
INSTALL-TIME VACCINATION OF
WINDOWS EXECUTABLES TO DEFEND
AGAINST STACK SMASHING ATTACKS

Danny Nebenzahl.! and Avishai Wool,2

1Dept. 0/ Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel.

nenenzah@post.tau .ac.il

2School 0/ Electrical Enqineerinq, Tel Aviv Universi ty, Ramat Aviv 69978, Israel.

yash@acm.org

Abstract St ack smashing is st ill one of th e mos t popular techniques for com­
puter syst em attack. In this pap er we present an ant i-stack-smas hing
defense technique for Microsoft Windows syst ems . Our approach works
at install-time, and does not rely on having access to the source-code:
T he user decides when and which executables to vaccinate. Our tech­
niqu e consists of instrumenting a given executable with a mechanism to
detect stack smas hing at tacks. We develop ed a prototype impl ement­
ing our technique and verified that it successfully defends against actual
exploit code. We th en extended our prototype to vaccinate DLLs, multi­
threaded applica t ions, and DLLs used by multi-threaded applications ,
which present significant additional complica t ions. We present promis­
ing perform ance results measured on SPEC2000 ben chmarks : Vacci­
nated executables were no more th an 8% slower than th eir un-vaccinated
originals.

Keywords: Computer security, Malware, Buffer-Overflow, Microsoft Windows Op­
era t ing System

1. INTRODUCTION

1.1 Background

Stack smashing attacks, which exploit buffer overflow vulnerabilities
to take control over attacked hosts, are the most widely exploited type
of vulnerability. About half of the CERT advisories in the past few years
have been devoted to vulnerabilities of this type [CER02]. Stack smash­
ing is an old technique, dating back to the lat e 1980's. E.g , the Int ernet
worm [Spa88] used stack smashing. However, this technique is still in

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems
© IFIP International Federation for Information Processing 2004



226

current use by hackers: For instance, it is the underlying method of at­
tack used by the MSBlast virus [CER03aJ,[CER03bJ . In general, stack
smashing works against a program that has a buffer overflow bug: A
malicious attacker inputs astring that is too long for the buffer, thereby
overwriting the program's stack. Since the program keeps return ad­
dresses on the stack, the overwriting string can modify areturn address
- and when the function returns, the attacker's injected code gets con­
trol. A detailed description of the stack smashing attack mechanism can
be found in [BSTOO],[CPM+98J.

1.2 Classification of Anti-Stack-Smashing
Techniques

Various techniques have been developed to defend against stack smash­
ing attacks. One way to c1assify these techniques is by the method they
use to handle the vulnerability [WK03J:

• Techniques ensuring that software vulnerabilities exploitable by
stack.smashing attacks do not exist : i.e., they attempt to eradicate
buffer overflows.

• Techniques that prevent an attacker from gaining control over the
attacked host : i.e., they assume that buffer overflows will cont inue
to occur, and attempt to ensure that the attack code will not be
executed successfu lly.

Our tool is of the latter type. It does not detect buffer overflows, but
defends against their exploitation.

A second c1assification of anti-stack-smashing techniques is based on
the stage in the software life cyc1e in which the counter-measures are
deployed [WK03J:

• Techniques that are deployed by the software deoeloper at the soft­
ware coding stage. These techniques inc1ude static code analysis
and modified compilers.

• Techniques that are deployed by the software user, before, or while,
using the vulnerable software. These techniques include wrappers,
emulators and binary code manipulations.

Our tool is a user tool: It does not require access to the source code.
Note that anti-stack-smashing developer tools (static checkers, com­

pilers) have the advantage of working at a high level of abstraction, e.g.,
with access to the C source code. In contrast, user tools have little
or no information about the language or techniques used to create the
program-all they have to work with is the binary executable. However,
we argue that user tools are extremely valuable: Typically, the user has
no control over the bugs in the software. Thus having the ability to vac-



Instoll-tune Vaccination 01 Windows Executables ... 227

cinate software, at the user site, at the user's discretion, is an important
goal.

The vast majority of anti-stack-smashing tools are Unix-based. This
is because source code is readily available for the operating system, the
compilers, and application software. In contrast, our tool targets the
proprietary Microsoft Windows operating systems.

The work closest to ours was recently suggested, independently, by
Prasad and Chiueh [PC03J. They too add anti-stack-smashing instru­
mentation into Windows binary files. However, they only handle very
simple Win32 executables. Our work shows that advanced features like
multi-threading, DLLs (Dynamic Link Libraries), and their combina­
tion, significantly complicate the problem. Dealing with such features
requires new and different methods. A more detailed comparison of our
work and that of [PC03] can be found in Section 8.

1.3 Contributions

The contribution of our work is twofold. Our first contribution is
that we created an anti-stack-smashing tool that works at install time,
or whenever the software user wishes. Thus, our technique does not
require access to the source code of the application and assumes nothing
about the application, beyond it being written in a high level compiled
language. The main idea is to equip existing binary files with additional
machine code that can detect a stack smashing attack.

The second contribution is that our tool is a "system-wide" solution.
Our tool handles simple applications, multi-threaded applications, and
DLLs. Thus the user can instrument a vulnerable binary while keeping
its interoperability: A DLL can be instrumented while the applications
using it are not instrumented, and an application can be instrumented
with or without instrumenting DLLs it uses .

We have built a working prototype implementing our approach, that
instruments Win32 executables running on an x86 Intel Pentium pIat­
form. We vaccinated several Windows executables with known buffer
overflows, and successfully defended them against real exploits. Our ap­
proach enjoys minimal overhead: In standard benchmarks we have not
observed more than an 8% slowdown in the vaccinated program.
Organization: In Section 2 we describe our solution architecture. Sec­
tion 3 describes the implementation of our technique to vaccinate simple
Windows applications. Section 4 describes the techniques used to vac­
cinate Windows DLLs. Section 5 describes the techniques used to over­
come the challenges imposed by multi-threaded applications. Section 6
describes the techniques used to vaccinate DLL's used by multithreaded



228

applications . In Section 7 we evaluate our solut ion. In Section 8 we
describe alternative approaches to stack-smashing protecti on, and we
conclude in Section 9.

2. SOLUTION ARCHITECTURE

2.1 Design Choices
Our first choice was to use a separate stack (as done by LibVerify

[BSTOO] on Linux), rather than insert so-called "canaries" into the stack,
as done by St ackGuard [CPM+98]. We believe that a separate stack of­
fers bet ter protection than cana ries-e.g., [WK03] shows how an attacker
can overcome a simple canary- based mechanism. Furtherm ore, t he sep­
arate stack approach can be modified to suppor t any mechani sm t hat
requires addit ional memory to be allocated and used in run-time (such
as encrypted per-thread canaries).

We chose to insert all t he instrumentation code into the executable
file itself, rather than to rely on load time instrumentation code (cf.
[HB99]). In a proprietary operating system like Microsoft Windows,
modifying the bin ary is more robust and less OS-version dependent.
Nevertheless, load- time instrumentation is a viable option.

Furthermore, we chose not to use the Detours library [HB99], and to
implement our own instrumentation mechanism . T his gave us the ability
to instrument functions that Detours skips (such as short functions , and
functions with jumps into entry or exit code) .

We implemented our approach using static instrumentation: Our vac­
cination tool instruments the executable file when it is not used , not its
image in memory during run-time. It should be noted that while this
choice limits our solut ion to "normal" (i.e., non self-modifying) pro­
grams, it results in better performance t han dynam ic instrument ation.

Finally, we do not assume the presence of any debug symbols, map
files, or any information beyond what is available in the raw Windows
bin ary file - simply because such information is ty pically only availab le
at compile time and rarely available to users at install time.

2.2 The Basic Method
Our ant i-st ack-smashing mechanism is based on instrumenting exist­

ing software . The instrumentation code is added at the function level­
each function is instrumented with addit ional entry and exit code. T he
added ent ry code records the return address from the stack by pushing
it onto a pri vate stack. T he added exit code tests whether the return
address found on the stack just before returning from the function is



Install-time Vaccination of Win dows Executables ... 229

identi cal to t he one at t he to p of the private stack, the one t hat has
been recorded up on t he function entry.

If our instrumentation detects that t he stack has been smashed, i.e. ,
t he return address has been overwritten , we halt the program by using
a deliberate illegal memory access. Halting the program is not the only
possible option. Since we have the original ret urn address in t he private
stack, we could return to the correct caller of t he function. However ,
we believe this to be an inferior choice becau se cont inuing to run after
detecting that the stack is corru pt will resul t in unpredicted behavior.
Implementing a messaging mechanism to inform the user about the at­
tack, or to log data about the attack, can also be dangerous, as noted
in [Ric02].

2.3 Disassembly

Since t he disassembly process is not in the core of our research, we
chose to use a commercial disassembly package, the IDA Pro [IDA03].
Wc chose IDA Pro since it has been recognized as a very accurate disas­
sembler that is capable of distinguishing between code and data [CEOl],
[LD03]. T he input to IDA Pro is the binar y to be disassembled and t he
output is a listing file of the disassembl ed program.

2.4 Function Discovery

The next ste p in our pro cess is the discovery of function boundaries.
1'0 do this we wro te a parser for the IDA Pro listing file. We identify a
function entry when we find an address that is called from some other
address . T hus , t he listing file is scanned to detect calls, and the called
addresses are marked as function ent ry addresses . Each function is t hen
scanned , building a t ree emulating all possible branches in t he function ,
un til all RET commands (exit addresses) of t he function are detected .
Note that a function can have more than one ent ry point , and more than
one exit point . Note also that our function discovery will miss "non­
st andard" functions - e.g., fun ctions that are not called by the CALL
instruction, or that do not return by the RET instruction. We believe
t hat t his is not a significant issue since compilers generate standard call
sequences.

2.5 Function Analysis and Classification

We instrument a function by overwrit ing the entry-code of the func­
tion with a jump instruction to an area that is not used in t he binary.
The jump-to area includes: (i) Our instrumentation code; (ii) The orig­
inal ent ry code instructions that were overwritten by our jump instruc-



230

tion; and (iii) A jump back to the rest of the original function. A similar
solution is used to instrument the function's exit-code.

However, in a CISC architecture, implementing this solution is not so
simple. In a CISC architecture, different instructions may have different
lengths. Replacing the original entry (or exit) code with a jump may
replace several instructions of the original code with the one instruction
of the added jump. Furthermore, the original program may inc1ude
jumps to one of the instructions replaced by the added jump. Therefore,
simply replacing the original code with ajump may result in an erroneous
program that includes jumps to illegal instructions. In order to avoid
this problem, we classify functions into three categories:

• Simple functions. Simple functions have one entry point, one exit
point and do not include jumps into the first or last instructions
of the function. These functions are handled as mentioned above.

• Complicated functions. These functions may have more than one
entry or exit point, and may havc jumps into entry code or jumps
into exit code. To instrument complicated functions, we copy them
in full to an unused area. Their entry code areas are replaced with
jumps to the new, instrumented copy of the whole function. If
the function has more than one entry point, multiple instanccs of
the function will be created, one for each entry point. Each copy
is Instrumented to handle a call sequence that enters through its
entry point.

• Un-handled functions. Functions that include indirect jumps (
jumps whose destination address is determined by a value in a
register or by data). The difficulty with such jumps is that, a­
priori, the jump destination is not known, and thus determining
the function's boundaries with certainty is impossible. Compilers
use indirect jumps to efficiently implement C switch statements
as jump tables. Although discovering jump tables in binary files is
feasible, and done quite well by IDA-Pro [CE01], in our prototype
we decided to not instrument such functions. In areal world prod­
uct one should of course implement jump table discovery methods,
such as the ones mentioned in [CEOIJ. In all of the prograrns we
have instrumented, indirect jumps were used in less than 4% of
the functions .

3. INSTRUMENTING A SIMPLE WIN32
APPLICATION

In our terminology, a simple Win32 application is a Windows appli­
cation that is not multi-threaded. Examples of such applications are



Install-time Vaccination 01 Windows Execuiables ... 231

Notepad, RegEdt32, Calc etc. These applications are loaded into fixed
virtual memory addresses, and the memory allocated to them is used
solely by them. As mentioned above, our instrumentation code manages
a private stack. In simple Win32 applications, we allocate the memory
used for this stack, statically, at the end of the original binary. Thus,
the address of the private stack in known at instrumentation time, and
the instrumentation code can directly access the private stack. The ini­
tialization code added at the beginning of the program initializes the
private stack, and the instrumentation code of each function manages
the private stack.

In our prototype implementation the jump instruction added to each
function 's entry or exit code takes 5 bytes, and the added instrumen­
tation code takes 29 bytes for each entry point and 41 bytes for each
exit point of the function. We use a private return address stack of 768
bytes, which allows a function nesting of depth 192.

1'0 demonstrate the effectiveness of our instrumentation, we instru­
mented the RegEdt32 application. This application has a known buffer
overflow [Bug03] for which exploit code is available. We first verified
that the exploit indeed successfully attacks the application. Then we
instrumented the application and checked that the instrumented appli­
cation still worked correctly. Finally, we verified that the exploit caused
the instrumented application to halt , as described in Section 2. We also
instrumented other simple Win32 applications (such as Notepad.exe,
WinHlp32.exe, Calc.exe), against which we did not have exploit code.
We verified that all these applications worked correctly after vaccination,
to demoristrate that our instrumentation does no hann.

4. INSTRUMENTING A DLL
DLLs are PE files that contain function libraries that can be used

by multiple applications simultaneously. The use of DLLs is extremely
common in the Microsoft Windows family of operating systems: e.g.,
there are over 1000 DLLs in a typical Win2000 C: \ WINNT\SYSTEM32

directory. Since DLLs may be used in different combinations, the DLL
writer cannot predict the memory address that the DLL will be loaded
to. When creating a DLL binary, the compiler creates a relocation table.
The relocation table enables the OS to load the DLL to any available
memory region.

Instrumenting a DLL imposes two main problems: Allocating memory
for the private stack, and handling DLL relocation. Since a DLL can
be used by more than one process, in order to prevent race conditions,
memory for our private stack should be allocated per process. Thus,



232

the address of our pri vate stack needs to be determined at run t ime, as
new processes access the DLL. Handli ng relocat ion means that eit her
our instrumentation code must not use direct addressing, or we need
to update the relocation table so our instrumentation code will relocate
correctly.

We suggest a method to handle both problems simultaneously, based
on an operating system paging policy named Copy-on-Write. When a
process writ es to a page that is managed according to the Copy-on-Wri te
policy, the OS creates a copy of the page that is pri vate to that process.

To use this fea ture we made the instrumented DLL into a self-modifying
and self-relocating DLL. Upon loading or being attached to a process,
t he initialization code that we add at the entry point of the DLL de­
te rmines where it is in memory, and updat es the instrumented code
so all references to the private stack will be to th e correct addresses
(thus handling relocation). This action, of rewriting part of the DLL in
memory, causes the operating system to duplicat e the rewritten pages.
T he rewri tten pages cont ain the private stack and our instrumentation
code . Thus, by making the instrumentation self-relocating, and hence
self-modifying, the operating system gives us for free a separate memory
block to store the private stack for each process.

However , our implementation did not completely escape the need to
update the relocation table. Since we handle complicated functions by
duplicating them, we must update the relocation table so the instructions
in the new copied functions (e.g ., an access to a global variable) will
relocate correctly.

We implemented and tested a prototype utili zing this method . We
first wrote a vulnera ble DLL and our own exploit code , and checked
that the exploit smash es the stack. Then we instrumented the DLL , and
checked th at it works correctly in a multi-process environment by delib­
erately causing race condit ions between mul tiple pro cesses that use the
DLL . We tested our defense mechanism by causing a buffer overflow in
the DLL. Our instrumentation code did indeed catch the st ack-smashing
and halt . We have not yet tested our defense against areal exploit of a
real DLL.

5. INSTRUMENTING A MULTI-THREADED
APPLICATION

In a multi-threaded environment , the process 's memory is shared
between threads. In cont rast to mul tiprocess operat ion, in a multi­
t hrea ded application all t he threads are allowed to change memory re­
gions owned by the pro cess, and it is t he application 's responsibility



Install -time Vaccination 0/ Windows Executables ... 233

TEB Pointer

.data Segment
(GlobalVariables)

TLS Variable
Associaledwith buffer

Conlains a
TLS Index

Memol'{ Block

Thread üescrctor
(TEB)

TLS ArrayPointer ~

MemoryBlock TlS Array "-l"Indexinto TLS Array-----. Memory Bk>ck
Poinler

MemoIYBlock MemoIYBlock

Datahem

MemoIYBlock

Figure 1. Accessing the 1'L8 variable void *buffer at offset OFFSET

to ensure its correct behavior - with little or no help from the OS.
Thus, the Copy-on-Write trick we relied on for solving the per-process
memory allocation problem (recall Section 4) is not applicable for the
multi-threaded scenario: Memory that is shared by multiple threads
of the sarnc application is not considered to be "shared" as far as the
operating system is concerned.

Instead, we use another feature of the Windows operating system.
Win32 has a memory allocation mechanism that is capable of allocating
memory per thread, called Thread Local Storage (TLS). This mechanism
facilitates defining memory structures (variables) that are allocated per
thread. Allocation of such memory can be defined in the PE file by
adding a special section (the .tls section) that describes the per-thread
allocation and initialization functions. Accessing a TLS variable is a
much more complicated task and thus has a performance penalty greater
than accessing a standard variable, since at compile time the address of
the variable is not known. Instead, when a programmer defines a TLS
variable (using a special C language extension), another hidden variable
is created. This added variable is set by the operating system to a value
called the tls index. When accessing a TLS variable, the hidden variable
is accessed in order to retrieve the tls index. The thread descriptor (A
variable maintained by the operating system storing information about
each thread) is accessed in order to retrieve the address of a table of
pointers. This table is accessed using the tls index to retrieve apointer
to the actual TLS variable. This run time access sequence is shown in
Figure 1.

We solve the need for per-thread private stack memory allocation by
defining the private stack as a TLS variable. The allocation is done by



234

adding a .t1s section to the executable file. The .t1s section describes
the private stack and it's initialization function. This change causes our
entry code to grow to 39 bytes (instead of 29) and our exit code to grow
to 47 bytes (instead of 41).

We implemented and tested a prototype utilizing this instrumentation
method. We wrote a vulnerable multi-threaded program and verified
that overflowing a buffer causes stack smashing. Then we instrumented
the program and verified that it still works correctly-including under
race conditions between threads. Then we attacked the program by caus­
ing a buffer overflow, and confirmed that the instrumented code detected
the stack smashing and halted. We also tested the correct operation of
various instrumented applications such as Windows Explorer, Microsoft
Internet Explorer and more .

6. INSTRUMENTING DLLS USED BY
MULTITHREADED APPLICATIONS

Another implication of multi-threaded applications is the handling
of DLLs used by multi-threaded applications. The technique used to
vaccinate multi-threaded applications cannot be used to vaccinate DLLs
used by multi-threaded applications. The reason is that TLS variables
added to a PE file cannot be used in DLLs, because a DLL may be
dynamically linked to a process that is running. Thus, at the moment
of attachment, TLS variables for all existing threads must be allocated
and initialized simultaneously. This is not possible for any initialization
function, nor is it supported by Win32. Since neither the software end
user, nor the software developer knows whether a DLL will be used bya
multi-threaded application, a general purpose instrumentation method
must address DLLs that are used by multi-threaded applications. In
other words, the simpler mechanism we used in section 4 is not sufficient.

We solve the need for private stack memory allocation per-stack by us­
ing a Win32 mechanism for allocating dynamically TLS variables. This
mechanism provides the programmer with the following API:

• TlsAlloc - a function for allocating a TLS index. After allocating
this index, each thread will be allocated an uninitialized pointer.

• TlsSetValue - a function that allows a thread to set the value of the
pointer allocated for a TLS variable. The programmer allocates
a memory block for the TLS variable, and sets the pointer to it
using this function.

• TlsGetValue - a function that allows the programmer to retrieve
the pointer to the TLS data.



Install-time Vaccination 0/ Windows Executables .. . 235

Benchmark

bzip2
gzip
md

Original Run Time
(sec)
67.6
15.6

435.62

Instrumented Run Time
(sec)
70,5
16.3

446.5

Performance Penalty
(%)
4.33
4,36
7.09

Table 1. Run time performance measurements of standard and instrumented
SPEC2000 applications,

Benchmark Orig.Size Instrumented Increase IDA-Pro Instrumentation
(KB) Size(KB) (%) Listing(KB) Time(sec)

bzip2 169 208 20.6 11,784 5.6
gzip 113 154 36.9 39,527 12.8
md 77 99 28.6 3795 1.2

Table 2. PE file size performance measurements of SPEC2000 and instrumented
SPEC2000 applications.

The use of this API is as folIows: At the initialization of a DLL one
allocates a TLS index, and saves that index in a variable local to the
DLL. When a process or a thread attaches the DLL, the DLL allocates
the memory needed for the actual TLS variable, and uses the TlsSet­
Value to store apointer to the memory allocated. When the DLL is to
access the TLS variable, it first calls the TlsGetValue API function to
retrieve apointer to the thread's copy of the variable, and accesses that
variable.

We use this TLS allocation and management scheme in order to al­
locate and access the private stack. In order to use this scheme we
needed to instrument the DLL in a way that the memory allocation
functions would be called when the DLL is loaded and when processes
attach the DLL. We found a very simple way to implement this func­
tionality. We wrote a DLL that implements only the TLS and memory
allocation functions, and the private stack management functions. We
add the stack management functions of this DLL to the Import Direc­
tory of the instrumented DLL - a Data Directory describing the DLLs
used by an application or a DLL. This causes the operating system to
call our DLL's initialization and memory allocation functions when the
instrumented DLL is loaded or when a process or a thread attaches to
it.



236

We enhanced our prototype to use our private stack allocation and
management DLL. We developed a vulnerable DLL and a mul tithreaded
application that uses that DLL. We tested that threads may exploit
the DLL's vulnerability. Then we inst ru rnented the DLL, and tested
the correct ope ration of the mult i-threaded application under controlled
race conditions. Finally we caused the multi-threaded application to
exploit the vulnerability of the DLL. Our stack-smashing detection code
detect ed the exploit.

7. EVALUATION

7.1 Performance

Instrumenting an application, especially by adding code to all program
functions, results in some performance degradation. This performance
degradation is caused by several factors: (i) The added code that needs
to be run . (ii) The larger address space that may change th e paging
performance for the program. (iii) The change of memory locations in
the program that results in a change of the cache performance.

Since the performance penalty is a resu lt of multiple program and sys­
tem parameters , we decided to evaluate the performance of whole instru­
rnented programs ra ther than measure micro-benchmarks. To do this, we
instrurnented several SPECINT applications from the SPEC2000 suite
[SPEOO] using the instrumentation method for handling multi-threaded
applications (even though all the applicat ions were simple Win32 appli­
cat ions). This evaluation resu lts in a worst case measurement:

• The performance penalty of the multi-threaded instrumentation
code is the highest due to the TLS variable accessing sequence.

• The SPEC2000 applications are in general number-crunching ap­
plications, designed to benchmark compilers and CPUs. These
application are much more demanding than the usual applications
used by end-users of the Win32 environment .

We ran the original and inst rumented programs on a 2GHz Pentium
4 with 256MB RAM and measured their average run time. We verified
that the instrumented code produced the same output as the standard
un-instrumented code. The measured performance penalty was less than
8% for the SPEC2000 applicat ions we measured (see Tables 1 and 2 for
details) , and the increase in program size was 20-37%. We consider
these resu lts very positive: an 8% slowdown most likely will not be
noticeable in an interactive program. Table 2 also shows th e size of the
intermediate IDA-P ro list ing file, which can grow quite large, and the
inst rumentat ion t ime, which is roughly proportional to the size of listing



Install-time Vaccination 0/ Windows Executables ... 237

file. Note that our focus was on demonstrating a working prototype, so
we did not make any effort to reduce the instrumentation time. We
believe that the instrumenting tool can be greatly optimized through
the use of better data structures.

7.2 Limitations of the approach

We can identify two limitations caused by the fact that we instrument
a binary executable file, rather than its loaded image .

1 Known Un-handled Functions: As noted in Section 2.5, we do not
instrument functions that use indirect jump instructions. Thus,
our tool does not defend against attacks that exploit vulnerabilities
in these functions .

2 Unknown Un-handled Functions: The function discovery process
may miss functions, for example functions called by indirect calls
such as function call tables. Vulnerabilities in such functions are
not defended by our defense mechanism.

The first limitation can be addressed by introducing techniques of
jump table discovery, which will reduce the number of un-handled func­
tions. The second limitation can be handled at run time, for example by
checking that the destination of an indirect call is indeed instrumented.
These improvements are left for future work.

Finally, we need to test our tool on more vVin32 applications and
DLLs , and validate its success in defending against more real exploits.

8. ALTERNATIVE APPROACHES AND
TOOLS

Developer tools, Probably the most influential anti-stack-smashing
tool is StackGuard. StackGuard [CPM+9S] is a compiler enhancement,
that equips the generated binary code with facilities that can detect
a stack smashing attack. StackGuard works by having each function's
entry code place aper-run constant, so called a canary, on the stack.
The function 's exit code verifies the canary's existence. The assumption
is that a buffer overflow which overwrites the return address would also
overwrite the canary. StackGuard has been commercialized by Immunix
[Imm03] and has been used to produce a full hardened Unix system. A
similar compiler option is now supplied as a standard feature in Microsoft
Visual C++ .NET compilers [MicOl],[HL02].

StackShield [StaOO] is another GNU compiler enhancement. In Stack­
Shield, the attack detection is based on tracking changes of the actual
return address on the stack. Each function's return address is recorded



238

in a private stack upon functi on ent ry, and the funct ion 's exit code ver­
ifies that the return address has not changed.

Another tool that inser ts instrumentation at compile t ime is Point­
Guard [CBJW03] (which encrypts pointers to code). Stat ic source code
analysis techniques have also been developed to detect software vul­
nerabili ties that may be exploited by stack smas hing attacks [G0 98],

"[DRSOl], [EL02]' [WFBAOO] .

User tools. A user tool, implemented as a Linux patch, prevents
stack smas hing exploits by setting the stack memory pages to be non­
executable [Sol].

Libsafe [BSTOO] is a run ti me attack detection mechanism that can
discover stack smashing at tacks against standard library functions. It
is implemented as a dynamically loaded library that int ercepts calls to
known vulnerable library functions, and redirect s them to a safe irnple­
mentation of these functions.

Libverify [BSTOO] is a Unix-based attack detection technique similar
to St ackShield , bu t in which the attack detecti on code is embodied into a
copy of the execut able image, which is created on the heap at load time .
However , t he authors only handled the simplest case (single threa ded
programs, no DLLs).

Recently, a technique based on randomized instruction set emulation,
employed at run t ime, has shown success in detecting various code injec­
t ion attacks, including stack smashing attacks [KKP03] ,[BAF+03]. This
techn ique has a high performance penalty because of the emulation over­
head.

Comparison with the work of Prasad and Chiueh. T he work
closest to ours was recently suggested, independently, by [PC03]. They
too add anti-stack-smashing instrumentation into Windows bin ary files.
However , their work leaves severa l key issues unresolved, Most not ably,
they only handle simple Win32 executables (single thread programs, no
DLLs) . Furthermore, they demonstrated that their approach success­
fully vaccinates a test program with a deliberate buffer overflow, rather
than a live exploit . Finally, th ey use the Detours library [HB99], which
slight ly limits the d ass of functions they are able to instrument , and
requires load-time activation of the instrumentation. Beyond the work
of [PC03], our work has the following fea tures:

• We are able to instrument DLLs.

• We handle mul ti-threaded applications .

• We handle DLLs called by multi- threaded app lications.



Install-time Vaccination 01 Windows Executables . .. 239

• We can instrument a wider set of functions, including functions
wit h jumps into the middle of ent ry /exit code , and very short
functions. This is because we wrote our own instrumentation code
rath er than using Detours,

• We demonstrated that our approach protect s against a real buffer
overflow vulnerability found in the wild.

9. CONCLUSIONS

We presented an install-time vaccination technique as a countermea­
sure against st ack-smas hing-attacks on the proprietary Microsoft Win­
dows OS. Our technique enables software users to be protected without
access to the source-code, We developed a pro to type t hat successfully
instruments simple Win32 applicat ions, DLLs, multi-threaded applica­
tions, and DLLs used by mul ti-threaded applications thus providing a
system-wide solution. We have shown that the prototype can defend
against real exploit code .

References

[BSTOO]

[Bug03]

[CBJ W03]

[CEOl ]

[CER02]

[CER03a]

[CER03bJ

E. G. Barrant es, D. H. Ackley, S. For rest , T . S. Palmer , D. Stefanovic ,
and D. D. Zovi. Rando mized inst ructi on set emulat ion to disrupt bi­
nary code injection attacks . In Proc. 10th A CM Conf. Computer and
Communications Security (CCS), Washington, DC, 2003.

Aras h Bar atloo, Navjot Singh, and T imothy Tsai. Transparent run- t ime
defense against stack smashing attacks. In Proc. USENIX Annual Tech­
nical Conjerence, 2000.
Microsoft Windows RegEdi t .exe regist ry key value buffer overflow vul­
nerabili ty. Bugtraq id 7411,16 Apr il 2003. http://wyv .securityfocus .
com/bid/7411.

Crispin Cowan , St eve Beat tie, John Johansen, and Pe rry Wagle. Po int­
Guard: Protecting pointers from buffer overflow vulnera bilit ies. In Proc.
12th USENIX Security Symposiu m. USEN IX, 2003.

Crist ina Cifuent es and Mike Van Emmerik. Recovery of jump table case
state ments from bina ry code . Science of Computer Progm mmi ng, 40(2­
3):171- 188, 2001.

CERT/cc statisti cs 1988-2001 , 2002. http: / /www.cer t .org/ stats/ .

CE RT adv isory CA-2 003-16: Buffer overflow in Microsoft RPC, 17 July .
2003. http://www.cert.org/advisories/CA-2003-16 .html.

CE RT adv isory CA-2003-20: W32/ Blaste r worm, 11 August 2003. http:
//www.cert .org/advisories/CA-2003-20 .html.

Crispa n Cowa n, Calton P u, Dave Ma ier, Jona th an Walpole, Peat Bakke,
St eve Bea ttie, Aaron Grier, Perr y Wag le, Qia n Zhang, and Heather Hin­
to n. StackG ua rd : Automatie adaptive detection and prevent ion of buffer­
overflowattacks. In Proc. 7th USENIX Security Symposium , pages 63- 78,
San Antonio, Texas , J an uar y 1998.



240

[DRSOl]

[EL02]

[G098]

[HB99]

[HL02]

[IDA03]

[Imm03]
[KKP03]

[LD03]

[MicOl]

[PC03]

[Ric02]

[Sol]

[Spa88]

[SPEOO]

[StaOO]
[WFBAOO]

[WK03]

Nurit Dor, Michael Rodeh , and Mooly Sagiv. Cleanness checking of string
manipulations in C programs via integer analysis. In Proe. 8th Interna­
tional Statie Analysis Symposium (SAS), LNCS 2126, Paris, France, 200l.
Springer-Verlag .
David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1) :42-51, 2002.
A. K. Ghosh and T . O 'Connor. Analyzing programs for vulnerability to
buffer overrun attacks. In Proe. 21st NIST-NCSC National Information
Systems Seeurity Conference, pages 274-382, 1998.
Galen Hunt and Doug Brubacher. Detours: Binary interception of Win32
functions. In Proc. 3rd USENIX NT Symposium, pages 135-144, 1999.
Michael Howard and David LeBianc. Writing Seeure Code. Microsoft
Press, 2nd edition, 2002.
The IDA Pro disassembler and debugger, v4.51, 2003. http://www.
datarescue.com/idabase/.
Immunix secured solutions, 2003. http://www.immunix.com.
Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering
code-injection attacks with instruction-set randomization. In Proe. 10th
ACM Conf. Computer and Communieations Security (CCS) , Washing­
ton, DC, 2003.
Cullen Linn and Saumya Debray. Obfuscation of executable code to im­
prove resistance to static disassembly. In Proe. 10th A CM Conf. Computer
and Communications Security (CCS), Washington , DC , 2003.
Microsoft Visual C++ compiler options: / gs (control stack checking
calls) . Online documentation, 2001. http ://msdn.microsoft . com/
library/default.asp?url=/library/en-us/vccore/html/_core_.2f .
gs.asp.
Manish Prasad and Tzi-cker Chiueh. A binary rewriting defense against
stack based overflow attacks. In Proeeedings of the USENIX 2003 Annual
Teehnical Conferenee, 2003.
Gerardo Richarte. Four different tricks to bypass StackShield and Stack­
Guard protection. Core Security Technologies, 2002. http://downloads .
securityfocus.com/library/StackGuard.pdf .
Solar Designer. Nonexecutable user stack. http://www .false .com/
security/linux-stack/.
Eugene H. Spafford. The Internet worm program: An analysis. Technical
Report CSD-TR-823, Purdue University, West Lafayette, IN 47907-2004 ,
1988.
SPEC CPU2000 Vl.2. Standard Performance Evaluation Corporation,
2000. http://www . specbench . org/osg/cpu2000/.
Stackshield, 2000. http ://www.angelfire.com/sk/stackshield.
David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken . A
first step towards automated detection of buffer overrun vulnerabilitics.
In Proc. Network and Distributed System Security Symposium (NDSS) ,
pages 3-17, San Diego, CA , February 2000.
John Wilander and Mariam Karnkar. A comparison of publicly available
tools for dynamic buffer overflow prevention. In Proceedings of the 10th
Network and Distributed System Seeurity Symposium (NDSS), pages 149­
162, San Diego , California, February 2003.


