AN EXPERIMENTAL STUDY OF DISTORTION-
BASED TECHNIQUES FOR ASSOCIATION
RULE HIDING

Emmanuel D. Pontikakis, Achilleas A. Tsitsonis, and Vassilios S. Verykios

Abstract

1

Data mining provides the opportunity to extract useful information from large
databases. Various techniques have been proposed in this context in order to
extract this information in the most efficient way. However efficiency is not
our only concern in this study. The security and privacy issues over the
extracted knowledge must be seriously considered as well. By taking this into
consideration, we study the discovery of association rules in binary data sets
and we propose algorithms for selectively hiding sensitive association rules.
Association rule hiding is a well researched area in privacy preserving data
mining and many algorithms have been proposed to address it. The algorithms
that we introduce use a distortion-based technique for hiding the sensitive
rules. The hiding process may introduce a number of side effects either by
generating rules which were not previously existing (ghost rules) or by
eliminating existing non-sensitive rules (lost rules). The proposed algorithms
use effective data structures for the representation of the association rules and
they strongly rely on the prioritization of the selection of the transactions to
choose for falsification (victim transactions) by using weights. In this paper we
show that our algorithms perform better than other similar algorithms in this
field in eliminating non-sensitive rules without increasing the processing time
significantly.

INTRODUCTION

Data mining techniques are often used by adversaries in order to attain
sensitive information in public databases. Databases that hold huge amounts
of information are not only difficult to manage, but also vulnerable to
misuse. Unlike most of the related work in the field of privacy preserving
data mining our goal is to hide a specific set of sensitive rules that we do not
wish to be made public. There are many methods developed in order to deal
with this problem. The most common are (a) the distortion of the
transactions by altering their original values with false ones and (b) the

326 DATA AND APPLICATIONS SECURITY XVIII

deletion of a certain number of transactions that contribute to the
construction of the rules we want to hide. The deletion of transactions
removes too much information from the database, which is problematic in
most cases.

The algorithms developed in this paper, use a binary dataset as an
input and find the association rules that hold in this dataset. In the sequel
these algorithms hide a subset of these rules which are considered sensitive
by the user, by selectively reversing the binary values (i.e., by replacing 1’s
by 0’s). The hiding process can affect the set of rules which can be mined
from the database either by hiding rules which are not sensitive (lost rules),
or by introducing rules which were not supported by the original database
(ghost rules).

In the rest of this paper, we present the theoretical implications of
association rules, efficient algorithms for hiding these rules, as well as
implementations and experiments with binary data sets. In section 2 we
present the background and related work about association rule hiding. In
section 3 the notation and the main definitions regarding sensitive
association rules are given. In section 4 we present algorithms for hiding
association rules and we propose two algorithms that hide the rules
efficiently. In section 5 we compare the effectiveness of these two
algorithms and we present the experimental results from their
implementation. Finally in section 6 we make concluding remarks and we
propose some future work related to the improvement of these techniques.

2. BACKGROUND AND RELATED WORK

Association rule hiding is one of the techniques used in the context of
privacy preserving data mining [9,10,11,12,13,14,15]. The work presented
in this paper builds upon a novel idea, which was first presented in [4].
Although the authors in [4] (and [2]) rely on the hiding of large itemsets, in
this work we present our findings from the comparison of two proposed
algorithms for hiding association rules.

Another technique for hiding association rules in a database is
discussed in [1]. The algorithms presented there use the blocking approach
which refers to the selective placing of unknown values (indicated by
question marks) in the database in order to increase to the maximum degree
the utility of the modified database after the hiding of the association rules.

Our work belongs to the value deletion/distortion family of rule hiding
techniques. One of the most common techniques for data distortion is the
deletion of some values in the transactions of a binary dataset (turning 1’s to

Pontikakis, Tsitsonis & Verykios 327

0’s). The deletion of some items in the database, which is the central theme
of this work, has also been discussed in [2,3,5,6,7,8].

3. PRIVACY PRESERVING ASSOCIATION RULES

3.1 Basic Notation and Definitions

Let I = {i,iy.....,0,}, be a set of literals called items. Let D be a
database of transactions, where each transaction T is an itemset such that T
C I. A unique identifier, called TID, is associated with each transaction. A
transaction T supports an itemset A, a set of items in I, if A & T. The
support sup(A) of an itemset A is | A/ 1D | (where Al is the number of
transactions that support A and [DI is the number of the database
transactions). An itemset A is called large if its support is greater than a
predefined support threshold.

An association rule is an implication of the form 4=> B, where 4 C I,
BcI and ANB=@. The support of the rule A=> B is sup(A=B) =
|AUB|/|D| and the confidence of the rule A=>B is conf(A=B) =
|AUB|/| A|. The Minimum Support Threshold (MST) and the Minimum
Confidence Threshold (MCT) are defined in order to trim those rules with
support and confidence below these thresholds correspondingly.

Given a set of literals I = {ii,.....,iy}, a transaction TCI can also be
represented as a bitmap vector (t,ta,......,t), where & = 1 if and only if i; €
T otherwise ¢ = 0. Using this representation for transactions and itemsets,
we can easily compute whether a transaction 7 supports an itemset A
(A< T) by testing if ANT =4,

3.2 Sensitive Rules Terminology

For a database D a user defines the MCT and MST and then mines the
database to find association rules. We call the set of these rules R. The user
then will select to hide a subset Ry R that he considers sensitive to be
public. By sensitive we mean that a certain rule in Ry CR should not be
made public, either because this is enforced by a privacy policy or because
if it is disclosed we may provide our competitor with a business advantage.
We do not define sensitivity formally in this paper but we associate
sensitivity with the decrease of the support or the confidence of a rule R
below the specified thresholds. In this study we accept that the user decides
to decrease the confidence of a sensitive rule by a Safety Margin threshold
(SM) below the MCT in order to hide the sensitive rule. The modified

328 DATA AND APPLICATIONS SECURITY XVIII

database Dy, after the hiding process does not include the sensitive set of
rules Ry.

33 Data Loss Definitions

We define the Data Loss (side effects) which results after the hiding
process by using the four statements below:

1. If a rule R has had conf{R)>MCT before the hiding process and
after the hiding process has conf(R)<MCT then we say that this rule has
been lost or eliminated.

2. If a rule R has had conf{R)<MCT before the hiding process and
after the hiding process has conf{R)>MCT then we say that this rule (ghost
rule) has been created.

3. If an Itemset / was large before the hiding process (sup(1)>MST)
and after the hiding process its sup(I)<MST then we say that this Itemset has
been eliminated.

4. If an Itemset / was not large before the hiding process (sup(1)<MST
) and after the hiding process its sup(I)>MST then we say that this Itemset
has been created.

4. DISTORTION-BASED ALGORITHMS FOR RULE
HIDING

We will present two new algorithms, which use the distortion
technique for hiding association rules, in sections 4.5 and 4.6. An algorithm
for hiding rules in a database has to achieve the following main goals in
order to be considered effective:

1. To minimize the changes in the values of the database.

2. To minimize the side effects (rules and itemsets lost or created) by
selecting the items in the appropriate transactions to change.

3. To modify the database in a way that an adversary cannot recover
the original values of the database.

4.1 Algorithms Notation

Let T be a set of transactions in the database, and let |71 be the
cardinality of set 7. T is the set of transactions that support the rule R (/,
= Ig) with 7, the left itemset and /x the right itemset of this rule. Let T,
be the transactions that partially support Iz but do not support I;.
Furthermore, let Ty,z be the transactions that partially support /; and fully
support {g. The number N; denotes in how many transactions 1’s must be

Pontikakis, Tsitsonis & Verykios 329

replaced with 0’s to decrease either the sup(R) or the conf(R). These
transactions are called victims.

In addition, /I/ is the number of items of transaction T;. Let conf(R) be
the initial confidence of the rule R. For each rule, we assign a number
Apcr(R) that denotes how many transactions this rule has above the MCT.
This is computed easily as follows: A, (R)=(conf (R)-MCT)|I,|. For
example if the MCT=70% and conf(R)=85% and |[;|=560 transactions then
Aycr(R)=84 transactions. Moreover, Rommon denotes the rules that have
common items in their generating itemset with a rule Ry. Rejiminares denotes the
rules that will be lost after a deletion of an item in the database. Finally, let
|Talbetore be the number of transactions that support R before the hiding
process and let |Tx|aper be this number after the hiding process.

4.2 Association Rule Hiding based on a Distortion
Approach

The algorithms which use the distortion technique in order to achieve the
hiding of a sensitive rule, they selectively alter some values of the database
in a way that an adversary cannot infer the original state of the database.
Every change that is done through the hiding process cannot be tracked by
an adversary because the database is being changed permanently and this is
a great advantage of this technique.

4.3 A Distortion Approach: Reversing 1’s to 0’s

Let us assume that we want to hide the rule R (I; = Ig) with I, the
,,,,, I;) and Iy the right itemset of
Ix;). The confidence of'this rule is given by

conf(R) = %

and the support is given by sup(R) =sup(l, UI,). We can either reduce
the confidence below the MCT or the support below the MST. When we
want to reduce the support we have to select some items of I, or Iz and
delete them from the transactions that support the sensitive rule. If we select
those items from the Ip then both the support and the confidence will be
decreased. Otherwise, if we select items from [; to delete the confidence of
the rule may not be decreased because both the numerator and the
denominator are decreased. So it is more effective to delete items from the
Ip since by doing that we reduce both the support and the confidence of the
sensitive rule.

330 DATA AND APPLICATIONS SECURITY XVIII
4.4 Important Data Structures

The distortion-based algorithms that we will introduce in this paper
use extensively some data structures in order to find, save and access the
rules in the database. In order to reduce time and space complexity in these
operations we have implemented the following data structures:

® An inverted index between the items and the transactions in the
database. For every item in the database there is a list of transactions
that supports it. So, in order to find each large itemset we use the
mergesort algorithm to sort the items that create the itemset. In that
way we can find the support value of an itemset [in O(ll) time
without having each time to scan the database from the beginning.

® The rules are stored in an index and for each one ofthem we store the
confidence value and the Aycr(R) value. So, if we want to restore the
confidence of a rule we can do that in O(logn) time where n is the
total number of rules in the database by applying a binary search in
that index.

4.5 Priority-based Distortion Algorithm

4.5.1 Priority-based Distortion Algorithm Definition

The first algorithm we propose is the Priority-based Distortion
Algorithm. This algorithm reduces the confidence of the rule we hide by
reversing 1’s to 0’s in items in the right itemset of each sensitive rule. First,
it finds all the transactions that support a rule Ri, and all the possible items
in them that can be hidden in each step. Then it finds how many rules will
be lost if a specific item will be reversed. After that it chooses to hide the
item that will cause the least or no side effects to other rules. In order to
compute these rules correctly, the algorithm holds in memory a hash table
with all the rules with common items with the rule we hide. Further
explanations are given in section 4.5.2.

45.2 Explanation of the steps of PDA

At step 1, the Priority-based Distortion Algorithm recovers the
transactions set Tp.

At step 2, the algorithm scans this set of transactions to collect the
rules which may be affected by the hiding process. These are the rules that
have at least one common item with the items of the rule we currently hide.
Each one of the rules that is collected has Apcr(R) transactions above MCT.

Pontikakis, Tsitsonis & Verykios 331

So, for example if one rule R has Aycr(R)=*1 then by just inverting an item
in a transaction that supports the rule R, this rule can be eliminated. In this
way the algorithm tries to exclude the transactions that will immediately
eliminate or create new rules.

Priority-based Distortion Algorithm

Input: Transactions T€ D, Rules Set RS, Rules to hide Ry, Threshold SM,
Thresholds MCT and MST.

Output: Modified Database Dy

Foreach R; € Ry
Do {
Step I: Find Ty, for Ri.
Step 2: For each transaction in T find the rules R ,mmos € RS and their
Aupcr(R), with at least one common item with I

Do until conf(Ri)<(MCT-SM)
{
Step 3: For each TE T, find how many R.mmon Will be
eliminated if any item i€ [will be reversed.
Step 4: Assign a Pip for each i€ Izin every TE Ty such as
Pi‘.‘"= |Ren'|'m:'mred|-
Step 5: Reverse the item with the lowest Pir in the transaction
which it belongs.
Step 6. Update conf(Ry), Aucr(R) for the rules that have been
affected.

Figure 1. Pseudocode for Priority-based Distortion Algorithm

At step 3, for each possible switching of an 1 to O that can be done in
i€ Igin all T€ Ty the algorithm finds how many rules will be eliminated.
This can be achieved by recovering the Aycr{R) value of each rule and
checking if this is equal to +1. So, at step 4 for each item that it could be
hidden in T€ Tg the algorithm finds how many rules with Aycr(R)=1 will be
eliminated and assigns a Priority P,y in each item that may be reversed.

At step 5, the Priority-based Distortion Algorithm simply reverses the
item with the lowest Py and finally at step 6 it updates the Apycr(R) values
for the remaining rules in Reommon-

332 DATA AND APPLICATIONS SECURITY XVIII

4.6 Weight-based Sorting Distortion Algorithm

We present here a detailed description of the second algorithm that we
propose along with an extended discussion about its steps. The main
difference between the Priority-based Distortion Algorithm and the Weight-
based Sorting Distortion Algorithm is that the Weight-based Sorting
Distortion Algorithm uses a sorting technique to sort the victim transactions,
instead of scanning all of them each time that it hides a simple item in the
database.

WEIGHT-BASED SORTING DISTORTION ALGORITHM

Input: Transactions TE€ D, Rules Set RS, Negative Border Rules Set NBRS,
Rules to hide Ry, Threshold SM, Thresholds MCT and MST, Proportion A.

Output: Modified Database Dy

For each R; € Ry
Do {
Step 1: Compute N,.
Step 2: 2.1 Find Ty for Ri.
2.2 For each transaction in Ty find the rules R.ommon € RS with
at least one common item with Iy,
2.3 Assign a weight w for each R ommon- |Rcommon|
24 Assigna Prforeach Tsuchas P, =) w,
Step 3: Sort TE Tystarting from them with lowest Py, i=0
Step 4. For the first N, sorted T€ Tyreverse an item i€ Iy
Step 5: Update conf(R), Aucr(R), for all the other rules that have been
affected.

Figure 2. Pseudocode for Weight-based Sorting Distortion Algorithm

4.6.1 Weight-based Sorting Distortion Algorithm Definition

The algorithm in Figure 2 concentrates on the optimization of the
hiding techniques of the hiding process so as to achieve the least side effects
and the minimum complexity. The Weight-based Sorting Distortion
Algorithm finds the transactions which support the rule we hide, assigns
them a priority and sorts them in ascending order according to the priority
value that each transaction has. The algorithm assigns a weight to each rule
in the database according to how close to the MCT is the confidence of each

Pontikakis, Tsitsonis & Verykios 333
rule. Then uses these weights to compute the priority value for each
transaction according to how weak are the rules that a transaction supports.
4.6.2 Explanation of the Hiding Process in the WSDA

At step 1, the N; is calculated. The algorithm must make N;
transactions no longer support the R;. So if

conf(Rl)=|TRi| ITRiI_N

= LS (MCT -SM) (1)
Solving equation (1) for N; we have:

|7, | | Ty |

N, =|-| Ty |"(MCT“SM)*|TIL |-|

At step 2.1, the Weight-based Sorting Distortion Algorithm recovers
the transactions that support the rule R; which are denoted as Tp. More
specifically, at step 2.2 the algorithm scans this set of transactions to collect
the rules which may be affected by the hiding process. Each one of the rules
that is collected has Aycr(R) transactions above MCT. Then, at step 2.3 the
algorithm assigns a w; for each rule in Reommon-

Each wj is assigned as follows:

w, = AMCT (R) max
Apcr (R) in Ayicr (R);
where Aycr(R)max the maximum Apyer(R) value between Reommon rules and
Apcr(R)min the minimum.

The closer the confidence of a rule is above the MCT (or the number
of transactions Aycr(R) above MCT) the more possible is for that rule to be
eliminated if some items are turned to O in the victim transactions, so this
rule gets a higher weight.

At step 2.4, the algorithm computes the priority value for each
transaction. The reason for this assignment is to give lower Pr to
transactions that support fewer and stronger rules than others, in order to
implicitly minimize the rules that will be eliminated.

At step 3, the algorithm sorts the transactions in ascending order
according the Pi value of each transaction. In that way the transactions with
the lowest Py will come on top. For the sorting process it can be used an
already known algorithm such as quicksort, or bubblesort.

At step 4, N, items of Iy, in T€ Ty are reversed in order to reduce the
conf(R) as we explained in 4.3.

334 DATA AND APPLICATIONS SECURITY XVIII

At step 5, the algorithm updates the data structures with the
confidence of each rule and removes the rules that have been eliminated
from the transactions that were supporting them. After that, the algorithm
returns to step 1 to hide the next rule.

A thorough comparison between the efficiency of the above two
algorithms is presented in Section 5 of the paper.

S. EFFECTIVENESS OF PDA AND WSDA
ALGORITHMS

We will compare the two algorithms by using both a complexity analysis
and an experimental framework in section 5.1 and section 5.2
correspondingly.

5.1 Complexity Analysis

The Priority-based Distortion Algorithm first finds 7. This can be
done in O(/D/) time. At step 2 the algorithm has to find Regmmen. Since for
every transaction we maintain a list of rules represented by their numbers,
we can find in O(log(/R/)) each rule by its number and in O(1) the items and
the Apcr(R) for each rule. So all the common rules for all the transactions
that support R; can be found in O(/Tx,/*/R/*log(JR/)). At step 3, for each item
that is candidate to be hidden we count how many rules which include this
item in each transaction have Apmcr(R) = 1. So the total time for that is
O(/Ini/*/Tri/*/R]) where |Igj| is the number of items in the right itemset of the
rule R; that is currently being hidden. Furthermore, step 4 is a single
assignment and can be done in O(1). At step 5 there is a list with |Igi|*|Tri|
numbers and with a serial scanning the algorithm finds the lowest of them in
[Tri/*|Tri| time. Finally, in step 6 some updates are made in O(/R/) time.

The Weight-based Sorting Distortion Algorithm tries to reduce the
side effects without having to spend significant processing time to hide the
rules. At step 1 it does some quick computations in O(1) time. At step 2, and
more specifically at step 2.1 the algorithm has to find Tx. This can be done
in O(/D/) time. But if we use the inverted index with items and transactions,
an algorithm like mergesort could done it in O(fi;/+[iz/*...[i,}) where iy the
items of the rule R;. In step 2.2 the algorithm has to find Reommen. Since for
every transaction we maintain a list of rules, represented by their numbers,
we can find in O(log(IRl)) each rule by its number and in O(1) the items and
the Amcr(R) for each rule. After that Weight-based Sorting Distortion
Algorithm compares the rules found (Rg) with Iz to find common items in
O(/Ix/*/R¥f). In step 2.3 the algorithm has to assign weights in the set of

Pontikakis, Tsitsonis & Verykios 335

rules that have been found. First, the Aycr(R)min, Aucr(R)max are found in
O(2*/Rg/). Then in O(/Rg/) the weights w are computed. In addition in step
\2.4 all transactions get a Priority value in O(/Tz/* /R/) where IR| the
maximum number of rules that a transaction supports. At step 3 sorting the
sets Tg needs O(/Tr/log/Tx/). In addition at step 4 reversing N items is done
in O(Ny). Finally step 5, needs O(/R/) where IRl the number of rules in the
database.

5.2 Experimental results

We have performed extensive experiments in order to compare the
effectiveness of the algorithms presented in above. We run these algorithms
in Linux operating system at a Pentium 4 at 2,4 GHz with 512MB RAM.
We used a synthetic database with 5k transactions that we generated with
IBM Synthetic Data Generator. The database had 50 items and the average
number of items per transaction was 13. We converted the results into a
binary database appropriate for our implementation. In order to decrease the
execution time we created an inverted index with the items and the
transactions that support each item. In addition, during the discovery of the
rules in the database we created an index with the association rules and the
items that each rule contains. In the 5k database we chose to hide 5 rules out
0of 299. The MST was 9% and the MCT was 65%. The following rules were
chosen randomly for hiding:

Sk Database
Rules Confidence
1= 33 80.6%
34 =3 68.9%
133 = 48 100%
622 = 11 78.1%
741 = 3 98%

We will compare the two presented algorithms using some metrics
of their effectiveness. We also use in the comparison, an already published
algorithm in [5] for rule hiding that we also implemented. This algorithm is
called 1.b in [5].

5.2.1 Rules lost or created in the database and Large Itemsets that
remained unaffected

At Figure 3 we present the side effects for different safety margin
values (10%, 20%, 40%, 60%). As we see, PDA performs slightly better in

336 DATA AND APPLICATIONS SECURITY XVIII

eliminating or creating new rules than WSDA. Both of the algorithms that
we propose perform better than algorithm 1.b in reducing the side effects in
other rules in the database. We can see clearly the trade-off between Privacy
and Data Loss, because if we raise the safety margin then more side effects
will be created. At Figure 4 we see how many Large Itemsets have been
remained after the hiding process. The results show a similar performance
for all algorithms that we experimented with.

e
N0k
@

Figure 3. Rules lost or created after the hiding process.

Itemsets Remained
sggsB8gsd

To e 4P @
Safety Margn

Figure 4. Large Itemsets remained after the hiding process.

5.2.2 Time experiments

We compared the execution time of PDA, WSDA and 1.b algorithm
in 8 different databases. The average number of items in each transaction in
the first 4 databases was 13 and in the other 4 databases were 20. The

Pontikakis, Tsitsonis & Verykios 337

smaller database had 2.5k transactions and the largest had 10k transactions.
WSDA was faster than PDA and this is because WSDA sorts the
transactions at step 3 and then consecutively hides the items in those
transactions, and on the other hand PDA scans all the set of victim
transactions each time it hides an item. 1.b was faster than the algorithms we
propose because it is simpler to implement. Namely, WSDA needs more
time to execute than 1.b but both 1.b and WSDA run in linear time
according to the input. In contrast, PDA seems to consume much more time
as the input transactions or safety margin increase.

Time in secs
cBoasBB38B

Database Transactions

Figure 5. Running time for each algorithm for average 13 items in each transaction

8 8 B B

Time in secs

8

(=]

AD D AD 10D
Database Transactions

Figure 6. Running time for each algorithm for average 20 items in each transaction

338 DATA AND APPLICATIONS SECURITY XVIII
6. CONCLUSIONS AND FUTURE WORK

PDA algorithm designed to concentrate on the minimization of the
side effects of the hiding process though it provided the least side-effects in
the database it was proved that this algorithm needs much time to be
completed. WSDA performed similarly in minimizing the side effects,
running in less time than PDA. This makes the WSDA the best algorithm in
overall related to the other two algorithms.

In the future we plan to test the above techniques in real datasets that
differ in the dependency of their itemsets. In addition, we plan to test
techniques that reverse 0’s to 1’s in the database instead of reversing only
1’s to 0’s. At last, we plan to construct new algorithms that will concentrate
on the minimization of the data loss by sorting the victim transactions
according to a specific criterion of data loss each time.

References

[1] Yucel Saygin, Vassilios Verykios, and Chris Clifton, Using Unknowns to Prevent
Discovery of Association Rules, SIGMOD Record 30 (2001), no. 4, 45-54.

[2] Stanley R. M. Oliveira and Osmar R. Zaiane, Privacy Preserving frequent Itemset
Mining, In Proceedings of the IEEE ICDM Workshop on Privacy, Security and Data
Mining (2002), 43-54.

[3] Vassilios S. Verykios, Ahmed K. Elmagarmid, Bertino Elisa, Yucel Saygin, and Dasseni
Elena, Association Rule Hiding, IEEE Transactions on Knowledge and Data
Engineering (2003).

[4] Mike J. Atallah, Elisa Bertino, Ahmed K. Elmagarmid, Mohamed Ibrahim, and
Vassilios S. Verykios, Disclosure Limitation of Sensitive Rules, In Proceedings of the
IEEE Knowledge and Data Engineering Workshop (1999), 45-52.

[5] Elena Dasseni, Vassilios S. Verykios, Ahmed K. Elmagarmid, and Elisa Bertino, Hiding
Association Rules by using Confidence and Support, In Proceedings of the 4th
Information Hiding Workshop (2001), 369-383.

[6] Yucel Saygin, Vassilios S. Verykios, and Ahmed K. Elmagarmid, Privacy Preserving
Association Rule Mining, In Proceedings of the 12™ International Workshop on
Research Issues in Data Engineering (2002), 151-158.

[7]1 Johnsten, T. Raghavan, V., Hill K., 2002. The Security Assessment of Association
Mining Algorithms in “Proceedings of the Sixteenth Annual IFIP WG 11.3 Working
Conference on Database Applications Security.

[8] Vassilios S. Verykios, Elisa Bertino, Igor Nai Fovino, Loredana Parasiliti Provenza,
Yucel Saygin, Yannis Theodoridis, State of the Art in Privacy Preserving Data Mining.
To appear in SIGMOD Record 2003.

Pontikakis, Tsitsonis & Verykios 339

[9] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal, Johannes Gehrke.
Privacy Preserving Mining of Association Rules. SIGKDD 2002, Edmonton, Alberta
Canada.

[10] Murat Kantarcioglou and Chris Clifton, Privacy Preserving Distributed Mining of
Association Rules on Horizontally Partitioned Data, In Proceedings of the ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
(2002), 24-31.

[11] Jaideep Vaidya and Chris Clifton, Privacy Preserving Association Rule Mining in
Vertically Partitioned Data, In the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2002), 639-644.

[12] R. Agrawal and R. Srikant. Privacy-Preserving Data Mining. In Proceedings of the
2000 ACM SIGMOD Conference on Management of Data, Dallas, TX, May 14-19
2000. ACM.

[13] C. Clifton and D. Marks. Security and Privacy Implications of Data Mining. In ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
pages 15-19, May 1996.

[14] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. Lecture Notes in Computer
Science, 2000.

[15] LiWu Chang and Ira S. Moskowitz, Parsimonious Downgrading and Decision Trees
Applied to the Inference Problem, In Proceedings of the 1998 New Security Paradigms
Workshop (1998), 82-89.

*This work has been supported by European Commission under the PANDA and CODMINE
IST/FET Projects.

