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Abstract Car engine electronic control unit tuning is a tedious and difficult task. Engi-
neers can no more check on-line the measurements validity: Control strategies
are becoming more complex and measurements more numerous. A fault diag-
nosis approach relying on experts’ qualitative and uncertain knowledge has been
developed to identify whenever a malfunction is present. The theoretical frame-
work - based on possibility theory and on consistency and abductive indices - is
first explained. The latest results are then presented. Finally, the whole incre-
mental development process of the prototypes is described, explaining the most
difficult points and how they were handled.
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Introduction

The paper presents a prototype implementation part of a long term research
and development project, which aims at improving the calibration of car en-
gine Electronic Control Unit (ECU), on engine dyno test benches, by detecting
malfunctions when they occur.

The approach is based on a fault diagnosis system (named BEST: Bench
Expert System Tool) that makes use of expert’s knowledge formalized with
fuzzy sets. In fact, since [Sanchez, 1977], much work has been carried out in
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this field of fuzzy sets and diagnosis, and applied in different fields: E.g. in
medical applications ([Buisson, 1999]) or industrial processes ([Ulieru, 2000]).

The paper is organized as follows: Section 1 describes the engine dyno
context, the needs and expected benefits, and the architecture of BEST. The
theoretical base on which it relies is presented in section 2. Then, section 3
presents the current prototypes and latest results. The discussion in section 4
points out the problems that were encountered and how they were solved. The
conclusion indicates the last steps to be further developed.

1. Context and framework

In oder to better understand the results and the choices made during the
project, this section first presents the engine dyno test bench context and then
gives the general architecture designed for BEST.

Engine dyno test benches

Within one century, diesel and gasoline cars have gone from the carburettor
to the electronic injection (ECU-controlled). More and more complex strate-
gies have been implemented to answer to increasing constraints (pollutant reg-
ulations, vehicle behavior, new engine configuration: Direct injection, diesel
common rail, variable valve timing, electric controlled throttle...) and an in-
creasing number of variables must be taken into account.

For each new engine or new version, the control strategy parameters have
to be calibrated in order to fit the requirements. This is done through a large
amount of testing and tuning, starting on engine dyno test benches.

The calibration process. Figure 1 shows the ECU calibration process on an
engine dyno, making use of a calibration tool. Basically, the ECU gets mea-
surements from engine sensors (e.g., mass air flow, engine speed...), com-
putes other intermediate variables and finally tells the engine which amount of
fuel should be injected and what the spark advance should be. The data used
for this are recorded through the calibration tool. They are provided by engine
sensors and ECU but also by the engine dyno sensors, as well as additionnal
devices. So the System to diagnose through BEST is: engine, engine dyno, all
sensor sets and additionnal devices.

Data acquisition.  Before doing any acquisition, the global conformity of
the system has to be checked: Physical verification (sensors, fuel consumption
measurements, gas analysis...), but also system configuration (i.e. inhibited
system functions). As sensors become more numerous and the strategies more
complex, this global check requires more time and so the tuning engineer has
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less time for the testing itself and its methodology. Hence test duration is
increasing while reliability is degraded.

Then, during the tests, an on-line verification must be done to guarantee
the acquisition validity. Again the tuning engineers used to check the validity
of measurements manually while running: Single-parameter raw thresholds,
coherence of some parameters with standard values, and sometimes coherence
between several parameters and previous tests. Today it is nearly impossible
for engineers to ensure the global coherence on-line, due to the complexity
raise of parameters and strategies. Most of the time, when there is a problem,
it is discovered during post processing data treatment. Quite often the test has
to be performed again.

Needs and expected benefits. In fact, 10 to 20% of the manual tests must be
reworked due to bad acquisitions, bad software configuration... Most of the
time malfunctions are due to dyno bench environmental problems (gaz analy-
sis, fuel balance...). So wrong acquisitions should be detected right away and
the malfunction that occured should be identified as soon as possible in order
to correct it quickly and make sound acquisitions again.

Some common and simple malfunctions are still identified by engineers. Yet
others require time-consumming searches for their origin and symptoms when-
ever they occur. Indeed, engineers cannot keep in mind all the information and
past experiences. Moreover they cannot watch in real time all the (numerous)
measured channels.

In order to cope with such checkings, an expert system, BEST, has been
considered. It has to perform global coherence checking, in the same way as
for manual tests. It should also detect and identify malfunctions as soon as
they appear: Thatis on-line detection.

General architecture for BEST

BEST represents a huge amount of work and investment. It gathers several
functionalities divided into different modules for step by step development and
validation (a key point in the success of the implementation, as discussed in
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section 4). The general architecture of BEST and the part for which proto-
types have been developed are explained below. Some of the ideas underlying
this architecture can be found in other approaches to industrial diagnosis (e.g.,
[Cordier et al., 2000]).

Figure 2 presents the different modules:

* FORM: Enables the experts to formalize their knowledge, using fuzzy rules.
* ESO: Extracts, Sorts and Organizes the rules w.r.t bench/engine specificities.
* Al which is the Artificial Intelligence part performing the diagnosis: It com-
pares the extracted rules to the measurements made on the engine.

Each module, contains the 3 following submodules: OK (diagnosis based
on models of normal behaviour), KO (diagnosis based on models of malfunc-
tions) and MASTER (the supervision rules). In the Al module, OK and KO
diagnosis are aggregated in DIAG. BEST_AI_OK gives the models of normal
behaviour which are not reached and BEST_AI_KO tells which malfunctions
have been identified. The use of two different diagnosis is safer in regard to
incompleteness and possible inconsistency of some models. Besides, both di-
agnosis (OK and KO) can give some feedback explaining why a model of nor-
mal behaviour was not reached and why a malfunction was selected. They may
also ask for other specific measurements in order to improve their diagnosis.
Finally, MASTER decides wheather the test may continue, should use another
computation for some variables, or should stop. This decision is taken accord-
ing to the supervision rules, the test characteristics (necessary variables), the
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Figure 3 Diagnosis process
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two diagnosis (pointing at the source faulty variables) and a dependency graph
(which computes the induced faulty variables).

Prototypes has been developed for the whole KO part of this project, as the
main objective was to build a demonstrative application which can detect and
also identify malfunctions as soon as they appear on engine dyno test benches.
This work is further described in the following sections.

2. Diagnosis fuzzy set based approach

This section presents the theoretical basis supporting the whole KO part of
BEST. The knowledge relies on expert causal information. Possibility theory
is used to capture the uncertainty pertaining to this kind of information. Ob-
servations may also be imprecise. Finally, the diagnosis makes use of two
indices (see Figure 3). Refinements of these indices and ways to use them for
more complex diagnosis (e.g. involving several malfunctions) can be found in
[de Mouzon et al., 2001]. Here, only the basis is presented.

Notations.  Let M be the set of all (known) possible malfunctions and A be
the set of the n observable attributes: {X1, -++y Xn}. Letm € Mandi €
{1, «-+, n}, then 7, denotes the possibility distribution [Zadeh, 1978], that
represents the (more or less) plausible values for attribute X; when malfunction
m (alone) is present. Let U; be the domain of X;, so w, : U; — [0, 1]. KL
will be the fuzzy set corresponding to possibility distribution 7 ;, .

The observations may also be imprecise (or uncertain), po, : Ui — {0, 1]
is the possibility distribution, which represents the (more or less) plausible
values for the observed value of attribute X;. O denotes the fuzzy set corre-
sponding to possibility distribution 4 ©;.

K}, and O; both express imprecision, when they contain more than one
element. Yet, they model different types of imprecision:

»  (; imprecision can be “controlled” (in principle): Changing the sensors
for more precise (usually more expensive) or less precise observations.

s Imprecision on IC:,,, on the contrary, cannot be reduced (or changed) that
easily: It depends on the available knowledge about the System only.
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Table 1. Main possibility distribution shapes for knowledge formalization

L~ | D VAN AV

| I I [

Ascending Descending Trapezoidal Reverse trapezoid

When attribute X is not yet observed, its value is not known, so it could be
any value of U;: Vu € U, po,;(u) = 1. Similarly, when malfunctionm has no
known effect on attribute X, all values are allowed: Yu € U;, 7rm (u) = 1.

In fact, for the knowledge representation, the experts are very often more
comfortable in expressing their confidence in some values they consider highly
possible or, on the contrary, totally impossible. So, for continuous attributes,
the experts only need to tell what they know best (values of possibility 0 and
1). Then, @y, is computed to follow the given information, be continuous and
be piecewise linear. In the formalization process, the possibility distributions
mainly used were increasing or decreasing ramp functions or trapezoidal ones,
see Table 1. For discrete attributes, different levels of possibility (e.g., from 0
to 1 by step of 0.1 units) can be assessed.

A consistency-based index. A consistency-based index has been defined:
Peons + M — [0, 1], which enables to discard observation-inconsistent mal-
functions (cons (M) close to 0).

The consistency between observations and knowledge on malfunction m
for a given attribute can be computed by  — min(pe, (), 7, (u)), which
is the possibility distribution attached to @ K%,. The elements of highest
possibility in this intersection give the consistency degree between O and IC' :
sUpyey; Min(po, (u), 7, (1)). The consistency degree of any malfunction m
and the observations is computed from those of O; and IC;,, (for each attribute):

n o
Hcons(m) = min sup min(uo, (1), 77, (v)). 1)
=1 wel;

In case of too incomplete information (knowledge and/or observations),
Heons might not be sufficient in order to select a small enough number of mal-
functions. So, a second index is required in order to refine ficons and bring
a better conclusion: find, among the undiscarded malfunctions, which one is
most relevant to the observations.

An abduction-based index. A malfunction is more relevant to the obser-
vations when its effects have been observed for sure. Thatis: O; C K, (for
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crisp sets). In order to single out most relevant malfunctions, fuzzy inclusion
of O;in K}, has to be defined.

Inclusion can be defined by implication (for crisp sets, A C B is equivalent
to Vz,2 € A = z € B). So, several fuzzy implications (—) have been
checked for this purpose. Thus a second index is defined, which evaluates the
relevance of a malfunction:

n .
prel(m) = Ig__‘{‘ ,irelfu Ho; () = m (u). ()

The worst implication degree tells the extent to which the malfunction is rel-
evant to the observations. Hence fpel selects the most relevant malfunctions
(kret(m) close to 1).

Dienes’ strong implication (@ —+p b = max(1 — a, b)) was chosen because
it is the most dicriminating and it keeps the following natural crisp property: If
O; C Ki,,then O; NK:, # 0. That is: feons = rel-

This index is abductive in nature: It selects m from the knowledge of the
relation between cause m and effects, and from the observation of these effects.

Note that pret is useful because observations are imprecise. Indeed, fret =
Meons in case of precise observations. But a totally precise observation is fea-
sible only for discrete attributes. In case of continuous attributes (e.g., temper-
ature, pressure), the observations given by sensors always have some impreci-
sion (even if it can be made very small with high precision sensors).

Hence, the diagnosis is first based on feons in order to discard and rank
the malfunctions and then on kel in case of ties, as schematically shown on
Figure 3. See [de Mouzon et al., 2001] for a more complete discussion on the
use of fuzzy sets in this diagnosis process and the extension to multiple-fault
diagnosis (not yet implemented).

3. Actual application

This section describes the current complete prototypes which have been
(incrementally) developed for the single fault diagnosis on engine dyno test
benches, based on the framework presented above. They implement the KO-
part (see Figure 2): The first prototype is off-line and integrates FORM and
ESO modules. The second is on-line and corresponds to the Al-module.

Off-line prototype: Knowledge formalization and selection

Knowledge is essential to diagnosis. Sometimes it can be computed from
a database. None existed here, for reporting normal behaviour data and/or
data under each specific malfunction. So, only expert knowledge could be
considered. Hence a tool was needed to make both collecting and formalizing
knowledge as easy and confortable as possible (BEST_KO_FORM module) for
the engine dyno engineers. This creates a centralized knowledge base.
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For ease ofuse, the same tool also enables to select from the knowledge base
the pieces to be used, taking into account the state ofthe ECU calibration, the
tests to make, and the test bench specificities. This generates the corresponding
formalized knowledge file (BEST_KO_ESO module) directly used by the on-
line diagnosis tool.

First, the FORM part contains friendly windows to express the knowledge
step by step:

1) Express the malfunction definition: the user has to enter a unique defini-
tion with four characteristics: A group, a type, an identification and the nature
of default (some choices are proposed for each). E.g., bench equipment [group]
temperature sensor [type] 203 (inlet cylinder 3) [identification] dirty [default].

2) Give and structure the malfunction symptoms in an AND/OR tree.

3) Express each symptom through four elements: i) The attribute definition
(function of the measurements and time). ii) A possibility distribution (as ex-
emplified in Table 1). iii) Some conditions (engine running, ful load...). iv)
An environment (bench and engine specificities).

Then the ESO part enables to easily select (or even modify) the knowledge
to give to the diagnosis. When a new ESO file is created, the user has to
parameter its environment. Only malfunctions of the knowledge base having
compatible symptoms with this environment are automatically added into the
file. For the incoherent symptoms, the user can choose to modify their envi-
ronment in order to make them compatible or to remove them. The generated
files are unreadable for the expert, which ensures that they will not be mod-
ified by hand. When necessary, modification can be done using this off-line
application.

This tool has been a key point of the development of BEST, as knowledge is
a root of diagnosis. The FORM part has enabled to express and formalize more
than 250 malfunctions (about one third of the estimated total number) in 21
environments (about 75% of all). The ESO part not only supports knowledge
selection for each specific environment, but also enables to test and validate
knowledge immediately on the on-line diagnosis tool.

On-line prototype: Diagnosis

This prototype is an on-line tool: it reads the data from the engine dyno test
bench (through a Dynamic Data Exchange connection) while the calibration is
tuning, and warns as soon as possible when a malfunction is detected (in less
than 3 minutes today). There are two levels of information:

1) An efficient diagnosis mode (a small icon sits in the system tray of Win-
dows NT taskbar): While performing on engine dyno test, the prototype be-
comes active and works without human intervention. When an event occurs,
i.e. detection of the possible presence of a malfunction, a popup window is
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automatically opened and gives some information and advice on malfunctions
and symptoms involved in the problem. In order to avoid blinking problems
(with oscilating values near a single-limit), a malfunction is considered as ap-
pearing when fret goes over 0.7 and disappearing when peons goes under 0.3.

ii) A debug mode, displaying a bargraphs window (see Figure 4) and a con-
sole window where each event (attribute calculus, intermediate results, false
alarms,...) is logged and can be saved on a text file.

The diagnosis application runs directly on the engine dyno test benches.
Experiments have been conducted on-line on the benches in order to validate
the method and the application. These experiments have been made on a rep-
resentative case study involving 35 possible malfunctions (about 5% of all).
Figure 4 gives an example for a few malfunctions where the one that occured
is just being identified (here, “rel” reads “per”).

The results of these experiments are satisfying: All malfunctions have been
detected and identified on-line. Very little false alarms occurred: Only for tem-
perature sensors during sharp transition phases. This was then corrected in the
knowledge base. Hence, this diagnosis method has shown its usefulness. Some
future steps are now given below, towards a complete industrial application.

Future work

Observation validity. = Some conditions might be necessary to compute the
presence/absence of a symptom (e.g., engine stopped). Thus, at some moment
only part of the information has been computed. In order to be able to make a
diagnosis despite this problem, the easiest way is to make the hypothesis that
former computations are still valid. This often holds and always does in demos
(where the conditions to observe the changes are known). Yet, for a real on-line
use, this hypothesis might not hold when a fault occurs.

A solution could be to have a validity index (for each piece of knowledge)
that would depend on the time elapsed since the latest computation (of that
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piece of knowledge). Then a too old information would not be taken into
account when it is contradictory to other more recently computed pieces of
knowledge. On the contrary, if they still give the same information, this could
also be taken into account as giving more support to the overall result.

Observation errors.  For the moment, only a general evaluation of the error
is computed. In fact, the real error (attached to each sensor) should be used.
This error is usually modelized by a probability distribution (as a gaussian).
Yet, a possibility distribution like a fuzzy number (centered triangular distribu-
tion, with the maximum error as support) would be very convenient: It covers
any symmetric probabilistic distribution on this support, [Dubois et al., 2002].
Besides, this solution is computationnally much more simple when it comes
to computing the error of a complex attribute from the channels it combines.

4. Incremental development

The previous section presented the prototype complete version of BEST_KO.
The current section explains the problems which had to be tackled and the de-
velopment process which was adopted: A successful incremental approach.
The first step was to analyse the type of knowledge accessible for the diagno-
sis. The second step was to test off-line the diagnosis method (see section 2).
The third step was to test it on-line. The last step was to add a complete and
more convenient tool for knowledge formalization, as presented in section 3.
All prototypes were developed in Visual C++ V6, under Windows NT4.

First step: Knowledge analysis — Towards formalization

BEST_AI_KO (Figure 2) is based on human beings’ experience. Thus,
recording and formalizing the available knowledge is a key step of this project,
[Kahn et al., 1985]. So a preliminary standard form (Figure 5) had been defined
to describe the malfunctions (under the assumption that it is present alone):

e Number (cell 4) — Name (cell 3): Identifying the direct source of observed
anomalies). E.g., sensor out of order, badly calibrated sensor...

® Number (cell 6) — Environment (cell 5): For bench or engine environ-
mental specific conditions. In some cases the same malfunction will generate
different anomalies depending on the environment: E.g., a sealing defect in
the intake system will have strongly different effects, depending on the sensor
used on the engine: MAP (mass air pressure) or MAF (mass air flow).

® Description of symptoms of the malfunction may be added:

1) Attribute (cell 7, including observation conditions, if needed). Example
for the “exhaust temperature sensor out of order” malfunction: Difference be-
tween this temperature and the other cylinder temperatures, when the engine is
running... Note: Attributes may be as complex as needed.
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ii) Finally (cells 8 & 9), a possibility distributionis attached to each attribute,
expressing to what extent a value is consistent (possibility 1) or not (possibility
0) with the presence of the malfunction. This makes it easier for the engineers
to express which values they know possible, the ones they know impossible
and the ones they are not sure about: In practice, engineers are asked for the
core and the support of the possibility distribution. For the uncertain values,
the possibility is calculated to be linear. The more the value is close to a pos-
sible value, the higher its possibility level. The more the value is close to an
impossible value, the lower its possibility level (see Table 1).

e Last but not least, the form includes information about induced malfunc-
tions (“in cascade”, cell 11).

Of course, not all the knowledge on the malfunctions was asked for at that
time, but at least a significant fragment of it was obtained in order to get an
explicit structure concerning the type of information BEST would have to deal
with. This first form made possible to collect knowledge on about 10% of all
the malfunctions and 20% of all the environments. The knowledge cannot be
exhibited here. But, the analysis ofthe filled-in forms led to these conclusions:

®  Pieces of knowledge for a complex symptom may use connectors (and,
or) between more elementary pieces of information.

®  Those elementary pieces of information may also use any shape of func-
tion for representing the attribute value.

#  Finally, there might be some conditions to be satisfied in order to be able
to compute a valid result for presence/absence of a symptom (such as:
engine cold, engine stopped, closed throttle, high engine speed...).
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So, the knowledge collected from the forms could be formalized in a struc-
tured text file. Of course, not all the knowledge on the malfunctions was used
at that time: This step is really time consumming and some basic tests about
the diagnosis approach were first needed before going further in that direction.
Efforts of formalization were first made on a case study, large enough to be
representative of the kind of malfunctions to be taken into account in this field
of application: The case study considered malfunctions that have an incidence
in the engine gaz circulation. And to start on some real basic testing, the for-
malized knowledge was even restricted to some 15% ofthe case study.

Second step: Off-line diagnosis

This first diagnosis prototype was implemented for a preliminary evaluation
of'this approach applied to ECU calibration on engine dyno test benches.

The knowledge was given through the structured text file discussed above.
The data used for off-line tests were yet directly measured on the engine dyno
test benches. They came from files where the measurements had been stored.

To reduce complexity for the first tests, data in each file had been collected
at a stabilized running point. Transition phases were kept for later. Files were
created for different running points, representative of the calibration process:
engine speed and MAP table, and also richness and spark advance table.

Each file contained at least 131 measured channels during a 5 minute (or
more) time period. The time frequency for measurements was every 100 ms.
So each file contained at least 400 000 values (differents files for nominal be-
haviour and for each malfunction). The total number of files used for the tests
was 181. For confidential resons, data are not given here (but the numbers
given above give some indication on the complexity of the problem) and the
results aim only at providing feedback on the implementation process.

Note that the first evaluation could not state whether this approach was good
or not: The conclusion was that off-sets and noise (mainly 50 Hz) had first to
be filtred. Then, the results ofthe tests were computed once more. As a general
remark, too little knowledge was used for testing this diagnosis approach: 1)
Some attributes were too complex to be included in the first tests. 2) Others
needed special measurement equipment or conditions not possible at that time.
3) Too little knowledge had been collected. 4) Last but not least some pieces
of knowledge turned out to be false. Nonetheless, some tests could be carried
out. In fact, this situation is rather logical: Great efforts cannot be asked for
with no clue on whether they will be worthwhile. Finally, the very first tests
showed that this approach to BEST is all the more efficient as more formalized
and validated (e.g. through some experiments) knowledge is provided. For
instance, note that no false alarms were raised during normal behaviour and
that they were all the less frequent as more specific symptoms were formalized.
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Third step: On-line diagnosis

The off-line evaluation not only was good enough to go forward for the on-
line version, but also gave even more resons to do so: The necessary knowledge
validation is much easier if it is possible to test/change right away pieces of
knowledge. Besides, transitions phases had to be taken into account (as they
are frequent on-line) and thus BEST would take advantage of observations
gathered through out the whole calibration process, going from one running
point to another. This is even more needed, as more knowledge is asked for,
which means more symptoms that may need specific observations conditions.

In fact, the knowledge used took benefit from the important validation task
pointed in the previous section and from the more numerous measurements
accessible on-line. Besides, other functions had been implemented to take into
account more complex attributes. Finally, transition phases were taken into
account so that observation of several stabilized running points was possible,
as well as the transition phases themselves. Hence, the previous malfunctions
were described both more properly and in greater details.

But the main change in this prototype is that data are now read directly
(using a Dynamic Data Exchange link) from the data acquisition tool (see Fig-
ure 1). As the acquisition tool has time priority, our prototype only reads data
every 500 ms (formerly 100 ms) in order to keep enough time for feons and
Mrel computations. All those operations are very little time consumming, but
the constraints are very high. Time could also be gained with less feedback, but
such a feedback (see Figure 4, for instance) is essential during the development
process.

Another point to keep in mind is that only the measurements specified for
the data acquisition tool are seen. In other words, there may be up to more
than 200 measured channels or less than the 131 former ones. Thus, it may
be necessary to add some channels during a calibration (that usually does not
need them) for the sake of diagnosability.

An example of result is given in Figure 4. This section gives the main issues
for a complete 20 minutes demo, testing the prototype on-line and even for
some multiple malfunctions.

The results are better with this on-line prototype: Each malfunction is de-
tected when it occurs and there are no false alarms for normal behaviour. This
is mainly a benefit from knowledge validation. Besides some multiple (non-
dependant) malfunctions were successfully tested. On top of that, all malfunc-
tions are detected within 10 s time after they occur. Yet, this should be recon-
sidered, as, in the demo, the running points which are important to reach to
observe the symptoms are known. It is very likely that a malfunction could be
ignored for hours otherwise. This is one more point that asks for more knowl-
edge, so that at least the presence/absence of one symptom may be computed
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for each malfunction, whatever the running point. Moreover, the malfunctions
that still have too little knowledge provided, give some false alarms. More
specific knowledge is needed to avoid them.

5. Conclusion

This paper has presented the prototyping results of a long term project in
fault diagnosis applied to engine dyno test benches. Thus, it gives the whole
evolution from the very first prototype to the actual. It takes into account not
only the diagnosis process, but also all the necessary knowledge considerations
for such a tool to be effective. It explains the results obtained at each stage, the
problems we encountered and how they were solved.

This incremental process is one of the key of the success of this project.
The begining of the project was quite unsure as huge amount of work had
to be carried out, including promoting BEST inside the company. Today, a
full prototype is implemented, from knowledge formalization to malfunction
detection and the database contains about half of the malfunctions.

Some work still need be done, as implementing the real observation validity
and errors. The extensions of the approach presented in [de Mouzon et al.,
2001] should also be implemented to allow for multiple and cascading mal-
function diagnosis.
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