INSTALL-TIME VACCINATION OF
WINDOWS EXECUTABLES TO DEFEND
AGAINST STACK SMASHING ATTACKS

Danny Nebenzahl,! and Avishai Wool,?

1Dept. of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel.

nenenzah@post.tau.ac.il

2 School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel.

yash@acm.org

Abstract

Keywords:

Stack smashing is still one of the most popular techniques for com-
puter system attack. In this paper we present an anti-stack-smashing
defense technique for Microsoft Windows systems. Our approach works
at install-time, and does not rely on having access to the source-code:
The user decides when and which executables to vaccinate. Our tech-
nique consists of instrumenting a given executable with a mechanism to
detect stack smashing attacks. We developed a prototype implement-
ing our technique and verified that it successfully defends against actual
exploit code. We then extended our prototype to vaccinate DLLs, multi-
threaded applications, and DLLs used by multi-threaded applications,
which present significant additional complications. We present promis-
ing performance results measured on SPEC2000 benchmarks: Vacci-
nated executables were no more than 8% slower than their un-vaccinated
originals.

Computer security, Malware, Buffer-Overflow, Microsoft Windows Op-
erating System

1. INTRODUCTION

1.1

Background

Stack smashing attacks, which exploit buffer overflow vulnerabilities
to take control over attacked hosts, are the most widely exploited type
of vulnerability. About half of the CERT advisories in the past few years
have been devoted to vulnerabilities of this type [CER02]. Stack smash-
ing is an old technique, dating back to the late 1980’s. E.g, the Internet
worm [Spa88| used stack smashing. However, this technique is still in

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems

© IFIP International Federation for Information Processing 2004

226

current use by hackers: For instance, it is the underlying method of at-
tack used by the MSBlast virus [CER03a],[CER03b]. In general, stack
smashing works against a program that has a buffer overflow bug: A
malicious attacker inputs a string that is too long for the buffer, thereby
overwriting the program’s stack. Since the program keeps return ad-
dresses on the stack, the overwriting string can modify a return address
— and when the function returns, the attacker’s injected code gets con-
trol. A detailed description of the stack smashing attack mechanism can
be found in [BST00],[CPM*98].

1.2 Classification of Anti-Stack-Smashing
Techniques

Various techniques have been developed to defend against stack smash-
ing attacks. One way to classify these techniques is by the method they
use to handle the vulnerability [WKO3]:

e Techniques ensuring that software vulnerabilities exploitable by
stack smashing attacks do not exist: i.e., they attempt to eradicate
buffer overflows.

e Techniques that prevent an attacker from gaining control over the
attacked host: i.e., they assume that buffer overflows will continue
to occur, and attempt to ensure that the attack code will not be
executed successfully.

Our tool is of the latter type. It does not detect buffer overflows, but
defends against their exploitation.

A second classification of anti-stack-smashing techniques is based on
the stage in the software life cycle in which the counter-measures are
deployed [WKO03|:

e Techniques that are deployed by the software developer at the soft-
ware coding stage. These techniques include static code analysis
and modified compilers.

e Techniques that are deployed by the software user, before, or while,
using the vulnerable software. These techniques include wrappers,
emulators and binary code manipulations.

Our tool is a user tool: It does not require access to the source code.
Note that anti-stack-smashing developer tools (static checkers, com-
pilers) have the advantage of working at a high level of abstraction, e.g.,
with access to the C source code. In contrast, user tools have little
or no information about the language or techniques used to create the
program—all they have to work with is the binary executable. However,
we argue that user tools are extremely valuable: Typically, the user has
no control over the bugs in the software. Thus having the ability to vac-

Install-time Vaccination of Windows Executables ... 227

cinate software, at the user site, at the user’s discretion, is an important
goal.

The vast majority of anti-stack-smashing tools are Unix-based. This
is because source code is readily available for the operating system, the
compilers, and application software. In contrast, our tool targets the
proprietary Microsoft Windows operating systems.

The work closest to ours was recently suggested, independently, by
Prasad and Chiueh [PC03]. They too add anti-stack-smashing instru-
mentation into Windows binary files. However, they only handle very
simple Win32 executables. Our work shows that advanced features like
multi-threading, DLLs (Dynamic Link Libraries), and their combina-
tion, significantly complicate the problem. Dealing with such features
requires new and different methods. A more detailed comparison of our
work and that of [PC03] can be found in Section 8.

1.3 Contributions

The contribution of our work is twofold. Our first contribution is
that we created an anti-stack-smashing tool that works at install time,
or whenever the software user wishes. Thus, our technique does not
require access to the source code of the application and assumes nothing
about the application, beyond it being written in a high level compiled
language. The main idea is to equip existing binary files with additional
machine code that can detect a stack smashing attack.

The second contribution is that our tool is a “system-wide” solution.
Our tool handles simple applications, multi-threaded applications, and
DLLs. Thus the user can instrument a vulnerable binary while keeping
its interoperability: A DLL can be instrumented while the applications
using it are not instrumented, and an application can be instrumented
with or without instrumenting DLLs it uses.

We have built a working prototype implementing our approach, that
instruments Win32 executables running on an x86 Intel Pentium plat-
form. We vaccinated several Windows executables with known buffer
overflows, and successfully defended them against real exploits. Our ap-
proach enjoys minimal overhead: In standard benchmarks we have not
observed more than an 8% slowdown in the vaccinated program.
Organization: In Section 2 we describe our solution architecture. Sec-
tion 3 describes the implementation of our technique to vaccinate simple
Windows applications. Section 4 describes the techniques used to vac-
cinate Windows DLLs. Section 5 describes the techniques used to over-
come the challenges imposed by multi-threaded applications. Section 6
describes the techniques used to vaccinate DLL’s used by multithreaded

228

applications. In Section 7 we evaluate our solution. In Section 8 we
describe alternative approaches to stack-smashing protection, and we
conclude in Section 9.

2. SOLUTION ARCHITECTURE
2.1 Design Choices

Our first choice was to use a separate stack (as done by LibVerify
[BST00] on Linux), rather than insert so-called “canaries” into the stack,
as done by StackGuard [CPM*98]. We believe that a separate stack of-
fers better protection than canaries—e.g., [WK03] shows how an attacker
can overcome a simple canary-based mechanism. Furthermore, the sep-
arate stack approach can be modified to support any mechanism that
requires additional memory to be allocated and used in run-time (such
as encrypted per-thread canaries).

We chose to insert all the instrumentation code into the executable
file itself, rather than to rely on load time instrumentation code (cf.
[HB99]). In a proprietary operating system like Microsoft Windows,
modifying the binary is more robust and less OS-version dependent.
Nevertheless, load-time instrumentation is a viable option.

Furthermore, we chose not to use the Detours library [HB99], and to
implement our own instrumentation mechanism. This gave us the ability
to instrument functions that Detours skips (such as short functions, and
functions with jumps into entry or exit code).

We implemented our approach using static instrumentation: Our vac-
cination tool instruments the executable file when it is not used, not its
image in memory during run-time. It should be noted that while this
choice limits our solution to “normal” (i.e., non self-modifying) pro-
grams, it results in better performance than dynamic instrumentation.

Finally, we do not assume the presence of any debug symbols, map
files, or any information beyond what is available in the raw Windows
binary file — simply because such information is typically only available
at compile time and rarely available to users at install time.

2.2 The Basic Method

Our anti-stack-smashing mechanism is based on instrumenting exist-
ing software. The instrumentation code is added at the function level—
each function is instrumented with additional entry and exit code. The
added entry code records the return address from the stack by pushing
it onto a private stack. The added exit code tests whether the return
address found on the stack just before returning from the function is

Install-time Vaccination of Windows Executables ... 229

identical to the one at the top of the private stack, the one that has
been recorded upon the function entry.

If our instrumentation detects that the stack has been smashed, i.e.,
the return address has been overwritten, we halt the program by using
a deliberate illegal memory access. Halting the program is not the only
possible option. Since we have the original return address in the private
stack, we could return to the correct caller of the function. However,
we believe this to be an inferior choice because continuing to run after
detecting that the stack is corrupt will result in unpredicted behavior.
Implementing a messaging mechanism to inform the user about the at-
tack, or to log data about the attack, can also be dangerous, as noted
in [Ric02].

2.3 Disassembly

Since the disassembly process is not in the core of our research, we
chose to use a commercial disassembly package, the IDA Pro [IDA03].
We chose IDA Pro since it has been recognized as a very accurate disas-
sembler that is capable of distinguishing between code and data [CEO01],
[LDO3]. The input to IDA Pro is the binary to be disassembled and the
output is a listing file of the disassembled program.

24 Function Discovery

The next step in our process is the discovery of function boundaries.
'To do this we wrote a parser for the IDA Pro listing file. We identify a
function entry when we find an address that is called from some other
address. Thus, the listing file is scanned to detect calls, and the called
addresses are marked as function entry addresses. Each function is then
scanned, building a tree emulating all possible branches in the function,
until all RET commands (exit addresses) of the function are detected.
Note that a function can have more than one entry point, and more than
one exit point. Note also that our function discovery will miss “non-
standard” functions — e.g., functions that are not called by the CALL
instruction, or that do not return by the RET instruction. We believe
that this is not a significant issue since compilers generate standard call
sequences.

2.5 Function Analysis and Classification

We instrument a function by overwriting the entry-code of the func-
tion with a jump instruction to an area that is not used in the binary.
The jump-to area includes: (i) Our instrumentation code; (ii) The orig-
inal entry code instructions that were overwritten by our jump instruc-

230

tion; and (iii) A jump back to the rest of the original function. A similar
solution is used to instrument the function’s exit-code.

However, in a CISC architecture, implementing this solution is not so
simple. In a CISC architecture, different instructions may have different
lengths. Replacing the original entry (or exit) code with a jump may
replace several instructions of the original code with the one instruction
of the added jump. Furthermore, the original program may include
jumps to one of the instructions replaced by the added jump. Therefore,
simply replacing the original code with a jump may result in an erroneous
program that includes jumps to illegal instructions. In order to avoid
this problem, we classify functions into three categories:

e Simple functions. Simple functions have one entry point, one exit
point and do not include jumps into the first or last instructions
of the function. These functions are handled as mentioned above.

e Complicated functions. These functions may have more than one
entry or exit point, and may have jumps into entry code or jumps
into exit code. To instrument complicated functions, we copy them
in full to an unused area. Their entry code areas are replaced with
jumps to the new, instrumented copy of the whole function. If
the function has more than one entry point, multiple instances of
the function will be created, one for each entry point. Each copy
is instrumented to handle a call sequence that enters through its
entry point.

e Un-handled functions. Functions that include indirect jumps (
jumps whose destination address is determined by a value in a
register or by data). The difficulty with such jumps is that, a-
priori, the jump destination is not known, and thus determining
the function’s boundaries with certainty is impossible. Compilers
use indirect jumps to efficiently implement C switch statements
as jump tables. Although discovering jump tables in binary files is
feasible, and done quite well by IDA-Pro [CEO1], in our prototype
we decided to not instrument such functions. In a real world prod-
uct one should of course implement jump table discovery methods,
such as the ones mentioned in [CE(O1]. In all of the programs we
have instrumented, indirect jumps were used in less than 4% of
the functions.

3. INSTRUMENTING A SIMPLE WIN32
APPLICATION

In our terminology, a simple Win32 application is a Windows appli-
cation that is not multi-threaded. Examples of such applications are

Install-time Vaccination of Windows Executables ... 231

Notepad, RegEdt32, Calc etc. These applications are loaded into fixed
virtual memory addresses, and the memory allocated to them is used
solely by them. As mentioned above, our instrumentation code manages
a private stack. In simple Win32 applications, we allocate the memory
used for this stack, statically, at the end of the original binary. Thus,
the address of the private stack in known at instrumentation time, and
the instrumentation code can directly access the private stack. The ini-
tialization code added at the beginning of the program initializes the
private stack, and the instrumentation code of each function manages
the private stack.

In our prototype implementation the jump instruction added to each
function’s entry or exit code takes 5 bytes, and the added instrumen-
tation code takes 29 bytes for each entry point and 41 bytes for each
exit point of the function. We use a private return address stack of 768
bytes, which allows a function nesting of depth 192.

To demonstrate the effectiveness of our instrumentation, we instru-
mented the RegEdt32 application. This application has a known buffer
overflow [Bug03] for which exploit code is available. We first verified
that the exploit indeed successfully attacks the application. Then we
instrumented the application and checked that the instrumented appli-
cation still worked correctly. Finally, we verified that the exploit caused
the instrumented application to halt, as described in Section 2. We also
instrumented other simple Win32 applications (such as Notepad.exe,
WinHIp32.exe, Calc.exe), against which we did not have exploit code.
We verified that all these applications worked correctly after vaccination,
to demonstrate that our instrumentation does no harm.

4. INSTRUMENTING A DLL

DLLs are PE files that contain function libraries that can be used
by multiple applications simultaneously. The use of DLLs is extremely
common in the Microsoft Windows family of operating systems: e.g.,
there are over 1000 DLLs in a typical Win2000 C:\WINNT\SYSTEM32
directory. Since DLLs may be used in different combinations, the DLL
writer cannot predict the memory address that the DLL will be loaded
to. When creating a DLL binary, the compiler creates a relocation table.
The relocation table enables the OS to load the DLL to any available
memory region.

Instrumenting a DLL imposes two main problems: Allocating memory
for the private stack, and handling DLL relocation. Since a DLL can
be used by more than one process, in order to prevent race conditions,
memory for our private stack should be allocated per process. Thus,

232

the address of our private stack needs to be determined at run time, as
new processes access the DLL. Handling relocation means that either
our instrumentation code must not use direct addressing, or we need
to update the relocation table so our instrumentation code will relocate
correctly.

We suggest a method to handle both problems simultaneously, based
on an operating system paging policy named Copy-on-Write. When a
process writes to a page that is managed according to the Copy-on-Write
policy, the OS creates a copy of the page that is private to that process.

To use this feature we made the instrumented DLL into a self-modifying
and self-relocating DLL. Upon loading or being attached to a process,
the initialization code that we add at the entry point of the DLL de-
termines where it is in memory, and updates the instrumented code
so all references to the private stack will be to the correct addresses
(thus handling relocation). This action, of rewriting part of the DLL in
memory, causes the operating system to duplicate the rewritten pages.
The rewritten pages contain the private stack and our instrumentation
code. Thus, by making the instrumentation self-relocating, and hence
self-modifying, the operating system gives us for free a separate memory
block to store the private stack for each process.

However, our implementation did not completely escape the need to
update the relocation table. Since we handle complicated functions by
duplicating them, we must update the relocation table so the instructions
in the new copied functions (e.g., an access to a global variable) will
relocate correctly.

We implemented and tested a prototype utilizing this method. We
first wrote a vulnerable DLL and our own exploit code, and checked
that the exploit smashes the stack. Then we instrumented the DLL, and
checked that it works correctly in a multi-process environment by delib-
erately causing race conditions between multiple processes that use the
DLL. We tested our defense mechanism by causing a buffer overflow in
the DLL. Our instrumentation code did indeed catch the stack-smashing
and halt. We have not yet tested our defense against a real exploit of a
real DLL.

5. INSTRUMENTING A MULTI-THREADED
APPLICATION

In a multi-threaded environment, the process’s memory is shared
between threads. In contrast to multiprocess operation, in a multi-
threaded application all the threads are allowed to change memory re-
gions owned by the process, and it is the application’s responsibility

Install-time Vaccination of Windows Executables ... 233

FS x86
CPU [——TEB Pointer
Register Thread Descriptor
(TEB)
TLS Array Pointer r—
.data Segment buffer
{Global Variables) Memory Block TLS Array
TLS Variable
V,v"h butfer Index into TLS Array —— Me"“’f" Block L
Contains a Pointer
TLS Index
S
Memory Block Memory Block m
Memory Block %

Data item

Memory Block

Figure 1. Accessing the TLS variable void *buffer at offset OFFSET

to ensure its correct behavior — with little or no help from the OS.
Thus, the Copy-on-Write trick we relied on for solving the per-process
memory allocation problem (recall Section 4) is not applicable for the
multi-threaded scenario: Memory that is shared by multiple threads
of the same application is not considered to be “shared” as far as the
operating system is concerned.

Instead, we use another feature of the Windows operating system.
Win32 has a memory allocation mechanism that is capable of allocating
memory per thread, called Thread Local Storage (TLS). This mechanism
facilitates defining memory structures (variables) that are allocated per
thread. Allocation of such memory can be defined in the PE file by
adding a special section (the .tls section) that describes the per-thread
allocation and initialization functions. Accessing a TLS variable is a
much more complicated task and thus has a performance penalty greater
than accessing a standard variable, since at compile time the address of
the variable is not known. Instead, when a programmer defines a TLS
variable (using a special C language extension), another hidden variable
is created. This added variable is set by the operating system to a value
called the tls index. When accessing a TLS variable, the hidden variable
is accessed in order to retrieve the tls index. The thread descriptor (A
variable maintained by the operating system storing information about
each thread) is accessed in order to retrieve the address of a table of
pointers. This table is accessed using the tls index to retrieve a pointer
to the actual TLS variable. This run time access sequence is shown in
Figure 1.

We solve the need for per-thread private stack memory allocation by
defining the private stack as a TLS variable. The allocation is done by

234

adding a .tls section to the executable file. The .tls section describes
the private stack and it’s initialization function. This change causes our
entry code to grow to 39 bytes (instead of 29) and our exit code to grow
to 47 bytes (instead of 41).

We implemented and tested a prototype utilizing this instrumentation
method. We wrote a vulnerable multi-threaded program and verified
that overflowing a buffer causes stack smashing. Then we instrumented
the program and verified that it still works correctly—including under
race conditions between threads. Then we attacked the program by caus-
ing a buffer overflow, and confirmed that the instrumented code detected
the stack smashing and halted. We also tested the correct operation of
various instrumented applications such as Windows Explorer, Microsoft
Internet Explorer and more.

6. INSTRUMENTING DLLS USED BY
MULTITHREADED APPLICATIONS

Another implication of multi-threaded applications is the handling
of DLLs used by multi-threaded applications. The technique used to
vaccinate multi-threaded applications cannot be used to vaccinate DLLs
used by multi-threaded applications. The reason is that TLS variables
added to a PE file cannot be used in DLLs, because a DLL may be
dynamically linked to a process that is running. Thus, at the moment
of attachment, TLS variables for all existing threads must be allocated
and initialized simultaneously. This is not possible for any initialization
function, nor is it supported by Win32. Since neither the software end
user, nor the software developer knows whether a DLL will be used by a
multi-threaded application, a general purpose instrumentation method
must address DLLs that are used by multi-threaded applications. In
other words, the simpler mechanism we used in section 4 is not sufficient.

We solve the need for private stack memory allocation per-stack by us-
ing a Win32 mechanism for allocating dynamically TLS variables. This
mechanism provides the programmer with the following API:

m TlsAlloc - a function for allocating a TLS index. After allocating
this index, each thread will be allocated an uninitialized pointer.

s TlsSetValue - a function that allows a thread to set the value of the
pointer allocated for a TLS variable. The programmer allocates
a memory block for the TLS variable, and sets the pointer to it
using this function.

m TlsGetValue - a function that allows the programmer to retrieve
the pointer to the TLS data.

Install-time Vaccination of Windows Executables ... 235

Benchmark Original Run Time Instrumented Run Time Performance Penalty

(sec) (sec) (%)

bzip2 67.6 70.5 4.33
gzip 156 16.3 1.36

mcf 435.62 4465 7.0

Table 1. Run time performance measurements of standard and instrumented
SPEC2000 applications.

Benchmark Orig.Size Instrumented Increase IDA-Pro Instrumentation
(KB) Size(KB) (%) Listing(KB) Time(sec)
bzip2 169 208 20.6 11,784 5.6
gzip 113 154 36.9 39,527 12.8
mcf 77 99 28.6 3795 1.2

Table 2. PE file size performance measurements of SPEC2000 and instrumented
SPEC2000 applications.

The use of this API is as follows: At the initialization of a DLL one
allocates a TLS index, and saves that index in a variable local to the
DLL. When a process or a thread attaches the DLL, the DLL allocates
the memory needed for the actual TLS variable, and uses the TlsSet-
Value to store a pointer to the memory allocated. When the DLL is to
access the TLS variable, it first calls the TlsGetValue API function to
retrieve a pointer to the thread’s copy of the variable, and accesses that
variable.

We use this TLS allocation and management scheme in order to al-
locate and access the private stack. In order to use this scheme we
needed to instrument the DLL in a way that the memory allocation
functions would be called when the DLL is loaded and when processes
attach the DLL. We found a very simple way to implement this func-
tionality. We wrote a DLL that implements only the TLS and memory
allocation functions, and the private stack management functions. We
add the stack management functions of this DLL to the Import Direc-
tory of the instrumented DLL — a Data Directory describing the DLLs
used by an application or a DLL. This causes the operating system to
call our DLL’s initialization and memory allocation functions when the
instrumented DLL is loaded or when a process or a thread attaches to
it.

236

We enhanced our prototype to use our private stack allocation and
management DLL. We developed a vulnerable DLL and a multithreaded
application that uses that DLL. We tested that threads may exploit
the DLL’s vulnerability. Then we instrumented the DLL, and tested
the correct operation of the multi-threaded application under controlled
race conditions. Finally we caused the multi-threaded application to
exploit the vulnerability of the DLL. Our stack-smashing detection code
detected the exploit.

7. EVALUATION
7.1 Performance

Instrumenting an application, especially by adding code to all program
functions, results in some performance degradation. This performance
degradation is caused by several factors: (i) The added code that needs
to be run. (ii) The larger address space that may change the paging
performance for the program. (iii) The change of memory locations in
the program that results in a change of the cache performance.

Since the performance penalty is a result of multiple program and sys-
tem parameters, we decided to evaluate the performance of whole instru-
mented programs rather than measure micro-benchmarks. To do this, we
instrumented several SPECINT applications from the SPEC2000 suite
[SPE0O] using the instrumentation method for handling multi-threaded
applications (even though all the applications were simple Win32 appli-
cations). This evaluation results in a worst case measurement:

s The performance penalty of the multi-threaded instrumentation
code is the highest due to the TLS variable accessing sequence.

» The SPEC2000 applications are in general number-crunching ap-
plications, designed to benchmark compilers and CPUs. These
application are much more demanding than the usual applications
used by end-users of the Win32 environment.

We ran the original and instrumented programs on a 2GHz Pentium
4 with 256 MB RAM and measured their average run time. We verified
that the instrumented code produced the same output as the standard
un-instrumented code. The measured performance penalty was less than
8% for the SPEC2000 applications we measured (see Tables 1 and 2 for
details), and the increase in program size was 20-37%. We consider
these results very positive: an 8% slowdown most likely will not be
noticeable in an interactive program. Table 2 also shows the size of the
intermediate IDA-Pro listing file, which can grow quite large, and the
instrumentation time, which is roughly proportional to the size of listing

Install-time Vaccination of Windows Ezxecutables ... 237

file. Note that our focus was on demonstrating a working prototype, so
we did not make any effort to reduce the instrumentation time. We
believe that the instrumenting tool can be greatly optimized through
the use of better data structures.

7.2 Limitations of the approach

We can identify two limitations caused by the fact that we instrument
a binary executable file, rather than its loaded image.

1 Known Un-handled Functions: As noted in Section 2.5, we do not
instrument functions that use indirect jump instructions. Thus,
our tool does not defend against attacks that exploit vulnerabilities
in these functions.

2 Unknown Un-handled Functions: The function discovery process
may miss functions, for example functions called by indirect calls
such as function call tables. Vulnerabilities in such functions are
not defended by our defense mechanism.

The first limitation can be addressed by introducing techniques of
jump table discovery, which will reduce the number of un-handled func-
tions. The second limitation can be handled at run time, for example by
checking that the destination of an indirect call is indeed instrumented.
These improvements are left for future work.

Finally, we need to test our tool on more Win32 applications and
DLLs, and validate its success in defending against more real exploits.

8. ALTERNATIVE APPROACHES AND
TOOLS

Developer tools. Probably the most influential anti-stack-smashing
tool is StackGuard. StackGuard [CPM™98] is a compiler enhancement,
that equips the generated binary code with facilities that can detect
a stack smashing attack. StackGuard works by having each function’s
entry code place a per-run constant, so called a canary, on the stack.
The function’s exit code verifies the canary’s existence. The assumption
is that a buffer overflow which overwrites the return address would also
overwrite the canary. StackGuard has been commercialized by Immunix
[ImmO03] and has been used to produce a full hardened Unix system. A
similar compiler option is now supplied as a standard feature in Microsoft
Visual C++ .NET compilers [Mic01],[HLO02].

StackShield [Sta00] is another GNU compiler enhancement. In Stack-
Shield, the attack detection is based on tracking changes of the actual
return address on the stack. Each function’s return address is recorded

238

in a private stack upon function entry, and the function’s exit code ver-
ifies that the return address has not changed.

Another tool that inserts instrumentation at compile time is Point-
Guard [CBJWO03] (which encrypts pointers to code). Static source code
analysis techniques have also been developed to detect software vul-
nerabilities that may be exploited by stack smashing attacks [GO98],
‘[DRS01], [EL02], [WFBAOO).

User tools. A user tool, implemented as a Linux patch, prevents
stack smashing exploits by setting the stack memory pages to be non-
executable [Sol].

Libsafe [BSTO0] is a run time attack detection mechanism that can
discover stack smashing attacks against standard library functions. It
is implemented as a dynamically loaded library that intercepts calls to
known vulnerable library functions, and redirects them to a safe imple-
mentation of these functions.

Libverify [BSTO00] is a Unix-based attack detection technique similar
to StackShield, but in which the attack detection code is embodied into a
copy of the executable image, which is created on the heap at load time.
However, the authors only handled the simplest case (single threaded
programs, no DLLs).

Recently, a technique based on randomized instruction set emulation,
employed at run time, has shown success in detecting various code injec-
tion attacks, including stack smashing attacks [KKPO03],[BAF103]. This
technique has a high performance penalty because of the emulation over-
head.

Comparison with the work of Prasad and Chiueh. The work
closest to ours was recently suggested, independently, by [PC03|. They
too add anti-stack-smashing instrumentation into Windows binary files.
However, their work leaves several key issues unresolved. Most notably,
they only handle simple Win32 executables (single thread programs, no
DLLs). Furthermore, they demonstrated that their approach success-
fully vaccinates a test program with a deliberate buffer overflow, rather
than a live exploit. Finally, they use the Detours library [HB99], which
slightly limits the class of functions they are able to instrument, and
requires load-time activation of the instrumentation. Beyond the work
of [PCO03], our work has the following features:
e We are able to instrument DLLs.

e We handle multi-threaded applications.

e We handle DLLs called by multi-threaded applications.

Install-time Vaccination of Windows Executables ... 239

e We can instrument a wider set of functions, including functions
with jumps into the middle of entry/exit code, and very short
functions. This is because we wrote our own instrumentation code
rather than using Detours.

e We demonstrated that our approach protects against a real buffer
overflow vulnerability found in the wild.

9. CONCLUSIONS

We presented an install-time vaccination technique as a countermea-
sure against stack-smashing-attacks on the proprietary Microsoft Win-
dows OS. Our technique enables software users to be protected without
access to the source-code. We developed a prototype that successfully
instruments simple Win32 applications, DLLs, multi-threaded applica-
tions, and DLLs used by multi-threaded applications thus providing a
system-wide solution. We have shown that the prototype can defend
against real exploit code.

References

[BAF*03] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanovic,
and D. D. Zovi. Randomized instruction set emulation to disrupt bi-
nary code injection attacks. In Proc. 10th ACM Conf. Computer and
Communications Security (CCS), Washington, DC, 2003.

[BSTO00] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-time
defense against stack smashing attacks. In Proc. USENIX Annual Tech-
nical Conference, 2000.

[Bug03] Microsoft Windows RegEdit.exe registry key value buffer overflow vul-
nerability. Bugtraq id 7411, 16 April 2003. http://www.securityfocus.
com/bid/T411.

[CBJWO03] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Point-
Guard: Protecting pointers from buffer overflow vulnerabilities. In Proc.
12th USENIX Security Symposium. USENIX, 2003.

[CEO01] Cristina Cifuentes and Mike Van Emmerik. Recovery of jump table case
statements from binary code. Science of Computer Programming, 40(2-
3):171-188, 2001.

[CER02] CERT/cc statistics 1988-2001, 2002. http://www.cert.org/stats/.
[CER03a] CERT advisory CA-2003-16: Buffer overflow in Microsoft RPC, 17 July -
2003. http://www.cert.org/advisories/CA-2003-16.html.

[CERO3b] CERT advisory CA-2003-20: W32 /Blaster worm, 11 August 2003. http:
//www.cert.org/advisories/CA-2003-20.html.

[CPM198] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hin-
ton. StackGuard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In Proc. 7th USENIX Security Symposium, pages 6378,
San Antonio, Texas, January 1998.

240

[DRSO01]

[ELO2]

(GO9S

[HB9Y]
[HL02)
(IDA03]

(ImmO03)]
[KKPO3]

[LDO3]

[Mic01]

[PCO3]

[Ric02]

[So]]

[Spa88]
[SPE00]

[Sta00]
[WFBAOO]

[WKO03]

Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cleanness checking of string
manipulations in C programs via integer analysis. In Proc. 8th Interna-
tional Static Analysis Symposium (SAS), LNCS 2126, Paris, France, 2001.
Springer-Verlag.

David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1):42-51, 2002.

A. K. Ghosh and T. O’Connor. Analyzing programs for vulnerability to
buffer overrun attacks. In Proc. 21st NIST-NCSC National Information
Systems Security Conference, pages 274-382, 1998.

Galen Hunt and Doug Brubacher. Detours: Binary interception of Win32
functions. In Proc. 8rd USENIX NT Symposium, pages 135-144, 1999.
Michael Howard and David LeBlanc. Writing Secure Code. Microsoft
Press, 2nd edition, 2002.

The IDA Pro disassembler and debugger, v4.51, 2003. http://www.
datarescue.com/idabase/.

Immunix secured solutions, 2003. http://www.immunix.com.

Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering
code-injection attacks with instruction-set randomization. In Proc. 10th
ACM Conf. Computer and Communications Security (CCS), Washing-
ton, DC, 2003.

Cullen Linn and Saumya Debray. Obfuscation of executable code to im-
prove resistance to static disassembly. In Proc. 10th ACM Conf. Computer
and Communications Security (CCS), Washington, DC, 2003.

Microsoft Visual C++4 compiler options: /gs (control stack checking
calls). Online documentation, 2001. http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/vccore/html/ _core_.2f.
gs.asp.

Manish Prasad and Tzi-cker Chiueh. A binary rewriting defense against
stack based overflow attacks. In Proceedings of the USENIX 2003 Annual
Technical Conference, 2003.

Gerardo Richarte. Four different tricks to bypass StackShield and Stack-
Guard protection. Core Security Technologies, 2002. http://downloads.
securityfocus.com/library/StackGuard.pdf.

Solar Designer. Nonexecutable user stack. http://www.false.com/
security/linux-stack/.

Eugene H. Spafford. The Internet worm program: An analysis. Technical
Report CSD-TR-823, Purdue University, West Lafayette, IN 47907-2004,
1988.

SPEC CPU2000 V1.2. Standard Performance Evaluation Corporation,
2000. http://www.specbench.org/osg/cpu2000/.

Stackshield, 2000. http://www.angelfire.com/sk/stackshield.

David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A
first step towards automated detection of buffer overrun vulnerabilities.
In Proc. Network and Distributed System Security Symposium (NDSS),
pages 3-17, San Diego, CA, February 2000.

John Wilander and Mariam Kamkar. A comparison of publicly available
tools for dynamic buffer overflow prevention. In Proceedings of the 10th
Network and Distributed System Security Symposium (NDSS), pages 149
162, San Diego, California, February 2003.

