
DYNAMIC TYPING WITH DEPENDENT TYPES

Xinming Ou, Gang Tan, Yitzhak Mandelbaum and David Walker

Department of Computer Science
Princeton University
{xou,gtan,yitzhakm,dpw}@cs.princeton.edu

Abstract Dependent type systems are promising tools programmers can use to increase
the reliability and security of their programs. Unfortunately, dependently-typed
programming languages require programmers to annotate their programs with
many typing specifications to help guide the type checker. This paper shows
how to make the process of programming with dependent types more palatable
by defining a language in which programmers have fine-grained control over
the trade-off between the number of dependent typing annotations they must
place on programs and the degree of compile-time safety. More specifically,
certain program fragments are marked dependent, in which case the programmer
annotates them in detail and a dependent type checker verifies them at compile
time. Other fragments are marked simple, in which case they may be annotation-
free and dependent constraints are verified at run time.

1 Introduction

Dependent type systems are powerful tools that allow programmers to specify and
enforce rich data invariants and guarantee that dangerous or unwanted program be-
haviors never happen. Consequently, dependently-typed programming languages are
important tools in global computing environments where users must certify and check
deep properties of mobile programs.

While the theory of dependent types has been studied for several decades, re-
searchers have only recently begun to be able to integrate these rich specification
mechanisms into modem programming languages. The major stumbling block in this
enterprise is how to avoid a design in which programmers must place so many typing
annotations on their programs that the dependent types become more trouble than they
are worth. In other words, how do we avoid a situation in which programmers spend
so much time writing specifications to guide the type checker that they cannot make
any progress coding up the computation they wish to execute?

The main solution to this problem has been to explicitly avoid any attempt at full
verification of program correctness and to instead focus on verification of safety prop-
erties in limited but important domains. Hence, Xi and Pfenning [12] and Zenger [13]
have focused on integer reasoning to check the safety of array-based code and also on

438

simple symbolic constraints for checking properties of data types. Similarly, in their
language Vault [5], DeLine and Fahndrich use a form of linear type together with de-
pendency to verify properties of state and improve the robustness of Windows device
drivers.

These projects have been very successful, but the annotations required by program-
ming languages involving dependent types can still be a burden to programmers, par-
ticularly in functional languages, where programmers are accustomed to using com-
plete type reconstruction algorithms. For instance, one set of benchmarks analyzed
by Xi and Pfenning indicates that programmers can often expect that 10-20 percent of
their code will be typing annotations1.

In order to encourage programmers to use dependent specifications in their pro-
grams, we propose a language design and type system that allows programmers to add
dependent specifications to program fragments bit by bit. More specifically, certain
program components are marked dependent, in which case the type checker verifies
statically that the programmer has properly maintained dependent typing annotations.
Other portions of the program are marked simple and in these sections, programmers
are free to write code as they would in any ordinary simply-typed programming lan-
guage. When control passes between dependent and simple fragments, data flowing
from simply-typed code into dependently-typed code is checked dynamically to en-
sure that the dependent invariants hold.

This strategy allows programmers to employ a pay-as-you-go approach when it
comes to using dependent types. For instance, when first prototyping their system,
programmers may avoid dependent types since their invariants and code structure may
be in greater flux at that time or they simply need to get the project off the ground as
quickly as possible. Later, they may add dependent types piece by piece until they
are satisfied with the level of static verification. More generally, our strategy allows
programmers to achieve better compile-time safety assurance in a gradual and type-
safe way.

The main contributions of our paper are the following: First, we formalize a source-
level dependently-typed functional language with a syntax-directed type checking al-
gorithm. The language admits programs that freely mix both dependently-typed and
simply-typed program fragments.

Second, we formalize the procedure for inserting coercions between higher-order
dependently-typed and simply-typed code sections and the generation of intermediate-
language programs. In these intermediate-language programs, all dynamic checks
are explicit and the code is completely dependently typed. We have proven that the
translation always produces wellformed dependently-typed code. In other words, we
formalize the first stage of a certifying compiler for our language. Our translation
is also total under an admissibility requirement on the dependently-typed interface.
Any simply-typed code fragment can be linked with a dependently-typed fragment
that satisfies this requirement, and the compiler is able to insert sufficient coercions to
guarantee safety at run-time.

1Table 1 from Xi and Pfenning [12] shows ratios of total lines of type annotations/lines of code for eight
array-based benchmarks to be 50/281, 2/33, 3/37, 10/50, 9/81, 40/200, 10/45 and 3/18.

439

Finally, we extend our system with references. We ensure that references and de-
pendency interact safely and prove the correctness of the strategy for mixing simply-
typed and dependently-typed code. Proof outlines for all our theorems can be found
in our companion technical report [9].

2 Language Syntax and Overview
At the core of our system is a dependently-typed lambda calculus with recursive

functions, pairs and a set of pre-defined constant symbols. At a minimum, the con-
stants must include booleans true and false as well as conjunction negation

and equality(=). We use to denote the function fix
when does not appear free in and let in to denote

The language of types includes a collection of base types which must include
boolean type and unit type, but may also include other types (like integer) that are
important for the application under consideration. Function types have the form

and the function argument, may appear in If does not appear in
we abbreviate the function type as Note that unlike much recent work
on dependent types for practical programming languages, here is a valid run-time
object rather than a purely compile-time index. The reason for this choice is that the
compiler will need to generate run-time tests based on types. If the types contain
constraints involving abstract compile-time only indices, generation of the run-time
tests may be impossible.

To specify interesting properties of values programmers can use set types with the
form where is a boolean term involving Intuitively, the type contains
all values with base type such that is equivalent to true. We use as
a shorthand for the set type when does not appear free in The
essential type of is defined below.

The type-checking algorithm for our language, like other dependently-typed lan-
guages, involves deciding equivalence of expressions that appear in types. Therefore,
in order for our type system to be both sound and tractable, we cannot allow just
any lambda calculus term to appear inside types. In particular, allowing recursive
functions inside types makes equivalence decision undecidable, and allowing effect-
ful operations such as access to mutable storage within types makes the type system
unsound. To avoid these difficulties, we categorize a subset of the expressions as pure
terms. For the purposes of this paper, we limit the pure terms to variables whose essen-
tial type is a base type, constants with simple type and application
of pure terms to pure terms. Only a pure term can appear in a valid type. Note this ef-
fectively limits dependent functions to the form where A pure

2The typing annotations and are unnecessary in these cases.
3Non-dependent function can still have arbitrary domain type.

440

term in our system is also a valid run-time expression, as opposed to a compile-time
only object.

As an example of the basic elements of the language, consider the following typing
context, which gives types to a collection of operations for manipulating integers (type
int) and integer vectors (type intvec).

The newvec takes a natural number n and returns a new integer vector whose length
is equal to n, as specified by the set type. The subscript operation sub takes two
arguments: a natural number i and an integer vector, and returns the component of the
vector at index i. Its type requires i must be within the vector’s bound.

Simple and Dependent Typing. To allow programmers to control the precision
of the type checker for the language, we add three special commands to the surface
language:

Informally, means expression is only simply well-typed and there is
no sufficient annotation for statically verifying all dependent constraints. The type
checker must insert dynamic checks to ensure dependent constraints when control
passes to a dependent section. For instance, suppose is a variable that stands for
a function defined in a dependently-typed section that requires its argument to have
set type At application site the type checker must
verify is an integer, but may not be able to verify that it is nonnegative. To guarantee
run-time safety, the compiler automatically inserts a dynamic check for when
it cannot verify this fact statically. At higher types, these simple checks become more
general coercions from data of one type to another.

On the other hand, directs the type checker to verify is well-typed
taking all of the dependent constraints into consideration. If the type checker cannot
verify all dependent constraints statically, it fails and alerts the user. We also provide
a convenient utility function that checks at run time that expression
produces a value with type

Together these commands allow users to tightly control the trade-off between the
degree of compile-time guarantee and the ease of programming. The fewer simple
or assert commands, the greater the compile-time guarantee, although the greater the
burden to the programmer in terms of type annotations. Also, programmers have good
control over where potential failures may happen — they can only occur inside a
simple scope or at an assert expression.

For instance, consider the following function that computes dot-product:

441

Function dotprod takes two vectors as arguments and returns the sum of multiplica-
tion of corresponding components of the vectors. The entire function is defined within
a simple scope so programmers need not add any typing annotations. However, the
cost is that the type checker infers only that i is some integer and v1 and v2 are inte-
ger vectors. Without information concerning the length of the vectors and size of the
integer, the checker cannot verify that the sub operations are in bound. As a result,
the compiler will insert dynamic checks at these points.

As a matter of fact, without these checks the above program would crash if the
length of vec1 is greater than that of vec2! To prevent clients of the dotprod func-
tion from calling it with such illegal arguments, a programmer can give dotprod a
dependent type while leaving the body of the function simply-typed:

The advantage of adding this typing annotation is that the programmer has formally
documented the condition for correct use of the dotprod function. Now the type
checker has to prove that the length of vec1 is equal to that of vec2. If this is not the
case the error will be detected at compile time.

Even though the compiler can verify the function is called with valid arguments, it
still needs to insert run-time checks for the vector accesses because they are inside a
simple scope. To add an extra degree of compile-time confidence, the programmer can
verify the function body by placing it completely in the dependent scope and adding
the appropriate loop invariant annotation as shown below.

With the new typing annotations and some simple integer arithmetic reasoning, our
type checker can verify that all the dependent function applications within the function
body are well-typed. Once the above code type checks, there can be no failure at run
time.

As illustrated by the example, the compiler has the freedom to insert dynamic
checks to explicitly verify dependent constraints at run-time. While the kind of run-

442

time checks in this example are simple, one has to be careful if the objects passed
between dependent and simple sections involve functions, because the dependent con-
straints may appear at both covariant and contravariant positions. We formalize the
process of inserting dynamic checks in the type coercion judgment discussed in the
next section.

3 Formal Language Semantics

We give a formal semantics to our language in two main steps. First, we de-
fine a type system for our internal dependently-typed language which contains no
dependent{}, simple{} or assert commands. Second, we simultaneously define a
syntax-directed type system and translation from the surface programming language
into the internal language. We have proven that the translation always generates well-
typed internal language terms. Since the latter proof is constructive, our translation
always generates expressions with sufficient information for an intermediate language
type checker to verify type correctness.

Internal Language Typing. The judgment presented in Figure 1 de-
fines the type system for the internal language. The context maps variables to types
and maps constants to their types. Many of the rules are standard so we only high-
light a few. First, the fail expression, which has not been mentioned before is used
to safely terminate programs and may be given any type. Dependent function intro-
duction is standard, but there are two elimination rules. In the first case, the function
type may be dependent, so the argument must be a pure term (judged by
since only pure terms may appear inside types. In the second case, the argument may
be impure so the function must have non-dependent type. When type checking an

443

if statement, the primary argument of the if must be a pure boolean term and this
argument (or its negation) is added to the context when checking each branch4.

The type system has a selfification rule (TSelf), which is inspired by dependent
type systems developed to reason about modules [7]. The rule applies a “selfification”
function, which returns the most precise possible type for the term, its singleton type.
For instance, though might have type int in the context, produces the
type the type of values exactly equal to Also, the constant +
might have type but through selfification, it will be given the
more precise type the type of functions
that add their arguments. Without selfification, the type system would be too weak to
do any sophisticated reasoning about variables and values. The selfification function
is defined below. Notice that the definition is only upon types that a pure term may
have.

Finally, the type system includes a notion of subtyping, where all reasoning about
dependent constraints occur. The technical report [9] gives the complete subtyping
rules. The interesting case is the subtype relation between set types. As stated below,

is a subtype of provided that is true under
assumptions in Term stands for the implication between two boolean
terms.

Here, is a logical entailment judgment that infers truth about the application
domains. For example it may infer that We do not want to
limit our language to a particular set of application domains so we leave this judgment
unspecified but it must obey the axioms of standard classical logic. A precise set
of requirements on the logical entailment judgment may be found in the technical
report [9].

Surface Language Typing and Translation. We give a formal semantics to
the surface language via a type-directed translation into the internal language. The
translation has the form where is a surface language expression and

is the resulting internal language expression with type is a type checking mode
which is either dep or sim. In mode dep every dependent constraint must be statically
verified, whereas in mode sim if the type checker cannot infer dependent constraints
statically it will generate dynamic checks. It is important to note that this judgment is
a syntax-directed function with and as inputs and and uniquely determined
outputs (if the translation succeeds). In other words, the rules in Figure 2 defines the
type checking and translation algorithm for the surface language.

4 is the same as except that it also returns the simple type of the pure term

444

445

Constants and variables are given singleton types if they are pure via the selfifica-
tion function (ATConstSelf and ATVarSelf), but they are given less precise types oth-
erwise (ATConst and ATVar). To translate a function definition (ATFun), the function
body is first translated into with type Since this type may not match the an-
notated result type the type coercion judgment is called to coerce to possibly
inserting run-time checks if the type checking mode is sim.

The type coercion judgment has the form It is a function,
which given type checking mode context expression with type and a target
type generates a new expression with type The output expression is equivalent
to the input expression aside from the possible presence of run-time checks. We will
discuss the details of this judgment in a moment.

There are two function application rules, distinguished based on whether the argu-
ment expression is judged pure or not. If it is pure, rule ATAppPure applies and the
argument expression is substituted into the result type. If the argument expression is
impure, rule ATAppImpure first coerces the function expression that has a potentially
dependent type to an expression that has a non-dependent function type

returns the type with all occurrences of variable removed. It is
defined on set types as follows and recursively defined according to the type structures
for the other types.

Note that in both application rules the argument expression’s type may not match
the function’s argument type so it is coerced to an expression with the right type.

In type checking an if expression, the two branches may be given different types.
So they are coerced to a common type (ATIfPure). Informally, recur-
sively applies disjunction operation on boolean expressions in set types that appear in
covariant positions and applies conjunction operation on those on contravariant posi-
tions. For example,

and

The precise definition for can be found in the technical report [9].
The rules for checking and translating and expressions

simply switch the type checking mode from sim to dep and vice versa. The rule for
uses the type coercion judgment to coerce expression to type Note

that the coercion is called with sim mode to allow insertion of run-time checks.

Type coercion judgment. The complete rules for the type coercion judgment
can be found in Figure 3. When the source type is a subtype of the target type, no
conversion is necessary (CSub). The remaining coercion rules implicitly assume the
subtype relation does not hold, hence dynamic checks must be inserted at appropriate
places. Note that those rules require the checking mode be sim; when called with
mode dep the coercion judgment is just the subtyping judgment and the type checker
is designed to signal a compile-time error when it cannot statically prove the source is
a subtype of the target.

446

Coercion for the base-type case (CBase) is straightforward. An if expression en-
sures that the invariant expressed by the target set type holds. Otherwise a runtime
failure will occur. With the help of the logical entailment judgment, our type system
is able to infer that the resulting if expression has the set type.

In general, one cannot directly check at run-time that a function’s code precisely
obeys some behavioral specification expressed by a dependent type. What we can
do is ensure that every time the function is called, the function’s argument meets the
dependent type’s requirement, and its body produces a value that satisfies the promised
result type. This strategy is sufficient for ensuring run-time safety. The coercion rules
for functions are designed to coerce a function from one type to a function with another
type, deferring checks on arguments and results until the function is called.

There are three coercion rules for function types. In all cases the expression that
generates the function is evaluated first to preserve the order of effects. Next a new
function is constructed with checks on argument and result inserted when necessary. In
the case where the new argument type is a subtype of the old one (CFunCo), we only
need to convert the function body to the appropriate result type. Otherwise checks
must be inserted to make sure the argument has the type the old function expects.
This can be done by recursively calling the coercion judgment on the argument to
convert it to a term with type When the function’s type is not dependent, it can
receive as an argument (CFunContNonDep). But when it is a dependent function,

447

it cannot receive as an argument since contains dynamic checks and is impure5.
Consequently rule CFunContDep uses an if statement to directly check the constraint
on the dependent argument This is possible because must be a pure term and
hence has a base type. If the check succeeds, is directly passed to the function. For
all the three cases, our type system is able to prove the resulting expression has the
target function type.

4 Mutable References
The addition of mutable references to our language presents a significant chal-

lenge. When sharing a reference between simple and dependent code, it is natural to
wish to assign the reference a simple type in the simple code and a dependent type in
the dependent code, for example int ref and {x:int|x >= 0} ref. However, the
inequivalence of these types can lead to unsoundness. Therefore, in our surface lan-
guage, we define two classes of references, ref and dref. The former is invariant
in its typing, thereby disallowing the transfer of such references between one piece
of code and another unless the supplied and assumed types are equal. The latter is
more flexible in its typing, but is dynamically checked according to the following two
principles: First, the recipient of such a reference is responsible for writing data that
maintains the invariants of the reference’s donor. Second, the recipient must protect
itself by ensuring that data it reads indeed respects its own invariants.

In the internal language, the dref is implemented as a pair of functions:

Intuitively, the first function reads an underlying reference and coerces the value to
the right type; the second one coerces the input value to the type of the underlying
reference and writes the coerced value into it.

We define a type translation to translate surface language types to internal
language types. It recursively traverses the type structure of and translates any ap-
pearance of dynamic references as shown above.

The coercion rules for references allow translation from an expression of ref to
an expression of dref, or from dref to dref. But there is no coercion rule
from dref to ref, because an expression with dref will potentially incur runtime
failures, while an expression with type ref will not. Further details of our solution
can be found in our companion technical report [9].

5 Language Properties
In this section, we present theorems that state formal properties of our language.

We leave details of the proofs and precise definitions to the technical report [9]. First,
we proved type safety for the internal language based on a standard dynamic semantics
with mutable references:

5We also cannot simply write let in since the effects in do not allow the type system to
maintain the proper dependency between and in this case.

448

Theorem 1 (Type safety) If then won’t get stuck in evaluation.

The proof is by induction on the length of execution sequence, using standard progress
and preservation theorems.

The soundness of the type-directed translation for the surface language is formal-
ized as the following theorem.

Theorem 2 (Soundness of translation of surface language) If
then

is the expression with every type appearing in it replaced by and

For all source programs that are simply well-typed (judged by if the
dependent interface satisfies an admissibility requirement the translation
is total in sim mode:

Theorem 3 (Completeness of translation) Assuming and if
then there exist and such that

Informally, states that in unchecked reference type can only ap-
pear in covariant positions. The reason for this restriction is that we cannot coerce a
checked reference to an unchecked one.

6 Related Work
In this paper, we have shown how to include fragments of simply-typed code within

the context of a dependently-typed language. In the past, many researchers have ex-
amined techniques for including uni-typed code (code with one type such as Scheme
code) within the context of a simply-typed language by means of soft typing ([3, 2, 4]).
Soft typing infers simple or polymorphic types for programs but not general dependent
types.

Necula et al. [8] have developed a soft typing system for C, with the goal of ensur-
ing that C programs do not contain memory errors. Necula et al. focus on the problem
of inferring the status of C pointers in the presence of casts and pointer arithmetic,
which are either safe (well-typed and requiring no checks), seq (well-typed and re-
quiring bounds checking) or dynamic (about which nothing is known). In contrast, we
always know the simple type of an object that is pointed to, but may not know about
its dependent refinements.

When dependent types mix with references, one has to be very careful to ensure
the system remains sound. Xi and Pfenning [12] shows how to maintain soundness
by using singleton types, and restricting the language of indices that appear in the
singleton types. Our approach is similar in that we have designated a subset of terms as
pure terms, but different in that we accommodate true dependent types. However, the
distinction is minor, and the main contribution of this work is the interaction between
the dependently-typed world and the simply-typed world.

Walker [11] shows how to compile a simply-typed lambda calculus into a dependently-
typed intermediate language that enforces safety policies specified by simple state ma-

449

chines. However, he does not consider mixing a general dependently-typed language
with a simply-typed language or the problems concerning mutable references.

In earlier work, Abadi et al. [1] showed how to add a special type dynamic to
represent values of completely unknown type and a typecase operation to the simply-
typed lambda calculus. Abadi et al. use type dynamic when the simple static type of
data is unknown, such as when accessing objects from persistent storage or exchanging
data with other programs. Thatte [10] demonstrates how to relieve the programmer
from having to explicitly write Abadi et al.’s typecase operations themselves by having
the compiler automatically insert them as we do. In contrast to our work, Thatte does
not consider dependent types or how to instrument programs with mutable references.

In contract checking systems such as Findler and Felleisen’s work [6], program-
mers can place assertions at well-defined program points, such as procedure entries
and exits. Findler and Felleisen have specifically looked at how to enforce properties
of higher-order code dynamically by wrapping functions to verify function inputs con-
form to function expectations and function outputs satisfy promised invariants. Our
strategy for handling higher-order code is similar. However, Finder and Felleisen’s
contracts enforce all properties dynamically whereas we show how to blend dynamic
mechanisms with static verification.

Acknowledgments. We are grateful to Daniel Wang for his comments on an ear-
lier version of this work. ARDA grant NBCHC030106, and NSF grants CCR-0238328,
and CCR-0306313 have provided support for this research. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of ARDA or the NSF.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

Martín Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon Plotkin. Dynamic typing in
a statically typed language. ACM Transactions on Programming Languages and Systems,
13(2):237–268, April 1991.

Alex Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with conditional
types. In Twenty-First ACM Symposium on Principles of Programming Languages, pages
163–173, January 1994.

R. Cartwright and M. Fagan. Soft typing. In ACM Conference on Programming Language
Design and Implementation, pages 278–292, 1991.

R. Cartwright and M. Fagan. A practical soft type system for Scheme. ACM transactions
on programming languages and systems, 19(1):87-152, January 1997.

Rob Deline and Manuel Fähndrich. Enforcing high-level protocols in low-level software.
In ACM Conference on Programming Language Design and Implementation, pages 59–
69, Snowbird, Utah, June 2001. ACM Press.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
ACM International Conference on Functional Programming, pages 48–59, Pittsburgh,
October 2002. ACM Press.

Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In Twenty-First ACM Symposium on Principles of Programming Languages,
pages 123–137, Portland, OR, January 1994.

450

[8]

[9]

[10]

[11]

[12]

[13]

George C. Necula, Scott McPeak, and Westley Weimer. Ccured: Type-safe retrofitting
of legacy code. In ACM Symposium on Principles of Programming Languages, London,
January 2002. ACM Press.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with
dependent types. Technical Report TR-695-04, Department of Computer Science, Prince-
ton University, 2004.

S. Thatte. Quasi-static typing. In Seventeenth ACM Symposium on Principles of Pro-
gramming Languages, pages 367–381, January 1990.

David Walker. A type system for expressive security policies. In Twenty-Seventh ACM
Symposium on Principles of Programming Languages, pages 254–267, Boston, January
2000.

Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent
types. In ACM Conference on Programming Language Design and Implementation, pages
249–257, Montreal, June 1998.

Christoph Zenger. Indexed types. In Theoretical Computer Science, volume 187, pages
147–165. Elsevier, November 1997.

