
EFFICIENT SIMULTANEOUS
CONTRACT SIGNING

Lubica Lfskovä1 and Martin Stanek?

1Department 0/Math ematics
Faculty 0/Civil Engineering
Slovak University ofTechnology
Radlinskeho I 1,81368 Bratislava, Slovak Republi c

liskova@malh.sk

2Department 0/ Computer Science
Faculty 0/Math ematics, Physics and lnformatics
Comenius University
Mlynskd dolina, 84248 Bratislava , Slovak Republic

slanek@dcs.fmph.uniba.sk

Abstract Simultaneous eontraet signing is a two-party eryptographic protoeol: two mutu­
ally suspicious parties wish to exehange signatures on a contract, We propose
novel and efficient protoeol for eontraet signing based on a eonstruetion by Even,
Goldreieh , and Lempel. We foeus on the reduetion of on-line eomputational
eomplexity of the protocol. A significanl part of the most time-consuming oper­
ations ean bc pre-computed, An important eompon ent used in our protoeol is an
efficient oblivious transfer, which ean be of interest per se.

Keywords: eontract signing, eryptographic protoeols , oblivious transfer

1. INTRODUCTION

Simultaneous contract signing is a two-party cryptographic protocol: two
mutually suspicious parties , let us denote them A and B, wish to exchange
signatures on a contract. Intuitively, a fair exchange of signatures is one that
avoids a situation where A can obtain B 's signature while B cannot obtain A's
signature and vice-versa. Contract signing protocols can be partitioned into
two categories: protocols that use trusted third party either on-line or off-line
(so called optimistic protocols) [I , 12, 19], and protocols without trusted third
party [5,9-11, 13]. We are interested in protocols from the second category.

Protocols without trusted third party are based on gradual and verifiable
release of information. Hence , if one participant stops the protocol prernaturely,

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems
© IFIP International Federation for Information Processing 2004

442

both participants have roughly the same computational task in order to find
the other participant's signature. A security problem can arise in a setting
where A has much more hardware power than B. Then the actual time needed
for finishing the computation would be unbalanced favorably for A. Timed
protocols solve this problem by employing task for which parallel computation
has roughly the same complexity as a sequential one [5, 11].

The motivation for our work is the following problem: a server has to partic­
ipate in many contract signing protocols, possibly with large number of clients.
A natural requirement is the time-efficiency of the protocoI. An efficient proto­
col improves the throughput of the server and contributes to the overload pro­
tection. A server load is not uniform and thus it makes sense to pre-compute
significant part of the protocol beforehand.

Our contribution. We present a contract signing protocol where substantial
amount of computation can be done in advance. Dur aims are the simplest
possible construction and overall efficiency of the protocoI. Therefore we based
the protocol on construction by Even, Goldreich, and Lempel [10].

A novel oblivious transfer, based on RSA, is used as a key component of the
protocol. The security of the contract signing protocol highly depends on the
properties of oblivious transfer. We prove the security of oblivious transfer in
the random oracle model. To address efficiency issues we show computation
vs. communication tradeoff for our oblivious transfer based on ideas from [18].

Let us mention that also EIGamal based oblivious transfer, e.g. [18], can be
used in our contract signing protocol, instead of RSA based one. Employing
RSA allows further reduction of computation overhead, since public exponent
can be made small.

Related work. There are several protocols for contract signing without
trusted third party. These protocols have many appealing properties, for ex­
ample, they are statistical zero-knowledge [9] or resist parallel attack [5, 11,
13], and allow an exchange of standard signatures. On the other hand, strong
security properties lead to protocols that employ computationally demanding
components, such as zero-knowledge proofs . Although our protocol does not
enjoy these properties, it is more efficient than other protocols.

Many cryptographic applications (protocols) make intensive use ofoblivious
transfer. Hence, efficiency ofoblivious transfer influences the overall efficiency
of these protocols. Dur oblivious transfer is a modification of the protocol
by Juels and Szydlo [16]. The problem of amortizing the cost of multiple
oblivious transfers has been considered by Naor and Pinkas [18]. They based
their construction on computational Diffie-Hellman assumption, while we start
with RSA assumption. Both constructions can also be used for reducing the
cost of recent protocol for extending few oblivious transfers into many [15].

Ejjicient Simultaneous Contract Signing 443

Our security proofs for oblivious transfers rnake use of randorn oracles.
The application of random oracles in the security analysis of cryptographic
protocols was introduced by Bellare and Rogaway [4]. Security proofs in
a random oracle model substitute a hash function with ideal, truly random
function. This approach has been applied to many practical systems, where the
ideal function must be instantiated (usually as a cryptographically strong hash
function). Recently, several papers pointed out that the instantiation can break
the security of a protocol [3, 7]. On the other hand, the counterarguments are
specially designed protocols, unsafe when instantiation takes place.

Organization of tbe paper. We present and analyze oblivious transfer pro­
tocols in Section 2. Section 3 provides an exposition of our contract signing
protocol. We evaluate benefits and drawbacks of the protocol in Section 4.

2. OBLIVIOUS TRANSFER

Oblivious Transfer (OT) protocol , more specifically OTi' protocol, allows
two parties (sender and chooser) to solve the following problem. The sender
has N strings mo, . . . , m N - 1 and wishes to transfer one of them to the chooser
in a secure manner:

• the chooser can select particular rtu, which he wishes to obtain;

• the chooser does not leam any other string except mi:

• the sender does not know which rtu, was transferred.

Oblivious transfer is used as a key component in many cryptographic appli­
cations, such as electronic auctions [11, 17], contract signing [10], and general
multiparty secure computations [2, 14]. Many of these applications make in­
tensive use of oblivious transfer.

We modify and extend construction ofRSA-based OT? protocol from [16].
Most oblivious transfer protocols employ some kind of EIGamal encryption.
This results in increased cornputational overhead as the chooser must perform at
least one modular exponentiation. Using special RSA-based oblivious transfer
allows to reduce the chooser's complexity. Presented protocols make use of
hash function H, modelIed as random oracle (truly random function) [4], to
facilitate security proofs. First, let us overview the construction from [16].

Notation. We use the following notation through the entire Section 2. All
protocols in this paper use RSA public-key system. Let n = pq be an RSA
public modulus, where p and q are primes. Let Zn = {O, 1, . . . , n-l } and Z~ =
{a E Zn I gcd(a, n) = I}. An RSA public key consists of modulus n and
public exponent e such that gcd(e, Ip(n)) = 1. Recall that Ip(n) = (p-l)(q-l)
is the Euler function. The corresponding private key (exponent) d satisfies

444

condition ed == 1 (mod n). The protocols involve exclusive knowledge of
private key d by the sender. A bitwise exclusive OR operation is denoted by
Ef) . All other computations are in Zn. The hash function, denoted by H, is
modelied as a truly random function (random oracle) in the security analysis.
For simplicity of notation we write H (a1, . .. , al) for the hash function applied
to the concatenation of I-tupie (a1, . .. , ad .

2.1 J8 protocol
The protocol assurnes that e = 3. It proceeds as folIows:

1 The sender selects randomly and uniformly an integer C E Z~ as weil
as keys ko, k l E Z~ . Strings mo, ml are encrypted using these keys ­
resulting in (H(k5), H(ko) Ef) mo) , (H(kr) , H(kI) Ef) ml). The sender
sends encrypted strings together with C to the chooser.

2 The chooser, wishing to receive tru, for b E {O, I}, selects a random
element x E Z~. The chooser computes two values (xo, x I):

(xo, xI) = (x3
, Cx3

) if b = 0;

(xo, xI) = (x3/ C, x3
) if b = 1;

and sends them to the sender.

3 The sender verifies that x I/Xo = C and uses the private key d to compute
a reply for the chooser (zo, zI) = (x8ko, xYkI).

4 The chooser then makes use of x to extract kb in the obvious fashion : kb=
Zb/X . Given kb• the chooser can extract ttu, from (H(k~) , H(kb) Ef) mb).

The protocol is used as a building block ofverifiable proxy oblivious transfer,
see [16]. The authors state (without explicit proof) that in the random oracle
model the value ml-b is hidden from the chooser in a semantically secure
manner, assuming the validity of RSA assumption. The value b is hidden from
the sender in an information-theoretic sense.

2.2 Efficientoblivious transfer

The 1S protocol can be simplified by observing that Xoand Xl always satisfy
the equation xI/xo = C. Hence sending just one of them is sufficient. We
change the relation between Xo and Xl to Xo = XlC , to free the chooser from
the computation of modular inversion. Moreover, we exclude the keys ko, kl
from the protocol, since they are not needed.

We want to prove sender's security by comparison with the ideal implemen­
tation (model). The ideal model uses a trusted third party that receives mo

Efficient Simultaneous Contract Signing 445

and mj from the sender and b from the chooser, and teIls the chooser tru: We
require that for every distribution on the inputs (mo , mt} and any probabilistic
polynomial adversary A substituting the chooser there exists a simulator SA

such that:

SA is a probabilistic polynomial-time machine substituting the chooser
in the ideal model;

2 outputs of A and SAare computationally indistinguishable.

This results in the sender's security, since the ideal model hides the value mj-b
perfectly. For extensive study of various definitions of protocol security in the
ideal model see [6].

It is not c1ear how to prove the security of the JS protocol with respect to
the ideal model. Therefore we modify the construction of encrypted strings to
faci Iitate the proof.

OTi protocoI. The protocol will run a number oftimes with some its param­
eters pre-computed. Therefore we introduce a random string R to differentiate
the instances of the protocols.

The sender selects randomly and uniformly an integer C E Z~ and sends
it to the chooser.

2 The chooser, wishing to receive ttu, for b E {O, I}, selects a random
element x E Zn. The chooser computes the value x' = xeCb for the
sender.

3 The sender selects a sufficiently long random string (or counter) R. Then
the sender sets X o = x ' and computes X l = XOC - I. The sender encrypts
strings mo, rrq into ciphertexts Eo, EI:

Eo = H(R,xg,0) E9 mo;

EI = H(R,x1, 1) E9 ml .

The reply for the chooser consists of values R, Eo, E j •

4 The chooser then makes use of x to decrypt mb from Eb: mb = Eb E9
H(R, x , b) .

The value x' (i.e. xo) is uniformly distributed in Zn. For any element x'
and any b E {O, I} there exists an x such that x' = xeCb. The sender can
compute x by x = (x' . C-b)d. Hence, the chooser's security is protected in an
information-theoretic sense - the sender cannot determine b, even with infinite
computational power.

446

The sender's security is protected computationally. We prove it in the random
oracle model, where the hash function His modelied as a random function. Let
A be an adversary. The simulator SA simulates both the sender and A. First,
SA picks a random value C and sends it to A. When Asends Xo the simulator
computes Xl = xoC- l . It selects random strings R, Eo, EI and sends them in
response (as if they were the sender's answers). SA continues the simulation
of A and monitors all its queries to H. All queries not containing a valid tripie
(R, x , i), for i E {O, I}, are answered at random. We say that a tripie (R' , X, i)
is valid if Xi = Xe and R = R'. If A asks for H(R, X, i), where the argument is
a valid triple, then SA asks a trusted third party in the ideal model for ttu , The
simulator sets H(R,x, i) = Ei E9 m; to allow A to decrypt correctly. Whatever
A outputs, so does S A.

The distribution of simulated communication with A is identical to the dis­
tribution of real communication between the sender and A. Hence the output of
SA cannot be distinguished from the output of A in the real communication with
the sender. The only exception is the case when A asks for both valid tripies:
H (R , x, 0) and H (R , x*, 1). In this case, from validity of the tripies it follows
that Xo = xe and Xl = (x*)e. Then the value x· (x*)-l is the decryption of C:

(x . (x*)-l)e = Xe . (x*)-e = Xo . (Xl)-l = C.

Since C E Z~ is random, we cannot distinguish the two distributions with
non-negligible probability, assuming the RSA assumption holds.

The input of H contains a random string R to ensure the inputs in different
invocations of the protocol are different. We have shown that the knowledge of
valid tripIes is equivalent to breaking of RSA. Hence we can run the protocol
with the same value C polynomially many times.

Computation overhead. The protocol allows both parties to pre-compute some
values beforehand, since they depend neither on actual values mo , ml, b, nor
communication between parties. The sender can compute C-d and the chooser
can compute xe. When choosing e = 3, the chooser needs two modular multi­
plications instead of one (expensive) exponentiation. The sender computes x1
directly: x1= xgc-d, thus performing only single exponentiation xgon-line.
Comparison of computation overhead, for e = 3 and T instances of the proto­
col, in a pre-cornputed and fully on-line implementation, is in Table I. Notice
the saving of exponentiations, which is the most time-consuming operation.

OT1
N protocol. We extend the OT'f protocol to the case of N strings

mo, ... , mN-1 employing ideas from [18] . In order to simplify the description
of the protocol we set Co = 1. Although the OTr protocol is not needed for
the contract signing protocol directly, it is useful for improving efficiency ofthe
OT'f protocol by means of computation/communication tradeoff. Moreover,
this protocol can be of interest per se, since the chooser does not compute any

Efficient Simultaneous Contra ct Signing 447

on-line
sender chooser

pre-computed
sender chooser

pre-computation
exponentiations 1 0
multiplications 0 2T

on-line
exponentiations 2T 0 T 0
multiplications T 3T T T
H evaluations 2T T 2T T

Table I. OTj
2 computationoverhead: on-line and pre-computed implementation

exponentiation (for small e). The protocol makes use of a random string R
(again) to differentiate among multiple invocations.

The senderselects randomly and uniformly integers Cl , . .. , CN - I E Z~

and sends them to the chooser.

2 The chooser, wishing to receive nu, for 0 ::; b < N, selects a random
element x E Zn. The choo ser computes value x' = XeCb and sends it to
the sender.

3 The sender selects a sufficiently long random string (or counter) R . The
sender computes X u = x'C;;I, for all 0 ::; u < N , and encrypts strings
m.; - resulting in ciphertexts Eu:

Eu = H (R, x~, u) EB m u.

The reply for the choo ser consists of Eo, ... ,EN- I , and R.

4 The chooser decrypts tru, from Eb: ttu, = Eb EB H (R , x, b).

The protocol has security properties similar to the properties of the OT'[
protocoI. Since the value x' is uniformly distributed in Zn, the chooser's security
is protected information-theoretically. From the sender's perspective x' can be
arbitrary for any band any Cl, .. . ,CN - I - just set x = (x'Chi)d.

The sender's security is protected computationally (again). Let A be an
adversary. We describe a simulator SA in the ideal model, using A as a black­
box. The simulator and the adversary have computationally indistinguishable
outputs in the random oracle model, i.e. assuming a truly random hash function
H. The simulator starts with choosing CI, . .. , CN- I randomly. S A "sends"
them to A and simulates it to obtain x'. The simulator computes X u = x'C;; I,

for all 0 ::; u < N - 1. Then, in reply, S A selects all the values {Eu losu<N at
random. The simulator monitors all queries to (random oracle) Hand checks

448

their validity. We say that the tripie (R' ,x, b) is valid if an only if X b = xe,
R = R' and 0 :::; b < N . If a tripie is not valid, BA answers the query randomly.
In case of valid tripie BA asks a trusted third party in the ideal model for ttu;
Then it sets H(R, X b, b) = rtu, EB Eb to allow A to decrypt the string correctly.
The simulator's output is whatever A outputs.

It is easy to verify that the distribution of simulated communication with A
is identical to the distribution of real communication between the sender and
A. Hence the output of SA cannot be distinguished from the output of A in real
communication. The only exception is when A queries H with two distinct
valid tripies, say (R,x, b) and (R, x* , w), since SA is unable to get both tru, and
m w from a trusted third party. If A can find two valid tripies, s(he) can decrypt
the following ciphertext:

C;;lCb = (xw(x') -l)(x'xb
1) = xwxb

1 = (x*x- l)e.

Assuming validity of RSA assumption and the randomness of Cl , . .. , CN -1,

the adversary can find two valid tripies with negligible probability as long as
N is polynomially bounded.

Computation overhead. The Naor-Pinkas OT{" protocol from [18] uses com­
putational Diffie-Hellman assumption to guarantee computational security for
the sender. Using RSA allows us to reduce chooser's computational overhead,
since the public exponent e can be made smalI.

Similarly to OT't we can run the protocol polynomially many times with the
same values Cl, ... CN - 1. In order to reduce complexity, some of the values
can be pre-computed: C I d

, .. . , CN~l (sender), xe (chooser) . Then the on-line

requirements, when running T instances of OT{", are T exponentiations for
the sender and no exponentiation for the chooser (e = 3).

Remark. The protocol can be easily accommodated in environments where
pre-computation is not possible. We sketch briefly a way to reduce the overall
number of exponentiations in such cases. The sender selects only tintegers
Co, . . . , Ct - 1 E Zn, where t = [lg Nl. The chooser changes the computation

f ' , ecbo Cbt - ! h (b b)· h b· .o x to x =X 0· .. . · t-l ,w ere 0, , t-1 is t e mary representanon

of b. The senders computes X u = «c;» Ct__~t -!, for all 0 :::; u < N,
where (uo, .. . ,Ut-l) is the binary representation of u. The security properties
of the modified protocol are comparable with the original OT{".

Computation vs. communication tradeoff for OTl. It is quite common
that network bandwidth "outperforms" Cl'U power, i.e, computation is slower
than the ability to transfer data over communication lines. The idea of decreas­
ing computation overhead while increasing communication complexity was
cleverly used in [18] . The approach can be applied in our protocols as weIl.
The situation is as folIows: The chooser and the sender need to perform many

Efficient Simultaneous Contract Signing 449

OT? protocols . They group them in blocks of I protocols (the exact value of I
will be specified later). One block is implemented as folIows. The sender has
I pairs ofstrings (ml ,o,mI ,d, .. . , (m/,o, m/ ,I) . Instead ofusing I instances of
the OT? protocol , the sender creates 2/ strings in the form m I ,il m2,i2 .. . m/,il'

where i I, .. . , i/ E {O, I}. These strings are the sender's inputs in OTf proto­
col for N = 2/. The strings can be too long to be encrypted as described in the
OTf protocol. Therefore, the sender encrypts them separately and transfer the
keys via oblivious transfer. The encryptions are sent off-line.

Optimal performance is achieved when the time spent by computation is
equal to the time spent by communication. We evaluate the situation for the
sender who performs exponentiation (RSA decryption). Exponentiation is the
most computationally intensive operation. Thus, for simplicity, we will ignore
other operations. Let te (sec) be a time required for one exponentiation. We
denote by v (bits/sec) the bandwidth between the chooser and the sender. Com­
munication complexity of the on-line part of the protocol is 2/k + r, where r
is the length of Rand k is the length of encryption key. The optimal value I is
then 1= 19((tev - r)/k) .

11

9

7

5

1Mb/sec 10Mb/sec 20Mb/sec 30Mb/sec

Figure J. Optimall for given bandwidth

To show relevance of the described tradeoff, let us give an illustration in the
real world settings. Let k = r = 128. Let n (RSA modulus) be 1024 bits long.
Taking benchmarks from [8], one RSA decryption takes 4.63ms on a 2.1GHz
Pentium 4 processor. The optimal value of I as a function of the bandwidth is
depicted in Figure I.

450

3. CONTRACT SIGNING

The protocol for contract signing from [10] uses an obliviou s transfer as a
basic component. Our protocol is inspired by this construction but differs from
it in the following aspects:

• a criterion when the contract is considered binding (the original protocol
uses threshold acceptance);

• an efficient obliviou s transfer, described in Section 2.2, allows to compute
a significant part of the operations in advance.

These properties guarantee small on-line computation overhead.
Protocols for simultaneous contract signing usually consist of two interlaced

protocols. Both participants are in symmetrie situations - each of them wants
to transfer its own signature in exchange for the other participant's signature.
Our description employs both exchanges.

Let us denote by BigA(m) a digital signature of a message m created by
the participant A. Our protocol is independent of chosen digital signature
algorithm. Let k be a security parameter. For the purposes of contract signing,
we define C-signature (or CBig) of a message m. It is a tripIe:

for arbitrary i E {l , . .. , k } and a random binary string R E {O ,l}k long
enough to avoid collisions among instances of the protocol. A C-signature is
valid if and only if all its parts are formed correctly and have valid signatures.

3.1 The protocol

Alice and Bob simultaneously transfer C-signatures of contract M . We will
use A and B as shortcuts for Alice and Bob, respectively. The protocol employs
symmetrie keys. We assume the length of asymmetrie key is a multiple of the
security parameter k and not shorter than the length of a signature. Other
settings are discussed in Seetion 3.2. We denote by A ~ B : OTf(mo , mt}
the instance of an oblivious transfer protocol with A playing the role of the
sender (possessing two strings m o, ml), and B playing the role of the chooser.

Alice chooses R A E {O, l}k and Bob chooses R B E {O, l}k. Alice and
Bob exchange the first parts of their C-signatures together with R A, R B:

A ---t B: RA, BigA(M, R A),
B ---t A: R B, BigB(M, RB).

2 Alice and Bob validate the received signatures. They compute the values
Bi9A/ B(R, i , b), for all i E {I , ... , k} and b E {O, I}. Alice chooses

Ejjicient Simultaneous Contract Signing 451

random symmetrie keys K A,i,b' Similarly, Bob chooses keys K B,i,b. The
keys are used for encryption of corresponding signatures. Alice and Bob
exchange encrypted signatures, for all i = 1, ... , k and b = 0, 1:

A ---t B: KA ,i,b E9 S igA(RA , i , b),
B ---t A: KB,i,b E9 SigB(RB, i, b) .

3 Alice uses an oblivious transfer protocol to exchange exactly one value
KA ,i,b from each pair of symmetrie keys (a pair consists of keys with
equal i and different b values):

A B: OTr(KA,i,O, KA ,i,I) , for i = 1, .. . , k.

Bob selects the key which he wants to receive, the first or the second one
for each pair, randomly.

4 Analogously, Bob uses an oblivious transfer protocol to exchange exactly
one value K B,i,b from each pair of his keys (Alice's choice for each
oblivious transfer is random):

B A: 011(KB,i,0,KB ,i,I), for i = 1, .. . , k.

5 Alice and Bob decrypt half of the signatures using the received keys and
validate the signatures. They divide every symmetrie key into k pieces
of equallength (recall that the length of keys is multiple of k):

KA ,i,b = K~,i ,b 11 Kli ,b 11 11 K~,i,b '

KB ,i,b = K1,i,b 11 »i.. 11 11 K~,i ,b '

where the operator ' 11 ' denotes concatenation of strings. Alice and Bob
gradually exchange the pieces of keys, i.e. for w = 1, .. . , k:

A ---t B : K'i. 1 0 ' KÄ 1 l' , KÄ k 0' KÄ k l '

B ---t A: KY/I :O' K~,l ',I ' ,K~,~,o, K~,:,l '

Transfers are interlaced, so both parties send the pieces for w + 1 only
when they already received the pieces for w. Alice and Bob check after
each transfer that the half of received pieces is equal to the corresponding
pieces of the keys obtained via oblivious transfers. They continue the
protocol only if the check is successful.

Security. A valid C-signature consists of three parts. The first part is trans­
ferred in step I. Other parts are exchanged gradually from step 2 to step 5.
Security of the protocol heavily depends on the properties of oblivious trans­
fer. They guarantee that Bob leams exactly one part of each signature pair
SigA(RA , i , 0), SigA (RA , i , 1) in step 3. Moreover, Alice does not know which
of them has been obtained by Bob. Similar situation arises for Bob's signature

452

pairs in step 4. Hence, neither party knows the C-signature before the last step.
Pieces ofkeys needed to decrypt the remaining signatures are exchanged in step
5. The pieces of known keys are used to check for possible cheating.

The probability of successful cheating in the protocol depends on the security
parameter k. Notice that any signature pair completes the C-signature. If a
participant wants to cheat (i.e. not providing valid C-signature for the other), it
must lie in every pair. Hence the probability of successful cheating is equal to the
probability of guessing which keys the other participant obtained in oblivious
transfers, i.e. 2-k .

Performance. We analyze on-line and off-line computation overhead of the
protocol. Most of the operations can be pre-cornputed, i.e. computed off-line.
It follows from the properties of our OT'f protocol and from the fact that the
strings transferred by OT'f do not depend on the contract. As the roles of
both participants in the protocol are symmetric, computational and commu­
nication needs are equal. We calculate the number of signing operations and
exponentiations performed in one instance of the protocol. Other operations,
such as signature verification, multiplication, hash function evaluation etc. are
neglected in the analysis since they are considerably easier to compute.

Signatures in the first step of the protocol must be computed on-line - they
depend on the contract. On the contrary, all of the second step (employing 2k
signatures) can be pre-computed in advance. Oblivious transfers in steps 3 and
4 require k on-line and 1 off-line exponentiations. The last step involves neither
exponentiation nor signing . Table 2 summarizes these facts.

off-line on-line

signatures
exponentiations

2k
1

1
k

Table 2. Computation overhead of a participant

The on-Iine computation overhead can be further reduced by employing
technique of computation/communication tradeofffor OT'f described in Section
2.2.

3.2 Implementation issues

The description ofthe protocolleft open some issues which can be addressed
in an actual implementation:

• The security parameter k inftuences the efficiency of the protocol and the
resistance to cheating. An appropriate value of k should balance these
requirements, and can be, for example 100 or 128.

Efficient Simultaneous Contract Signing 453

• The signatures in step 2 are encrypted using one-time pad. Employing a
symmetrie eneryption algorithm allows signatures much Ionger than the
length of symmetric keys.

• The hash function H is used in OT'f protocol. Although modelIed as
a truly random funetion in our analysis, it is instantiated as a crypto­
graphie strong hash function (sueh as SHA-I or RIPEMD-160) in the
implementation.

• Further simplification removes the hash funetion H from OT'f protocol
altogether. We substitute it with a simple combination of its arguments,
for example XOR. This modifieation breaks the security of OT'f in the
random oracle model. On the other hand, we are not aware of any practieal
attack on ourcontract signing protoeol when employing this modification
or modified OT? protocol itself.

Finally, one can easily change the oblivious transfer protocol in the imple­
mentation. It is possible to use EIGamal based oblivious transfer, such as [18].
Nonetheless, employing our RSA based eonstruction with small public expo­
nent e saves exponentiations on the choosers side of the oblivious transfer, see
Seetion 2.2.

4. BENEFITS AND DRAWBACKS
Let us sum up the properties of our contract signing protocol. On the pos­

itive side, the protocol is fast and easy to implement. Moreover, it allows any
signature algorithm to be used in signing the parts of a C-signature. A pre­
eomputation and a computation vs. communieation tradeoff can be employed
for reducing the on-line eomplexity of the protocol. We believe the protocol is
suitable for a situation where a party (server) has to partieipate in many eontraet
signing protocols constantly.

When eomparing the protocol with other eonstruetions one can spot its draw­
backs . Firstly, the protoeol does not provide a proteetion in the case of unbal­
anced computing power. A participant with greater computing power possesses
an advantage over the second one. S(he) can terminate the protocol prematurely
and compute the remaining data faster than the other party. This can be reduced
by unbalanced release of keys in step 5 if the difference is known in advance.

Additionally, the security proofs for oblivious transfers are based on random
oracles. A necessity to instantiate the hash function leaves the possibility of
unsafe implementations. On the other hand, we found no unsafe instantiations
of the hash function at all.

454

5. CONCLUSION

We have presented a contract signing protocol with emphasis on perfor­
mance . We see a possibility for subsequent research in improving the on-line
complexity of the protocol further. An attractive objective is to remove the
use of random oracles in our RSA based oblivious transfer while preserving its
performance.

Acknowledgments

The first author acknowledges partial support from the APVT grant No.
023302. The second authorwas partially supported by VEGA grant 110131103.

References

[I} N. Asokan, V. Shoup, M. Waidner: Optimistic fair exchange of digital signatures, In
Advances in Cryptology - EuroCrypt '98 , LNCS 1403,591-606, Springer-Verlag, 2000.

[21 D. Beaver: Minimal-latency secure function evaluation, In Advances in Cryptology ­
EuroCrypt '00, LNCS 1807,335-350, Springer-Verlag , 2000.

[31 M. Bellare, A. Boldyreva, A. Palacio: An Un-Instantiable Randorn-Oracle-Model Scheme
for a Hybrid-Encryption Problem, Cryptology ePrint Archive, Report 20031077, Available
at eprint . iacr . org, 2003.

[41 M. Bellare, P. Rogaway: Random Oracles are Practical: a Paradigm for Designing Efficient
Protocols, In Ist ACM Conference on Computer and Communication Security, 62-73,
ACM Press , 1993.

[5] D. Boneh, M. Naor: Timed Commitments, In Advances in Cryptology- Crypto '00, LNCS
1880,236-254, Springer-Verlag, 2000.

[6] R. Canetti: Security and Composition of Multiparty Cryptographic Protocols, Journal 0/
Cryptology, Vol. 13, No. 1, 143-202,2000.

[7] R. Canetti, G. Goldreich, S. Haievi: The Random Oracle Methodology, Revisited, In
Proceedings ofthe 30th ACM Symposium on Theory ofComputing, 209-218, ACM Press,
1998.

[8] W. Dai : Crypto++ 5.1 Benchmarks, Available at
www.eskimo .com/ -weidai /benchmarks.html .

[9] I.B. Damg ärd: Practi cal and provably secure release ofa secret and exchange ofsignatures,
In Advances in Cryptology - EuroCrypt '93, LNCS 765, 200-217, Springer-Verlag, 1993.

[10] S. Even, O. Goldreich, A. Lempel: A Randomized Protocol for Signing Contracts, In
Advances in Cryptology: Proceedings 0/Crypto '82, 205-210, Plenum Publishing, 1982.

[11] J.A. Garay, M. Jakobsson: Timed Release of Standard Digital Signatures, In Financial
Cryptography '02, LNCS 2537, 168-182, Springer-Verlag, 2002.

[12] J.A. Garay, M. Jakobsson, P.D. MacKenzie: Abuse -Free Optimistic Contract Signing, In
Advances in Cryptology: Proceedings 0/ Crypto '99, LNCS 1666,449-466, Springer­
Verlag, 1999.

[13] J.A. Garay, C. Pomerance: Timed Fair Exchange of Standard Signatures, In Financial
Cryptography '03, LNCS 2742, 190-207, Springer-Verlag, 2003.

Efficient Simultaneous Contract Signing 455

[14] O. Goldreich , S. Micali , A. Wigderson: How to play any mental game - a completeness
theorem for protocols with hone st majorit y, In 19th ACM Symposium on the Theory 0/
Computing, 218-229, ACM Press, 1987.

[15] Y. Ishai, J . Kilian, K. Nissim, E. Pet rank: Extending Obli viou s Tran sfers Efficiently, Ad­
vances in Cryptology - Crypto 2003, LNCS 2729, 145-1 61, Springer-Verlag, 2003.

[16] A. Juel s, M. Szydlo: An Two-Server Auction Protocol, In Financial Cryptography '02,
LNCS 2537, Springer-Verlag, 2002.

[17] M. Naor, B. Pink as, R. Sumner: Privacy preserving auctions and mechanism design , In
1st ACM Conference on Electronic Commerce, 129- 139, ACM Press, 1999.

[18] M. Naor, B. Pink as: Efficient obli vious transfer protocols, In 12th Annual ACM-S1AM
Symposium on Discrete Algorithms, 448-457, 2001.

[19] B. Pfitzrnann, M. Schunter, M. Waidn er : Optimal Efficiency of Opt imistic Contract Sign­
ing, In Symposium on Principles 0/ Distributed Computing , 113-122, 1998.

