approach works
for simple composition problem but fails for problems required for the future
Web services for e-commerce. As an example of composition, suppose there
are two Web services, an on-line language translator and a dictionary
service, where the first one translates text between several language pairs
and the second returns the meaning of English words.

If a user needs a FinnishDictionary service, neither of these can satisfy
the requirement. However, together they can (the input can be translated
from Finnish to English, fed through the English Dictionary, and then
translated back to Finnish). The dynamic composition of such services is
difficult using just the WSDL descriptions, since each description would
designate strings as input and output, rather than the necessary concept for
combining them (that is, some of these input strings must be the name of



languages, others must be the strings representing user inputs and the
translator’s outputs). To provide the semantic concepts, we can use the
ontologies provided by the Semantic Web.

Service composition can also be used in linking Web (and Semantic
Web) concepts to services provided in other network-based environments
[31]. One example is the sensor network environment, which includes two
types of services; basic sensor services and sensor processing services. Each
sensor is related to one Web service, which returns the sensor data as the
output. Sensor processing services combine the data coming from different
sensors in some way and produce a new output. These sensors have
properties that describe their capabilities, such as sensitivity, range, etc., as
well as some non-functional attributes, such as name, location, etc. These
attributes, taken together tell whether the sensor’s service is relevant for
some specific task. An example task in this environment would involve
retrieving data from several sensors and using relevant fusion services to
process them via SOAP calls. As an example, the data from several acoustic
and infrared sensors can be combined together and after applying filters and
special functions, this data may be used to identify the objects in the
environment. In this setting, we need to describe the services that are
available for combining sensors and the attributes of the sensors that are
relevant to those services. More importantly, the user needs a flexible
mechanism for filtering sensor services and combining only those that can
realistically be fused.

In DAML-S ServiceGrounding part of service description provides
knowledge required to access service (where, what data, in what sequence
communication goes) and ServiceProfile part provides references to the
meaning what service is used for. Both these pieces of information are
enough (as it supposed by Semantic Web vision) to be used by intelligent
mediator (intelligent agent, mediation platform, transaction manager etc.) for
using this service directly or as a part of compound service. The
implementation of service composer [31] have shown how to use semantic
descriptions to aid in the composition of Web services-- it directly combines
the DAML-S semantic service descriptions with actual invocations of the
WSDL descriptions allowing us to execute the composed services on the
Web. The prototype system can compose the actual Web services deployed
on the Internet as well as providing filtering capabilities where a large
number of similar services may be available.

232 Mohand-Said Hacid

3.6 Web Services and Security

The Industry view on Web services security [30, 34] is mostly focused on
concerns such as data integrity and confidentiality, authentication, and non



Web Services 233

repudiation of messages. The way they are ensured is by adapting general
information security technologies (such as cryptography or digital signature)
to XML data. The advantages is that these technologies have been
extensively tested and improved for many years and that they are still a
lively topic in the research community. Some of the most significant
specifications in XML services security are [29]:

XML Encryption (XML Enc): It describes how to en-code an XML
document or some parts of it, so that its confidentiality can be
preserved. The document’s en-coding procedure is usually included
in the file, so that a peer possessing the required secrets can find the
way to decrypt it.
XML Digital Signature (XML DSig): Describes how to attach a
digital signature to some XML Data. This will ensure data integrity
and non repudiation. The goal is to ensure that the data has been
issued by a precise peer.
Web services Security (WSS): This standard is based on SOAP,
XML Enc and XML DSig and describes a procedure to exchange
XML data between Web services in a secure way.
Security Assertion Markup Language (SAML): Specifies how to
exchange (using XML) authentication and authorization information
about users or entities. Two services can use SAML to share
authentication data in order not to ask a client to log again when it
switches from one service to the another (Single Sign On
procedure).

Considering that Active XML is a language that is certified pure XML,
all these recommendations (or specifications) can be used to ensure its
security during the transfer and the storage of information.

3.6.1 Typing and Pattern Matching

We need to control the services calls in order to avoid the ones that could
execute malicious actions (for example, buy a house, propose to sell my car
on ebay at a tiny price, and so on). Active XML [38] relies on a typing and
function pattern matching algorithm that will compare the structure of the
answer returned by the service with a “allowed structure” provided by the
client. If the structures can match (using rewriting), then answer’s call can be
invoked. Details on the algorithm are given in [28], but this algorithm is k-
depth limited, and its decidability is not proved when ignoring the k-depth
limit. CDuce [7] is an example of language with powerful pattern matching
features. It can easily compare structures and corresponding data, and its
strong capability to handle types (and subtyping) makes it a good candidate



234 Mohand-Said Hacid

for defining structures precisely. However, CDuce is mostly oriented
towards XML transformation, so Active XML is definitely more simple and
adapted for Web services.

3.6.2 Trust in Web Services

4. CONCLUSION

There are many ways to consider the notion of “trust” in services. The
most adopted vision of trust in services is based upon progressive requests
and disclosures of credentials between the peers (according to a policy), that
will gradually establish the trust relationship [6, 36]. The privacy of the
peers can be preserved, and credentials do not have to be shown without a
need for it, thus preventing the user to display some information that (s)he
could want to keep from a non authorized peer [22]. In [19], the analysis of
trust is based upon the basic beliefs that will lead to the decision of granting
trust or not. This approach is much more sociological and context dependent
from the previous one, but it is closer from the way a human being behaves
when trusting or not another person. The conditions required for the final
decision of trust granting are divided into two major parts :

internal attribution, representing the conditions that depend on the
trusting agent’s personality and skills,
external attribution, that represents conditions that are completely
independent from the agent (opportunity, interferences, ...).

Depending on these factors, a value representing the “trustfulness” is
computed using a fuzzy algorithm. This value will allow the agent to take
the decision on trusting the peer or not.

One of Semantic Web promises is to provide intelligent access to the
distributed and heterogeneous information and enable mediation via
software products between user needs and the available information sources.
Web Services technology resides on the edge of limitation of the current
web and desperately needs advanced semantic provision oriented approach.
At present, the Web is mainly a collection of information and does provide
efficient support in its processing. Also the promising Web services idea to
allow services to be automatically accessed and executed has no yet facilities
to efficiently discover web services by those who need them. All service
descriptions are based on semi-formal natural language descriptions and put
limits to find them easily. Bringing Web services to their full potential
requires their combination with approach proposed by Semantic Web



Web Services 235

technology. It will provide automation in service discovery, configuration,
matching client’s needs and composition. Today there are much less
doubts both in research and development world, than few months ago,
whether Semantic Web approach is feasible. The importance of Web
services has been recognized and widely accepted by industry and academic
research. However, the two worlds have proposed solutions that progress
along different dimensions. Academic research has been mostly concerned
with expressiveness of service descriptions, while industry has focused on
modularization of service layers for usability in the short term.

References

http://www.w3.org/2002/ws/
http://www.uddi.org/
http://www.w3.org/2002/ws/desc/
http://devresource.hp.com/drc/specifications/wsmf/index.jsp
A. Arkin: Business Process Modeling Language (BPML), Working Draft
0.4, 2001. http://www.bpmi.org/.

K. E. S. T. Barlow, A. Hess. Trust negotiation in electronic markets. In
Proceedings of the Eighth Research Symposium on Emerging Electronic
Markets (RSEEM 01), 2001.

V. Benzaken, G. Castagna, and A. Frisch. Cduce: An xml-centric general-
purpose language. In Proceedings of the ACM International Conference
on Functional Programming, Uppsala, SWEDEN, 2003.

A. Bernstein and M. Klein. Discovering Services: Towards High Precision
Service Retrieval. In CaiSE workshop on Web services, e-Business, and
the Semantic Web: Foundations, Models, Architecture, Engineering and
Applications. Toronto, Canada ,May 2002.
C. Bussler: B2B Protocol Standards and their Role in Semantic B2B
Integration Engines, IEEE Data Engineering, 24(1), 2001.

1.
2.
3.
4.
5.

6.

7.

8.

9.

Fabio Casati and Ming-Chien Shan. Dynamic and adaptive composition
of e-services. Information Systems ,26(3): 143 –163,May 2001.
D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. DReggie: Semantic
Service Discovery for M-Commerce Applications. In Workshop on
Reliable and Secure Applications in Mobile Environment, 20th
Symposium on Reliable Distributed System, pages 28 –31, Oct.2001.
E. Christensen, F. Curbera, G. Meredith, S. Weerawarana: Web Services

Description Language (WSDL) 1.1,15 March 2001.
http://www.w3.org/TR/wsdl.
The DAML Services Coalition. DAML-S: Web service Description for
the Semantic Web. In The First International Semantic Web Conference
(ISWC),pages 348 –363,Jun.2002.

10.

11.

12.

13.



236 Mohand-Said Hacid

The DAML Services Coalition (alphabetically Anupriya Ankolenkar,
Mark Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin, Drew
McDermott, Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci,
Terry R. Payne and Katia Sycara), “DAML-S: Web service Description
for the Semantic Web”, The First International Semantic Web
Conference (ISWC), Sardinia (Italy), June, 2002.
DAML Services Coalition (alphabetically A. Ankolekar, M. Burstein, J.
Hobbs, O. Lassila, D. Martin, S. McIlraith, S. Narayanan, M. Paolucci,
T. Payne, K. Sycara, H. Zeng), “DAML-S: Semantic Markup for Web
services”, in Proceedings of the International Semantic Web Working
Symposium (SWWS), July 30-August 1, 2001.
Data Engineering Bulletin: Special Issue on Infrastructure for Advanced
E-Services.24(1), IEEE Computer Society, 2001.
K. Decker, K. Sycara, and M. Williamson. Middle-agents for the

Internet. In IJCAI’97, 1997.
Y.Ding, D. Fensel and B. Omelayenko M.C.A. Klein. The semantic web:
yet another hip? DKE ,6(2-3):205 –227,2002.
Rino Falcone, Giovanni Pezzulo, Cristiano Castelfranchi. A fuzzy

approach to a belief-based trust computation. In Trust, Reputation, and
Security: Theories and Practice, AAMAS 2002 International Workshop.
LNCS 2631 Springer 2003. Pages 73-86.
D. Fensel and C. Bussler. The Web service Modeling Framework

WSMF. http://www.cs.vu.nl/diete/wese/publications.html.
D. Fensel, C. Bussler, and A. Maedche. Semantic Web Enabled Web
services. In International Semantic Web Conference,Sardinia,Italy ,pages
1 –2,Jun.2002.
K. E. S. J. Holt, R. Bradshaw and H. Orman. Hidden credentials. In 2nd
ACM Workshop on Privacy in the Electronic Society (WPES’03),
Washington DC, USA, October 2003.
F. Leymann: Web Service Flow Language (WSFL 1.0), May 2001.
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.
D. Martin, A. Cheyer, and D. Moran. The Open Agent Architecture: A
Framework for Building Distributed Software Systems. Applied
Artificial Intelligence, 13(1-2):92-128, 1999.
S. McIlraith,T.C. Son,and H. Zeng.Semantic Web services. IEEE

Intelligent Systems. Special Issue on the Semantic Web ,16(2):46 –
53,March/April 2001.
S. McIlraith, T. C. Son, and H. Zeng. Mobilizing the Web with DAML-
Enabled Web service. In Proceedings of the Second International
Workshop Semantic Web (SemWeb’2001), 2001.
S. McIlraith, T. C. Son, and H. Zeng. Semantic Web service. IEEE

Intelligent Systems, 16(2):46-53, 2001.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.



Web Services 237

T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. D. Ngoc.
Exchanging intensional xml data. In Proc. of ACM SIGMOD 2003, June
2003.
M. Naedele. Standards for xml and Web services security. IEEE

Computer, pages 96–98, April 2003.
O. for the Advancement of Structured Information Standards (OASIS).
http://www.oasis-open.org/
E. Sirin, J. Hendler, B. Parsia, Semi-Automatic Composition of Web
services Using Semantic Descriptions, In proceedings of “Web services:
Modeling, Architecture and Infrastructure” workshop in conjunction
with ICEIS2003, 2003.
S. Thatte: XLANG: Web Services for Business Process Design,

Microsoft Corporation, 2001.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm.
The VLDB Journal: Special Issue on E-Services.10(1),Springer-Verlag
Berlin Heidelberg, 2001.
W. W. W. C. (W3C). http://www.w3.org/
D. Waldt and R. Drummond: EBXML: The Global Standard for

Electronic Business,
http://www.ebxml.org/presentations/global_standard.htm.
M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B.
Smith, and L. Yu. Negotiating trust on the web. IEEE Internet
Computing, 6(6):30–37, November/December 2002.
H.-C. Wong and K. Sycara. A Taxonomy of Middle-agents for the
Internet. In ICMAS’2000, 2000.
http://www-rocq.inria.fr/gemo/Gemo/Projects/axml/

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.


