
PROTOTYPING PROOF CARRYING CODE

Martin Wildmoser‚ Tobias Nipkow
Institut für Informatik‚ Technische Universität München

wildmosm@in.tum.de‚ nipkow@in.tum.de

Gerwin Klein
National ICT Australia‚ Sydney

gerwin.klein@nicta.com.au

Sebastian Nanz *
Yale University‚ Department of Computer Science

nanz@cs.yale.edu

Abstract We introduce a generic framework for proof carrying code‚ developed and me-
chanically verified in Isabelle/HOL. The framework defines and proves sound
a verification condition generator with minimal assumptions on the underlying
programming language‚ safety policy‚ and safety logic. We demonstrate its us-
ability for prototyping proof carrying code systems by instantiating it to a simple
assembly language with procedures and a safety policy for arithmetic overflow.

1 Introduction
Proof Carrying Code (PCC)‚ first proposed by Necula and Lee [11] [12]‚ is a scheme
for executing untrusted code safely. Fig. 1 shows the architecture of a PCC system.
The code producer is on the left‚ the code receiver on the right. Both use a verification
condition generator (VCG) that relies on annotations in the program to reduce the
program to a logic formula. The logic used in annotations and proof is the safety
logic‚ the property that is shown about the program is the safety policy.
It is the responsibility of the producer to generate the annotations and a proof for the
formula the VCG constructs. They are then transmitted to the code receiver who again
runs the VCG and uses a proof checker to verify that the proof indeed fits the formula
produced by the VCG. Proof checking is much simpler and more efficient than proof
searching. The framework for PCC systems we present in this paper concentrates on
the safety critical receiver side. It has the following two main purposes and contribu-
tions: safety of the system and prototyping new safety logics. Proof checker‚ VCG‚

* supported in part by NSF grant CCR-0208618.

334

and safety logic constitute the trusted code base of the PCC system. Proof checkers
are relatively small standard components of many logical frameworks. The VCG on
the other hand is large (several thousand lines of C code in current PCC systems [6]
[13]) and complex (it handles annotations‚ produces complex formulae‚ and contains
parts of the safety policy). Our framework contains a VCG with a formal proof of
safety‚ mechanically checked in the theorem prover Isabelle/HOL [16]. The VCG is
not restricted to any particular machine language‚ safety policy‚ or safety logic. Addi-
tionally to the correctness of VCG and proof checker‚ we need the safety logic to be
sound. As a recent bug [9] in the SpecialJ system [6] shows‚ this is not trivial. It is
not even immediately clear‚ what exactly a safety logic must satisfy to be sound. Our
framework makes the underlying assumptions on machine‚ policy‚ and logic explicit.
It also makes a simple‚ formally clear statement what it means for a safety logic to be
sound: if the formula produced by the VCG is derivable in the safety logic‚ the pro-
gram must be safe according to the safety policy. The framework reduces the workload
for showing soundness of a safety logic by giving sufficient conditions. Since the VCG
is directly executable and the framework reasonably easy to instantiate‚ it provides a
good platform for trying out‚ tuning‚ and analysing different safety policies and logics
for different target platforms.
Our approach is different from other work in the formal foundation of PCC by Appel
et al. [1] [2] or Hamid et al. [7] in that it works with an explicit‚ executable‚ and
verified VCG and not directly on the machine semantics or a type system. The focus
of the framework is on aiding logical foundations of PCC as the one started by Necula
and Schneck [14] and on encouraging the analysis of safety properties other than the
much researched type and memory safety. Necula and Schneck [15] also present a
framework for VCGs. They work with a small‚ trusted core VCG that can be extended
by optimised plugins. We see our work as complementary to this development: the
core VCG could be proven sound within our framework‚ the technique of using safe‚
optimised extensions can then be applied to that sound core. On a broader scale‚ our
approach is related to other techniques that impose safety policies on machine code
statically: Typed Assembly Language [10]‚ Mobile Ressource Guarantees [3] or Java
Bytecode Verification [8].
There are four levels in our PCC systems. The first level‚ the PCC framework (§2)‚
provides generic features and minimal assumptions. The second level is the platform
(§3). Platform designers can provide a concrete instantiation of the framework with
respect to a specific programming language‚ safety policy‚ and safety logic. The third
level is the code producer who can now write and certify programs based on the in-

335

stantiated framework. We show this by certifying a concrete program in §4. Finally,
also in §4, we show how code receivers can check certified code within the framework.
The formalization in this paper was carried out in Isabelle/HOL, so we inherit some of
Isabelle’s syntax. Most of the notation is familiar from functional programming and
standard mathematics, we only mention a few peculiarities. Consing an element x to
a list xs is written as x#xs. Infix @ is the append operator, and xs ! n selects the n-th
element from the list xs. The type T1 T2 is the space of total functions from T1 to
T2, and we frequently use the polymorphic option type datatype option = None
Some to simulate partiality in HOL, a logic of total functions: None stands for an
undefined value, Some x for a defined value x.

2 Framework Definition
The components of a PCC system shown in Fig. 1 depend on three factors: program-
ming language‚ safety policy‚ and safety logic. The programming language defines
syntax and semantics for programs‚ the safety policy specifies the safety conditions
programs must satisfy‚ and the safety logic provides a formal notation and a deriva-
tion calculus for proving these conditions. Our framework consists of skeletons and
requirements for these three components and uses them to define and verify a generic
VCG.

2.1 Program Semantics
Our framework expects the semantics of the underlying programming language in
form of a function set which relates
runtime states of a program to their immediate successor states. States are tuples (p,m)
of type where p denotes the current position in the control flow graph
and m is the machine’s memory, e.g., heap, stack and registers. Since and

are type variables the representation of programs, positions and memory can be
instantiated as one likes.

2.2 Safety Logic
To specify and prove properties about programs we use a safety logic.

Every structure having constants for the truth values and operators for
conjunction and implication judgements for validity and provability
of formulae can be employed as a safety logic as long as it respects the assumptions
below. These assumptions only concern the semantics of the logical connectives. How
formulae or their proofs look like and what they mean‚ is left open. This depends on
how and get instantiated.

336

2.3 Safety Policy
Our framework expects the safety policy to be defined by means of the safety logic. We
assume that for each position p in a program a safety formula expresses
the conditions we want to hold whenever we reach p at runtime.

In addition we assume that a safety logic formula characterises all states under
which a program can be started.

Now we can give a generic notion of safety for programs: A program is safe, if all
states (p,m) it reaches from some initial state are safe. That is (p,m) satisfies the
safety formula p, which the platform dedicates to position p.

2.4 The Verification Condition Generator
The VCG is the core of our PCC framework. It takes a program and generates a
formula in the safety logic. If this formula is provable, then the program is safe at
runtime, i.e., holds. The structure of the is determined by the program’s
control flow graph, which is a directed graph. Nodes denote program positions and can
be marked with annotations. Edges point to successor positions and are marked with
branch conditions. Fig. 2 shows a control flow graph. It can be seen as an abstraction
of the assembly program E, which compares two variables X and Y and eventually sets
X to the maximum of these two.

Parameters. To extract parts of the control flow graph and to express the seman-
tics of programs by means of safety logic formulae and manipulations on these‚ our
framework requires various parameter functions:

337

With anF we access the annotations; returns Some A if position p in is
annotated with A, otherwise None. Function succsF yields the edges of the control
flow graph. Given a position p in a program the expression yields a list
of pairs where is a possible successor of p and B is the branch condition for
the edge from p to The branch condition B is a safety logic formula that charac-
terises the situations when is accessible from p. For example if jumps from p to
either or depending on a condition C, then should return something

like To reflect the semantics within the safety logic we use wpF,
a function for computing (weakest) preconditions. The formula is ex-
pected to characterises those states (p,m) that have successor states satisfying
Q. The function domC is expected to yield the code domain of a program; this is a list
of all positions with instructions. Finally ipc is used to determine the initial program
counter.

Definition. The vcg constructs the verification condition out of so called inductive
safety formulae which we generate individually for each position p in a
program We call a state (p,m) inductively safe if it satisfies the inductive safety for-
mula for p, i.e., Fig. 3 defines The wellformedness

constraint ensures that every loop in has at least one annotation; otherwise the
recursion of isafeF would not terminate.
When p lies outside the code domain we must never reach it at runtime. We
express this formally by returning the unsatisfiable formula in this case. For
positions p within the code domain the inductive safety formula guarantees the safety
formula In addition, if there is an annotation A at p, we conjoin the safety
formula with A. For example in program E from Fig. 2, we have the annotation at

Hence, we obtain for
If p is not annotated, we take an successor positions together with their branch con-
ditions B and recursively compute the inductive safety formulae Using
the wpF operator we construct a precondition If this pre-
condition holds for a state (p,m) with some successor then holds
for By constructing implications of the form

we design the inductive safety formula such that all states satisfying
the branch condition B for a particular successor also have to satisfy the precondi-
tion above. These implications are constructed for all pairs we get from succsF

For example the positions and are not annotated in E. Below are their in-

338

ductive safety formulae‚ where safeF‚ wpF‚ branch conditions and annotations are not
expanded.

Executing a program with an inductively safe state (p,m) produces a trace of in-
ductively safe states until we reach an annotated position The state under
which we reach this position, is safe and satisfies the annotation. After this state the
execution could become unsafe. However, this does not happen if all successor states
of are again inductively safe. This observation guides the construction of the
verification condition which we show in Fig. 4. The verification condition vcg

demands two things: First, all initial states must satisfy the first inductive safety for-
mula Second, for every annotated position the inductive safety
formula and the branch condition B for all successors of must guar-
antee the precondition This ensures that the transitions out
of annotated positions leads to inductively safe successor states. As discussed above,
this proves the safety of For example vcg E would have the following form:

The first conjunct expresses that initial states are inductively safe. Note that
Since has two successors and which are accessible if resp. hold,

we have two further conjuncts. One requires us to show that all states satisfying the
inductive safety formula for and the branch condition can only have successor
states that satisfy the inductive safety formula for The other is analogous for

Soundness. The VCG is sound if for every well formed program a provable ver-
ification condition guarantees program safety, i.e.,

theorem

We have proven this theorem in Isabelle based on the requirements our PCC frame-
work has on its parameter functions. In these assumptions, which we discuss in detail
in the appendix, we require that succsF approximates the control flow, that wpF yields
proper preconditions and that the safety logic is correct.

339

3 Framework Instantiation
In this section we instantiate the framework with a simple assembly language (SAL).
We show how HOL can be instantiated as safety logic and demonstrate it on a safety
policy that prohibits type errors and arithmetical overflows.

3.1 A Simple Assembly Language
SAL provides instructions for arithmetics‚ pointers‚ jumps‚ and procedures. We

distinguish two kinds of addresses. Locations‚ which we model as natural numbers‚
identify memory cells‚ whereas positions identify places in a program. We denote
positions as pairs (pn‚i)‚ where i is the relative position inside the procedure with
name pn.

The instructions manipulate states of the form (p‚(m‚e))‚ where p denotes the pro-
gram counter and (m‚e) the system memory. Since pairs associate to the right in
Isabelle/HOL we often leave out the inner brackets and write (p‚m‚e) to denote a state
with program counter p‚ main memory m and environment e.

The program counter stores the position of the instruction that is executed next. The
main memory m‚ which maps locations to typed values‚ stores all the data a program
works on. We have three kinds of values: Uninitialised values having type ILLEGAL‚
natural numbers NAT n‚ and positions POS (pn‚i).

The environment e tracks information about the run of a program. It contains a call
stack cs e‚ which lists the memory contents and times under which currently active
procedures have been called‚ and a history h e‚ which traces the values of program
counters.

To update a field x in a record r with an expression E we write to access it we
write x r. We use the environment like a history variable in Hoare Logic; it provides
valuable information for annotations written as predicates on states. We can describe
states by relating them to former states or refer to system resources‚e.g.‚ the length of
h e is a time measure.
A SAL program is a list of procedures‚ which consist of a name pname and a list of
possibly annotated instructions. Annotations are predicates on states.

340

To access instructions we write cmd which gives us Some ins if has an instruc-
tion ins at p‚ or None otherwise.

3.2 SAL Semantics
SAL Instructions do the following: SET X n initialises X with NAT n. ADD X Y and
SUB X Y add and subtract the values at X and Y storing the result in X. MOV X Y
interprets the values of X and Y as addresses a and b; it copies the value at a to b.
JMPL X Y t jumps t positions forward if the value at X is less than the value at Y;
otherwise just one. JMPB t jumps t positions backwards. CALL X pn jumps into
procedure pn leaving the return address in X. RET X leaves a procedure and returns to
the address expected in X. Finally‚ HALT stops execution. In the instantiation of effS
we formalise these effects.

We do this with an auxiliary expression which yields Some
if the instruction exists and yields the successor state For example
ADD X Y updates X with which is ILLEGAL if either X or Y contains
no number or NAT (a+b) if m X = NAT a and m Y = NAT b. In addition the history
is augmented with the current program counter.

The other instructions can be handled in a similar fashion.

3.3 SAL Safety Policy
In initial states the program counter is (0‚0)‚ the main memory only contains unini-
tialised values and the environment e has an empty history and a copy of the initial
memory on its call stack.

States are safe if the current instruction respects type safety and does not produce an
arithmetic overflow‚ that is numerical results are less than MAX. Example:

For the sake of brevity we skip the remaining instructions.

3.4 SAL Safety Logic
By identifying assertions with HOL predicates, we instantiate a shallow embedded
safety logic in Fig. 5. The valididy judgment is directly defined by applying a
predicate to a state. The argument is only there to be compatible with the generic
signature of the framework. We define the provability judgment directly by means
of the semantics. This enables us to prove verification conditions with Isabelle/HOL’s
inference rules using various tactics and decision procedures as tools. Alternatively
we could also use a deep embedding and define with an explicit proof calculus,
possibly tailored to the programming language and its safety policy. This means more
effort, but could pay off in form of shorter proofs or higher degree of automation in

341

proof search. However‚ this paper focuses on the framework and we rather keep the
instantiation simple. According to a formula F is provable iff it holds for all states

in The inductively defined set contains all initial states and states
that originate from a computation where all states are inductively safe.

This constraint on states simplifies proofs and shortens annotations‚ because one can
derive properties of a state from the fact that this state can be reached at runtime by
only traversing inductively safe intermediate states.

3.5 Instantiating VCG helper functions
The instantiations of anF‚ domC and ipc are straightforward. More interesting are wpF
and succsF. For the instantiation of wpF we use to postpone substitution
of formulae to the verification stage. Example:

We compute the effect of ADD X Y on some symbolic state (p‚m‚e) and demand that
Q holds for the resulting state. Finally‚ we have a glimpse of the succsF instantiation.
Here‚ we chose JMPL as example:

The constraint on the program counter p=(pn‚i) in the branch conditions helps to apply
system invariants. These are properties that hold for all states in irrespective
of For example

is a system invariant. It says that for
the call time k of the current procedure the history h e records the position of a CALL
instruction.

3.6 Verifying Procedures
Procedure proofs should be modular. Code with procedure calls should only depend
on these procedure’s specifications (the annotations at entry and exit positions) and
not on their code. For example might be the
postcondition of a procedure that increments a location X. Here we use

to reconstruct the memory at call time.This procedure could be called from
a position where X is NAT 5. The programmer expects that after the procedure X is
NAT 6 and could write this into the annotation at the return point. In the verification

342

condition we would have to prove that this follows from the procedure’s postcondition.
However is not
provable. The information that X has been NAT 5 at the procedures entry point is
missing. We cannot add this information into the postcondition, otherwise we loose
modularity. A way out is to pack call context dependent information into branch
conditions, which succsF computes individually for each successor. If a procedure
returns to and is annotated with Ac we can construct the branch
condition which claims that the state at
call time, satisfies the annotation Ac. Note that and the position and environment
at call time, can be defined analogously to Since branch conditions are added to
inductive safety formulas, we now obtain a provable formula:

Call context dependent branch conditions involve some technicalities for the definition
and verification of succsF. However, they fit neatly into our concept of a generic VCG.
We achieve modular procedure proofs although our VCG has no notion of procedures
at all.

4 Case Study: Overflow Detection

4.1 Motivating Example for Overflow Detection
The exemplary safety policy expressed the definition of safeF in §3.3 has two aspects:
First‚ type safety is needed as a general property to ensure that SAL programs never
get stuck. Second‚ the safety formula demands that the result of arithmetic operations
does not exceed MAX‚ thus preventing overflows. Consider the following program
fragment: [CALL P CHECK‚ ADD B C]
It might be part of an application that tries to add a credit stored as a natural number
in memory location C to a balance in B—for example as part of a load transaction of
a smart card purse. Before executing the addition‚ a procedure CHECK is called to
ensure that the new balance in B is less than MAX; if it does‚ the credit in C will be set
to zero and thus the balance remains the same as before. Special care has to be taken
in the implementation of CHECK:

M represents the maximum balance considered for the application. H should contain
B + C after the second ADD statement. If the check B + C < M fails‚ the credit
is set to zero; otherwise it is left unchanged. Even this simple example contains an
implementation flaw: there could be an overflow in H. And the flaw is not merely
theoretical: in the case of a silent overflow as in Java it would lead to debiting the
purse instead of crediting.

4.2 Annotated SAL Program

Fig. 6 shows the corrected and annotated version of our example. The main procedure
and CHECK are now identified with 0 and 1. For better readability we write instruc-
tion/annotation pairs of the form (ins‚ None) as just ins and (ins‚ Some A) as {A} ins.

343

Before execution of CALL P 1‚ the memory positions B and C contain the numbers
and The annotation for ADD B C states that the value of C may have changed

according to the condition
Inside the CHECK procedure we first set the memory location M to the maximum
balance. The annotation states that location P stores the proper return address for
the procedure: incA represents the program counter of the calling procedure
incremented by one. Furthermore the annotation states that there are natural numbers
in both B and C‚ and that all memory locations except P are the same as in the caller.
The following statements require no annotations‚ only the exit point of the procedure
RET P does: it states that all values except for those in C‚ M‚ and P are unchanged‚
that there are natural numbers in both B and C‚ and that the new value of C will be
changed to zero if the new balance exceeds the maximum balance.

4.3 Verification Condition
In Fig. 7 we show the part of the verification condition that is generated for the re-
turn from procedure CHECK. In general we get as many parts (conjuncts) as there
are paths between annotated positions. That means the size of verification conditions
is linear to the number of positions if all branch positions are annotated. The exam-
ple demonstrates again how the VCG works. On the top-level the conditions for the
annotated program positions are conjoined; the fragment refers to position p=(1‚4)
of our program‚ 1 stands for the procedure CHECK and 4 for the line number with
the statement RET P. There is only one successor which is the statement
ADD B C. Therefore the conjunction over the list of all successors collapses to one
element. The verification condition fragment shown in Fig. 7 results from the expres-
sion [isafeF OD (1‚4)‚ B] OD (1‚4) (0‚2) (isafeF OD (0‚2)) where B is the
branch condition of succsF OD (1‚4). Numbers 1–4 in Fig. 7 correspond to the as-
sumption of the implication‚ numbers 5–6 to the conclusion. isafeF OD (1‚4) results

in [safeF OD (1‚4)‚ Ae] (compare Fig. 3)‚ where safeF OD (1‚4) corresponds to 1

and the annotation Ae‚ e.g.‚ anF OD (1‚4) = Some Ae‚ corresponds to 2. The branch

344

condition B for RET P appears in 3 and 4, and consists of
where is the

annotation of the call instruction, e.g., anF OD (0,1) = Some Ac, applied to the re-
constructed state at the moment of the call, and P is the memory location of the return
address. This shows again how the environment e enables us to reconstruct the call
state and how to transfer the information Ac of the call point to the
return point. Note that this context-specific information is encoded into the branch
condition B, which succsF computes individually for each successor. The annotation
at the procedure’s return point does not refer to a particular call point. Hence, the pro-
cedure and its verification are modular. The conclusion of the verification condition
consists of the safety condition for ADD in 5 and its annotation in 6; together they
form isafeF OD (0,2).

4.4 Code Producer and Consumer
The code producer can write annotated programs in Isabelle. To obtain the verification
condition one can generate and execute ML code for the VCG [5] or use the simplifier
to evaluate vcg Proving the verification condition is supported by powerful proof
tools and a rich collection of HOL theorems. For the example in Fig. 6 the simplifier
and a decision procedure for presburger arithmetic suffice to prove the verification
condition. For the client side Isabelle provides (compressed) proof terms and a proof
checker [4]. Proofs are encoded as terms having a type that corresponds to the
theorem they prove (Curry Howard Isomorphism). Proof Checking becomes a type
checking problem‚ which can be handled by a small trusted program.

5 Conclusion
Our framework can be instantiated to various programming languages‚ safety policies‚
and safety logics. As long as the requirements of the framework are satisfied‚ one can
directly apply our generic VCG and rely on its machine checked soundness proof. In
our instantiation to SAL we show how HOL can be embedded as safety logic and how

345

this can be used to verify the absence of arithmetic overflows. Since HOL is very ex-
pressive‚ formulating complex assertions or safety policies is possible. Isabelle’s code
generator gives us an executable version of the VCG. Using the built in tools for proof
search‚ proof terms and proof checking we can simulate producer and client activities.
Before one embarks on a particular PCC implementation‚ one can build a prototype in
our framework and prove the soundness of the safety logic. On our web page [19] we
present more complex examples and instantiations of our framework. These include
programs with pointer arithmetic or recursive procedures and safety policies about
time and memory consumption of programs. Moreover we have instantiated a safety
logic based on first order arithmetic in form of a deep embedding [18]. There‚ for-
mulae are modelled as HOL datatype and can by analysed by other HOL functions.
This enables us to optimise verification conditions after/during their construction. By
now‚ we also have instantiated the PCC framework to a (downsized) version of the
Java Virtual Machine [17]. For this we did not have to change the framework‚ thus we
believe that our framework’s formalisation and its requirements are reasonable‚ even
for real life platforms.

References
Appel‚ A. W. (2001). Foundational proof-carrying code. In 16th Annual IEEE Symposium
on Logic in Computer Science (LICS ’01)‚ pages 247–258.

Appel‚ A. W. and Felty‚ A. P. (2000). A semantic model of types and machine instructions
for proof-carrying code. In 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’00)‚ pages 243–253.

Aspinall‚ D.‚ Beringer‚ L.‚ Hofmann‚ M.‚ Loidl‚ H.W. (2003) A Resource-aware Program
Logic for a JVM-like Language In Trends in Functional Programming‚ editor: S. Gilmore‚
Edinburgh

Berghofer‚ S. and Nipkow‚ T. (2000). Proof terms for simply typed higher order logic. In
Theorem Proving in Higher Order Logics‚ Springer LNCS vol. 1869‚ editors: J. Harrison‚
M. Aagaard

Berghofer (2003). Program Extraction in simply-typed Higher Order Logic. In Types for
Proofs and Programs‚ International Workshop‚ (TYPES 2002)‚ Springer LNCS‚ editors: H.
Geuvers‚ F. Wiedijk

Colby‚ C.‚ Lee‚ P.‚ Necula‚ G. C.‚ Blau‚ F.‚ Plesko‚ M.‚ and Cline‚ K. (2000). A certifying
compiler for Java. In Proc. ACM SIGPLAN conf. Programming Language Design and
Implementation‚ pages 95–107.

Hamid‚ N.‚ Shao‚ Z.‚ Trifonov‚ V.‚ Monnier‚ S.‚ and Ni‚ Z. (2002). A syntactic approach to
foundational proof-carrying code. In Proc. 17th IEEE Symp. Logic in Computer Science‚
pages 89–100.

Klein‚ G. (2003). Verified Java Bytecode Verification. PhD thesis‚ Institut fur Informatik‚
Technische Universität München.

League‚ C.‚ Shao‚ Z.‚ and Trifonov‚ V. (2002). Precision in practice: A type-preserving
Java compiler. Technical Report YALEU/DCS/TR-1223‚ Department of Computer Sci-
ence‚ Yale University.

Morrisett‚ G.‚ Walker‚ D.‚ Crary‚ K.‚ and Glew‚ N. (1998). From system F to typed as-
sembly language. In Proc. 25th ACM Symp. Principles of Programming Languages‚ pages
85–97. ACM Press.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

346

Necula‚ G. C. (1997). Proof-carrying code. In Proc. 24th ACM Symp. Principles of Pro-
gramming Languages‚ pages 106–119. ACM Press.

Necula‚ G. C. (1998). Compiling with Proofs. PhD thesis‚ Carnegie Mellon University.

Necula‚ G. C. and Lee‚ P. (2000). Proof generation in the touchstone theorem prover. In
McAllester‚ D.‚ editor‚ Automated Deduction — CADE-17‚ volume 1831 of Lect. Notes in
Comp. Sci.‚ pages 25–44. Springer-Verlag.

Necula‚ G. C. and Schneck‚ R. R. (2002). A gradual approach to a more trustworthy‚ yet
scalable‚ proof-carrying code. In Voronkov‚ A.‚ editor‚ Proc.CADE-18‚ 18th International
Conference on Automated Deduction‚ Copenhagen‚ Denmark‚ volume 2392 of Lect. Notes
in Comp. Sci.‚ pages 47–62. Springer-Verlag.

Necula‚ G. C. and Schneck‚ R. R. (2003). A sound framework for untrustred verification-
condition generators. In Proc. IEEE Symposium on Logic in Computer Science (LICS03)‚
pages 248–260.

Nipkow‚ T.‚ Paulson‚ L. C.‚ and Wenzel‚ M. (2002). Isabelle/HOL – A Proof Assistant for
Higher-Order Logic‚ volume 2283 of Lect. Notes in Comp. Sci. Springer.

Klein‚ G. and Nipkow‚ T. (2004) A Machine-Checked Model for a Java-Like Language‚
Virtual Machine and Compiler Technical Report‚ National ICT Australia‚ Sydney

Wildmoser‚ M. and Nipkow‚ T. (2004) Certifying machine code safety: shallow versus
deep embedding. TPHOLs 2004

VeryPCC website in Munich (2004)‚http://isabelle.in.tum.de/verypcc/.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Appendix: Requirements
Our PCC framework makes some assumptions on the functions it takes as parameters
(cf. p.4). Based on these assumptions we prove the generic VCG correct. It is the task
of the framework instantiator to make sure that the implementations of the parameter
functions satisfy the requirements listed below. We have proven in Isabelle that these
requirements hold for our instantiation to SAL. Hence‚ we have a PCC system for SAL
with a mechanically verified trusted code base. Note that none of the requirements in-
volves the safety policy safeF. Hence it is very easy to instantiate our framework to
different safety policies.

Assumption correctWpF ensures that wpF computes proper preconditions. That is for
every state (p,m) having a successor state we require that Q holds for
whenever wpF holds for (p,m). We require this property only for wellformed
programs and for states in a set of states we introduce in §3.4.

assumption correctWpF:

Although the set seems to complicate matters at a first sight‚ it simplifies
the instantiator’s job of proving the requirements. Only initial states and safe states
originating from a safe execution must be considered. We can conclude information
about these states from inductive safety formulae of previous states.

347

Assumption correctIpc demands that ipc and initF fit together:

In succsF–complete we assume that succsF covers all transitions of effS and yields
branch conditions that hold whenever a particular transition is accessible. Again‚ this
is only required for wellformed programs and states in

In correctSafetyLogic the safety logic’s provability judgement is constrained such that
provable formulae are guaranteed to hold for states in

Based on these assumptions we can prove that our VCG is sound. A provable verifi-
cation condition gurantess safety of a program at runtime.

