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Therapeutic Manipulation of the Complement System
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Abstract: The complement system is essential for host defence and tissue homeostasis. It
acts largely by inflammatory reactions mediated directly by activated components and
indirectly by other inflammatory systems triggered by complement. A consequence of this
inflammation is destruction of micro-organisms, but frequently also damage to host tissues.
Thus, complement is a double-edged sward; if activated improperly or excessively, it may
cause considerable organ damage. A number of inflammatory diseases are associated with
enhanced complement activation and recent data obtained from animal studies indicate that
complement is in fact an important mediator in the pathogenesis of many of these conditions.
An attractive approach has therefore been to develop complement inhibitors for possible
therapeutic use. Such inhibitors include small molecules, naturally occurring and recombinant
regulatory proteins, and monoclonal antibodies. The actual component(s) to be inhibited and
the mode of application depend on the pathogenesis of the disease. Pro-drugs and targeted
inhibition are to be considered for optimal benefit and minimal side effects. Despite the large
body of evidence obtained from animal studies showing that complement inhibition markedly
improves mortality and morbidity in a number of inflammatory conditions, it remains to be
shown whether complement inhibition will be applicable in clinical medicine.

Key words: Complement inhibitors, therapy, sCR1, DAF, C1-INH, antibodies

1. INTRODUCTION

The complement system is a double-edged sword. An intact complement
cascade is required for protection against infection and for maintaining the
inflammatory homeostasis in the body, whereas improper, excessive or
uncontrolled complement activation is disadvantageous to the host. Thus,
there are two main aspects of complement pathophysiology where
manipulation of the system is justified. First, genetic complement
deficiencies, although rare, are frequently associated with serious diseases
and substitution therapy to restore the defect function may be desired.
Second, uncontrolled complement activation contributes to tissue damage in
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a number of disease conditions and its inhibition could be a therapeutic
approach for these diseases.

Substitution therapy with purified C1 inhibitor or plasma to treat patients
with hereditary angioedema has been used for decades. Double-blind
placebo-controlled studies have clearly demonstrated its clinical efficacy
both in acute treatment and prevention (1). Other complement deficiencies
have occasionally been treated with plasma since purified components for
therapeutic use are not available. Factor H deficiency associated with
haemolytic uremic syndrome (2) and C2 deficiency with systemic lupus
erythemaytosus (3) have been successfully treated with plasma. Recently, a
patient with factor H deficiency and hemolytic uremic syndrome with renal
failure was treated by combined liver and kidney transplantation, where the
defect factor H was restored by a normal protein synthesized by the liver (4).
In one case of factor I deficiency, complement function was restored by
administration of purified factor I (5). However, except for C1 inhibitor
treatment of patients with hereditary angioedema, there are no current
established regimens for substitution therapy to patients with other
complement deficiencies.

Inhibition of excessive or improper complement activation has appeared
to be an attractive approach to treat a number of diseases, which in animal
models have been demonstrated to be totally or partly mediated by
complement activation. The list of such conditions is growing and the
question “In which conditions does complement activation contribute to the
pathophysiology?” may be changed to “In which conditions are complement
not involved?” Currently, complement activation is implicated in numerous
disease conditions, e.g. ischemia-reperfusion (I/R) injury locally manifested
as infarctions or systemically as a post-ischemic inflammatory syndrome,
systemic inflammatory response syndrome (SIRS) and acute respiratory
distress syndrome (ARDS), septic shock, trauma, burns, acid aspiration to
the lungs, immune complex diseases like rheumatoid arthritis and systemic
lupus erythematosus, various renal diseases, a number of inflammatory
diseases in the nervous system, arteriosclerosis and transplant rejection. In
principle, when inflammation is involved in the pathogenesis, complement
should be considered as a possible mediator in the disease process.

This chapter is focused on therapeutic complement inhibition, with
emphasis on different approaches for development of inhibitors, site of
action in the cascade, possible disease conditions for complement inhibition
based on experimental animal data, and finally the potential side effects of
such treatment. Due to the vast amount of data already available in the
literature, only parts of it can be included here. For further reading, see (6)
and some selected reviews from the last 5 years on this topic (7-34).
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2. GENERAL ASPECTS OF COMPLEMENT
INHIBITION THERAPHY

2.1 Complement Inhibition in Human Disease

A general principle for any patient treatment is “primum non nocere” –
first of all do not harm. Thus, targeting complement as a therapeutic goal
requires detailed knowledge about the activation mechanisms and mediators
responsible for the inflammation, enabling optimal inhibitory treatment for
the actual condition. Many mechanisms have been experimentally
elucidated, particularly in I/R injury, but the field is still in its infancy. Due
to species differences, results from animal studies are not necessarily
applicable to humans. Results from knock-out mice studies have been very
useful in elucidating the pathogenic role of complement in various diseases.
Successful treatment with a specific complement inhibitor is the ultimate
proof that complement plays an essential role in the actual disease. The
design of clinical trials has to rely on the data from the animal disease
models. At the end, application of complement inhibitors to patients will
reveal to what extent the various diseases will benefit from the treatment. In
fact, the latter will be the ultimate concept validation for the role of
complement in the pathogenesis of human diseases.

Activation of complement, as detected by increased levels of
complement activation products in plasma samples, is known to occur in a
number of disease conditions. However, increased complement activation
does not necessarily imply that complement is of importance in the
pathogenesis. On the other hand, normal systemic levels of activation
products is seen in many conditions where local complement activation is
likely to play a role in local tissue damage. In such conditions complement
activation can be detected in tissue biopsies or body fluids. In general, an
ongoing systemic activation is required for increased activation products to
be detected in a plasma sample. Whether the complement activation is local
or systemic will determine the inhibitor to be used and its route of
application.

2.2 Complement and the Inflammatory Network

The pathophysiology of inflammation is complex and diverse, depending
on the triggering factors. The role of complement in the inflammatory
network may also vary with the different conditions, from being crucial to
just epiphenomenonal. Inflammatory mediators mutually interact. The most
important issue is whether complement activation, by activation of
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leucocytes, endothelial cells and platelets, induces secondary inflammatory
mediators which may contribute to the tissue damage, like cyto- and
chemokines, reactive oxygen species, arachidonic acid metabolites and
expression of adhesion molecules. On the other hand, some of these
mediators may be primarily induced and activate complement as a secondary
mechanism of inflammation. The question frequently raised is what comes
first, the chicken or the egg. This has significant implication to the rationale
and design of anti-inflammatory therapy in general and for complement
inhibition in particular. In principle, it would be most effective to block
upstream of the inflammation cascade, e.g. the primary inducer(s). The
matter is, however, rather complex since some of the inflammatory
mediators may have mainly adverse effects on tissue homeostasis whether
others are beneficial. Thus, a major task is to identify and inhibit those
mediators contributing to the tissue damage and to spare those which are
beneficial. This is vital to designing a clinically optimal therapeutic regimen
based on the manipulation of complement activity.

2.3 The Complement Cascade and Sites of its
Therapeutic Inhibition

Fig. 1 presents a scheme of the complement cascade with an updated map
of sites of inhibition (35). In brief, the complement system comprises more
than 30 proteins acting together in a specific manner to protect the host
against invading organisms. The classical pathway (upper left in Fig. 1) is
activated when natural or elicited antibodies bind to antigen. C1q triggers the
serine proteases C1r and C1s, the latter cleaving C4 to C4b, which exposes a
specific binding site for C2. C1s then cleaves C2 and the resulting C3
convertase C4b2a cleaves C3 to C3b to form the C5 convertase C4b2a3b.
Splitting of C5 to the highly potent anaphylatoxin C5a and the C6-binding
fragment C5b is the last enzymatic step in the cascade.

Activation of the lectin pathway (Fig. 1, upper middle) is initiated by
mannose binding lectin (MBL) recognising mannose on bacteria. In
addition, this pathway can be activated by IgA and probably by structures
exposed by damaged endothelium. MBL is homologous to C1q and triggers
the MBL associated serine proteases (MASPs), of which three forms
(MASP1, MASP2 and MASP3) have been described. Further lectin pathway
activation is virtually identical to classical pathway activation forming the
same C3 and C5 convertases. In addition there is some evidence that
MASPs under some conditions may activate C3 directly.

The alternative pathway (Fig. 1, upper right) activation mechanisms
differ from the classical and lectin pathway. Under normal physiological
conditions the C3 molecule undergoes a low-grade spontaneous hydrolysis
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of the internal thiol-ester and thereby binds factor B, which is cleaved by
factor D and a C3 convertase is formed containing the whole C3 molecule
(C3(H2O)Bb). This complex then cleaves C3 to C3a and C3b. The latter
binds factor B, which is cleaved by factor D and the second alternative
pathway C3 convertase C3bBb is formed. Properdin (P), the only regulator
of complement which amplifies activation, binds to C3bBb and stabilises
this complex, which then cleaves C3, binds C3b and the C5 convertase
C3b3bBbP is formed and cleaves C5 in the same manner as the
classical/lectin pathway C5 convertase.

Figure 1. The complement cascade and sites of its therapeutic inhibition. Reprinted from
Trends In Immunol., Vol. 23, Mollnes, T.E., Song, W-Ch., and Lambris, J.D., Complement in
Inflammatory Tissue damage and Disease, pp. 61-64, Copyright (2002), with permission from

Elsevier.

The terminal pathway (lower middle) proceeds in the same way
irrespective of the initial pathway activation by assembly of C7 to C5b6,
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forming an amphiphilic complex able to insert into a lipid membrane. One
C5b-7 moiety binds one C8 and one or more C9 molecules, creating a
physical pore penetrating the membrane (C5b-9(m) or membrane attack
complex (MAC)), leading to transmembrane leakage and subsequent cell
activation, or more infrequently to lysis (lower right). If the activation occurs
in the fluid-phase and there is no membrane present, the C5b-7 complex
binds to vitronectin and clusterin (fluid-phase regulators of the terminal
pathway) and thus retains hydrophilic properties. Final assembly of a soluble
C5b-9 (SC5b-9), the second form of the terminal complement complex
(TCC), occurs by binding of C8 and C9.

Complement activation is strictly regulated by inhibitory proteins. In the
fluid-phase C1-inhibitor (C1INH) controls C1r, C1s and MASPs whereas
carboxypeptidase N (CPN) inactivates the anaphylatoxins C5a, C3a and C4a
by splitting off the terminal arginine. Factor I cleaves and inactivates C4b
and C3b and uses C4b-binding protein (C4BP) as co-factor in the
classical/lectin pathway and factor H in the alternative pathway. The
membrane regulators complement receptor 1 (CR1; CD35), membrane co-
factor protein (MCP; CD46) and decay accelerating factor (DAF; CD55)
regulate complement activation by either acting as co-factors for factor I
mediated cleavage of C4b and C3b (CR1 and MCP), or accelerating the
decay of the bimolecular C3 and C5 convertases (CR1 and DAF). CD59,
also a membrane regulator, prevents the binding of C9 to the C5b-8 complex
in the terminal pathway. CR1 and MCP are transmembrane proteins whereas
DAF and CD59 attach to the cell membrane via a
glycosylphosphatidylinositol anchor. Many of the biological effects induced
by complement activation are mediated by membrane receptors such as
receptors for C3a (C3aR), C5a (C5aR) and iC3b (CR3; CD11b/CD18).
Activated complement is a double-edged sword with undesired effects in
many conditions. Thus, various reagents with potential therapeutic
applications have been developed to target complement activation and
function (indicated by red asterisks in Fig. 1).

The traditional discussion of complement inhibition has focused on two
alternatives: blocking at the level of C3 implying a general and broad
inhibition of the system, or selective blocking of C5 activation and
subsequent inhibition of C5a and C5b-9 (TCC) formation. The main
argument for the first approach is that if complement activation is
detrimental, it is logical to completely inhibit complement activation. The
opposite view is that blocking of the terminal pathway would reduce the
adverse effects whereas keeping the C3 activation open would preserve
important defense mechanisms against foreign pathogens. This discussion
has its background in arguing for either of the two main products developed
for clinical use, namely sCR1 and anti-C5. In fact, both arguments over-
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simplify the situation and have limited clinical validation. The mechanisms
of complement activation and the contribution of this activation in the
pathophysiology of different clinical conditions are so diverse that a
differential approximation to this issue is required and several strategies
must be considered.

One such strategy will be to target the initial event in the activation. This
will require detailed knowledge on the activation mechanism. Each of the
three initial activation pathways can be blocked separately. In the classical
pathway (CP) mediated activation inhibition of C1 blocks the very first
activation step and prevents the formation of C4 and C2. Similarly, blocking
of mannan binding lectin (MBL) will inhibit lectin pathway (LP) activation
at the step before C4 activation. A possible role of other proteins like ficolins
in activation of the MBL-associated serine proteases (MASPs) must,
however, be considered. Inhibition of MASP 2 would probably inhibit any
LP-mediated activation. Targeting C2 will block both CP and LP, but will
not prevent C4 cleavage. It has been suggested that MASP 1 may activate
C3 directly, in which case blocking of C2 would not influence activation via
the LP. It is, however, not likely that such a mechanism is operative in vivo.
Inhibition of factor D, the rate-limiting component in the alternative pathway
(AP) is an attractive approach in inhibiting AP activation. It should be noted
that AP activation may either be primary or induced by CP or LP activation
for amplification. Although inhibition of AP could block the amplification of
complement activation, certain CP and LP activity important for normal
functions should still be intact. In certain conditions of systemic complement
activation the AP amplification loop may be responsible for an uncontrolled
and detrimental activation, irrespective of the initial pathway activation
mechanism. Inhibition of factor B and properdin are alternative approaches
for blocking the alternative pathway. The former will require higher amount
of inhibitor and the latter may not be complete, since properdin stabilizes but
is not absolutely required for AP convertase activity.

A second strategy will be to inhibit the common components C3 or C5.
C3 can be inhibited either by blocking activation of C3 or by inhibiting the
C3 convertases. This will give a potent and broad inhibition of the whole
cascade irrespective of the initial pathway. Although both C3 and C5
activation are prevented, C1/MBL, C4 and C2 will be activated. The
immunomodulatory effects of C3 as well as C3 opsonization will be
impaired, but may not be a concern during short-term therapy. Inhibition of
C5 activation will leave the C3 functions open but block the formation of
C5a and TCC. This may be beneficial in conditions where both of these
terminal pathway products are involved in the pathogenesis.

A third strategy will be to target specific activation products or their
respective receptors, particularly the anaphylatoxins C3a or C5a. In the case
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of airway hyper-responsiveness there may be an indication for selective
blocking of C3a function, which can be achieved by anti-C3a antibodies or
C3aR antagonists, leaving the rest of the C3 functions open. Similarly, if
C5a is the main contributor to the pathophysiology of systemic complement
activation, C5a function could be blocked, leaving the C5b-9 pathway open
for killing of bacteria such as Neisseria.

The main challenge for developing effective and safe anti-complement
therapeutics is to balance the beneficial effects obtained by the inhibition
with the preservation of sufficient functional activity for microbial
protection and for tissue homeostasis.

2.4 Possible Adverse Effects

The adverse effects of inhibition of complement may be directly related
to the function of complement, i.e. increased susceptibility to infection and
autoimmune- and immune complex diseases, due to impaired opsonisation,
antigenic responses, tolerance and handling of immune complexes. To date,
such complications have not been observed in animal models. This could be
attributed to incomplete inhibition and short duration of the studies. In fact,
60% inhibition of complement activity was sufficient for treatment of
collagen-induced arthritis (36). This is most important when considering
long-term treatment in chronic diseases. A certain degree of inhibition may
be sufficient to reduce detrimental effects of complement activation, though
defence mechanisms may still be preserved. The risk of infectious
complications is suggested to be highest when blocking C3. The redundancy
of the three initial activation pathways would reduce the risk of infection if
one pathway is selectively blocked. Furthermore, blocking of C5b-9
formation could lead to increased susceptibility to Neisserial strains.
Paradoxically, septic shock is one of the conditions that may benefit from
complement inhibition. In these cases the patient would be appropriately
treated with antibiotics and thus short-term inhibition of complement may be
acceptable.

The inhibitors could be immunogenic, leading to an immune response
and loss of function. The risk of antigen response is lowered by use of
recombinant human proteins, small molecular inhibitors and humanized
antibodies, as discussed below. Recently, a novel role for complement in
tissue regeneration has been demonstrated (37). It is unknown whether
impairment of this function will be a consequence of long-term complement
inhibition.
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2.5 Costs

Production of recombinant proteins and antibodies in eukaryotic cells is
costly, whereas bacteria-produced products can be produced in large-scale at
potentially lower costs. Production of small molecule inhibitors is in general
economical. Costs should be considered in the context of the severity of the
disease and the duration of treatment. Thus, high-cost short-time intensive
treatment to save lives may be acceptable, whereas life-long treatment for
chronic diseases will require low-cost regimens.

3. THERAPEUTIC STRATEGIES

Complement therapy is not only a question of which drug to be given,
and at which step it interferes, but also in which form the drug is produced
and administered.

3.1 Mode of Administration

The administration route is critical for chronic diseases requiring long-
time therapy. Oral, nasal or rectal application is definitely superior to
intravenous injection in these cases, whereas acute, severe illness is
preferentially treated through the intravenous route. Furthermore, although
systemic diseases like sepsis and SIRS may require systemic administration,
diseases with organ specific damage, like glomerulonephrtis, central nervous
system diseases and rheumatoid arthritis may benefit from local application.

3.2 Clearance and Long-Term Treatment

Recombinant proteins and small molecular inhibitors, in contrast to
antibodies, generally have a short half-life and are best suited for treatment
of acute conditions. Modifications to increase half-life of recombinant
proteins have however been made with considerable success. Thus,
conjugating the proteins to human immunoglobulin Fc fragments could
increase the half-life considerably (38). This has immediate consequences
for the application of the drug in long-term treatment, although the ultimate
goal in these cases will be oral administration.

3.3 Targeted Application

The intention of targeted application is to deliver the drug to a specific
cite for limiting the potential systemic side effects. This approach is
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indicated if no systemic fluid phase activation is going on. If activation
occurs systemically, inhibition should not be targeted but achieved by an
agent kept soluble intravascularly.

Targeting may be nonspecific, directed to any membrane, or specific,
directed to certain cells or organs. One approach for nonspecific targeting is
the membrane “tagging”, obtained by coupling the inhibitor to a lipid tail.
This tail will bind to membranes undergoing internal-external changes, as
illustrated by the myristoyl-electrostatic switch paradigm where a truncated
form of sCR1 (APT070) was used (28, 39). This agent was 100-fold more
potent than the parent molecule and has been used for treatment of
experimental rheumatoid arthritis (40). Based on the promising experimental
results, the agent has been tested in volunteers. Clinical studies in patients
with rheumatoid arthritis are underway. sCD59 has also been “tagged” in a
similar manner, being 100-fold more potent than sCD59 (39). The rodent
complement C3 inhibitor Crry (complement receptor 1 related gene/protein)
has been “tagged” using the same approach in experimental animal studies
(41).

Another approach for targeted application is antigen-specific direction
using antibody-conjugates. DAF was successfully targeted to the surface of
Chinese hamster ovary cells by a conjugate of DAF and IgG anti-danasyl
antibody (42). A similar antigen-targeted form of sCD59 has been produced
(43). Recently conjugates were made between a CR2 fragment, which will
recognize sites of C3 activation, and DAF and CD59 (44). These conjugates
bound to C3 opsonized cells and were more than 20-fold more efficient than
the untargeted molecules in inhibiting complement activation. In a mouse
model of lupus nephritis CR2-DAF but not soluble DAF targeted the kidney.

A third approach for targeted inhibition is conjugating the complement
inhibitor to another inflammation-modulating molecule, exemplified by the
sCR1-sLe(x) (TP20) molecule (45). sLe(x) is a ligand for E- and P-selectin
and thus TP20 combines inhibition of complement and leukocyte adhesion
(46). TP20 was found to be superior to unconjugated sCR1 (TP10) in
reducing the tissue damage in an experimental model of cerebral stroke (47),
in immune-complex mediated lung injury (48), and in I/R injury in
experimental allogeneic lung transplantation (49). Furthermore, TP20
reduced myocardial (50) and skeletal muscle I/R injury (51) and moderated
the acid aspiration injury in mice (52).

3.4 Prodrugs

A prodrug is inactive or has low activity until it reaches a site where it is
activated. Fusion of DAF or CD59 with human immunoglobulin Fc domains
markedly extend the half-life (38, 53, 54). However it was found that the
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biological activity was reduced. This principle was utilized to develop a
novel fusion protein with virtually no biologic activity. The protein contains
a site which is sensitive for enzymatic cleavage by a metalloproteinase. After
enzymatic cleavage, restricted to sites of inflammation, the biologic activity
of the inhibitor is restored (29, 55).

3.5 Gene Therapy

A transgene strategy for delivery of rat complement regulators using
adenovirus vectors has been developed (56). Local production of the
complement inhibitor Crry by astrocytes was found to attenuate
experimental allergic encephaloymyelitis (57). sCR1 was delivered by
retrovirally transfected cells or by naked DNA directly to the joint and
prevented progression of collagen-induced arthritis (58). A similar approach
was described by Quigg et al., with delivery of the inhibitor systemically
(59).

Hyperacute xenotransplant rejection is caused by binding of naturally
occurring antibodies and subsequent complement activation. In order to
overcome this complement-mediated rejection various transgenic animals
expressing human membrane complement regulators have been developed
for use in xenotransplantation (see chapter 18 in this book).

4. INHIBITORS

The complement system is normally kept under strict control by fluid-
phase and membrane-bound regulatory proteins (figure 1). The need for
keeping this system under control is illustrated by the fact that there are as
many regulators as there are ordinary components, and that deficiency of a
regulatory protein is associated with substantially disturbed homeostasis. All
the regulators are inhibitors of activation, except for properdin, which
stabilizes the alternative C3 convertase (C3bBbP) and thus enhance
activation.

4.1 C1-Inhibitor

C1-inhibitor is a naturally occurring serine protease inhibitor and the
only known inhibitor of C1r and C1s. In addition to controlling the classical
pathway, Cl-inhibitor is also a regulator of MASP-1 and MASP-2 of the
lectin pathway (60). Recently a novel inhibitory function on the AP was
documented (61). Thus, an effect of C1-inhibitor may principally be
mediated through either of the initial pathways. Furthermore, C1-inhibitor is
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not complement specific but has a broad spectrum of targets including factor
XIIa, kallikrein and factor XIa.

C1-inhibitor is available for clinical use as substitution therapy in
hereditary angioedema (HAE). Notably, the pathophysiology of HAE is
closely related to the release of bradykinin and the main effect of Cl-
inhibitor is to reduce bradykinin formation through inhibition of the
kallikrein/kinin system. From this point of view, HAE is not a complement-
mediated disease, and it should be emphasized that the effect of Cl-
inhibitor, when used for treatment of other diseases than HAE, is not
necessarily complement-dependent, but may well be explained by inhibition
of other proteins.

C1-inhibitor has been widely used in a number of clinical conditions. The
principle of supra-physiological doses to obtain more efficient regulation has
been applied, although in some cases the treatment may be regarded as
substitution for acquired low concentrations. The conditions treated with Cl-
inhibitor include sepsis, burns, capillary leak syndrome associated with bone
marrow transplantation and IL-2 therapy, myocardial infarction, trauma and
transplantation. Recently it was shown in an open-labeled clinical study that
Cl-inhibitor given 6 hours after thrombolytic therapy markedly reduced the
size of infarction compared to matched controls (62). C1-inhibitor will not
be discussed further in the present chapter, but it is referred to recent reviews
on the application of C1-inhibitor in clinical medicine (63-65).

4.2 Recombinant Proteins

The family of regulators of complement activation (RCA) comprises
CR1 (CD35), CR2 (CD21), MCP (CD46), DAF (CD55), factor H and
C4BP. They are all powerful inhibitors of C3 and C5 convertases, except for
CR2, which may play a minor role in regulation of complement. If an
extensive inhibition of complement is required, the RCA proteins are
candidates since they all interfere with activity of the C3 and C5
convertases.

4.2.1 C4BP and Factor H

C4b-binding protein (C4BP) and factor H are soluble regulators of the
classical and alternative C3/C5 convertases, respectively. Recombinant
factor H has been produced (66). Using a glycosyl-phosphatidyl inositol
(GPI) anchor, a membrane form of C4BP was constructed which protected
porcine endothelial cells against attack by human complement (67). A
similar approach was used to bind factors H and I to a xenosurface (68), and
binding of factor H to an artificial surface abrogated the surface-induced
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complement activation and thereby improved biocompatibility (69). C4BP
and factor H have not been used clinically. A more likely indication for
recombinant factor H would be substitution therapy in factor H deficiency
rather than treating enhanced complement activation. Soluble CR1 is much
more potent as fluid-phase inhibitor of C3 activation than C4BP and factor
H.

4.2.2 Soluble CR1

CR1 is the only member of the RCA family having cofactor activity and
decay accelerating activity both in the CP and AP (C4b and C3b). A soluble
form of CR1 (sCR1) was constructed by deleting the transmembrane part of
the molecule (70). sCR1 inhibited both CP and AP activation in
concentrations equivalent to 1% of physiological C4BP and factor H
concentration. The protein was first demonstrated to reduce experimental
myocardial I/R injury by approximately 50%. The cardioprotective effects
have later been confirmed in several studies (71-74).

The half-life of the original sCR1 was only a few hours. A slightly
extended half-life was obtained by fusing sCR1 with an albumin-binding
receptor (75). An sCR1-F(ab’)2 chimeric protein extended the half-life and
the technique made targeting possible (76). Improving the culture condition
further extended the half-life to approximately 30 hours. Parenteral
administration is required.

A variant of sCR1 which specifically inhibits the alternative pathway has
been constructed by deleting the C4b binding domain, sCR(desLHR-A) (77).
This protein attenuated tissue damage in experimental myocardial infarction
(78, 79) and reduced the endothelium-dependent relaxation in rabbit tissue,
shown to be mediated by C5b-9 (80).

Human sCR1 is immunogenic in rodents, limiting its application in
animal studies. Therefore, the rodent C3 convertase inhibitor Crry, which
has both decay accelerating and cofactor activity and therefore resembles
CR1, has been used in two different strategies in mouse models. First, a
soluble Crry was constructed and coupled to an immunoglobulin tail for
injection (Crry-Ig) (53). Second, Crry was over-expressed as a soluble
protein in the animal under the control of a widely expressed transgene (59).
Both approaches protected mice against experimentally induced acute
glomerulonephritis and the Crry protein was not immunogenic. Furthermore,
transgenic expression of Crry in mice developing SLE (MRL/lpr mice)
prolonged survival and attenuated the renal damage (81), later confirmed by
treatment with the soluble Crry-Ig protein (82). Soluble Crry was also shown
to inhibit intestinal I/R injury in mice even when administered 30 minutes
after start of reperfusion (54). Recently it has become evident that control of
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complement activation is of crucial importance for the placenta barrier
homeostasis and that complement activation may induce fetal loss (see
chapter 9 in this volume). Thus, in a mouse model of anti-phospholipid
antibody-induced fetal loss, soluble Crry was protective (83).

sCR1 has been used in a number of animal disease models with
convincing protective effects against tissue damage. In addition to the
beneficial effect on myocardial I/R injury described above, the following I/R
injuries have been attenuated by sCR1: local and remote injury in rat
intestine (84, 85), gut ischemia and endothelial cell function after
hemorrhage and resuscitation in rats (86), liver injury (87), and local and
remote (lung) injury in skeletal muscle (88, 89).

The beneficial effect of sCR1 in autoimmune diseases has been
demonstrated in the passive reverse Arthus reaction, which is a dermal
vascular immune-complex condition (90), in experimental arthritis in rats
(91, 92), in immune-complex and complement-mediated lung injuries and
thermal trauma in rats (93). Furthermore, allergic reactions (94) and
pseudoallergic reaction to infusion of liposomes (95) were attenuated by
sCR1. Improvement was obtained in an experimental rodent model of ARDS
(96) as well as in a guinea-pig model of asthma (97). The inflammatory
reaction induced by acid aspiration to the lungs in a murine model was
markedly improved by sCR1 (98).

sCR1 has proved to be efficient in treatment of experimental conditions
in kidneys, including glomerulonephritis (99) and in the nervous system, like
myasthenia gravis (100), experimental allergic encephalomyelitis (a model
for multiple sclerosis) (101), autoimmune neuritis in rats (102) and traumatic
brain injury (103).

The role of complement in xenotransplantation has been indisputable and
therefore the effects of sCR1 in reducing hyperacute rejection was not
surprising (73, 104-106). Coupling a mini-CR1 to a GPI anchor and
incorporating it into porcine cells was protective against human complement
(107). The role of complement in allotransplant rejection has been less clear,
but the beneficial results obtained using sCR1 in various allotransplant
models has highlighted complement as an important mechanism in
allotransplant rejection as well (108-111).

Extracorporeal circulation, like haemodialysis and cardiopulmonary
bypass (CPB), is associated with a complement-dependent systemic
inflammatory response. sCR1 reduced lung injury and pulmonary
hypertension in pigs undergoing CPB (112) and inhibited complement- and
leukocyte activation in a simulated extracorporeal circulation setup (113).

sCR1 (TP-10; Avant Immunotherapeutics Inc, Needham, MA) has been
awarded Orphan Drug status by the FDA and has reached clinical studies. It
has been tested in patients with ARDS, acute myocardial infarction, lung
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transplantation and post-cardiopulmonary bypass syndrome (114). Most of
the data have been published in abstract form only, but the results of the
ARDS study have been published (115). Although sCR1 inhibited
complement activation, there was no significant difference between the
clinical outcome in the groups and the programme is discontinued.

4.2.3 Soluble DAF and MCP

A recombinant soluble form of DAF (sDAF) was constructed and found
to inhibit complement both in vitro and in vivo. It attenuated the reverse
passive Arthus reaction (116), but the lack of factor I cofactor activity may
limit its potential for clinical application. Similarly, a recombinant soluble
form of MCP (sMCP) has been made (117). sMCP attenuated the reverse
passive Arthus reaction (118) and prolonged hyperacute xenograft rejection
(117). A fusion protein of sMCP and a soluble form of the low affinity
human IgG receptor Fc gamma RII (CD32) was more effective in protection
against xenotransplant rejection than the sMCP alone (119). Comparison
between sDAF, sMCP and sCR1 showed that sCR1 was more effective than
each of the other two in the classical pathway. In the alternative pathway
sCR1 and sMCP had almost the same effect (118). Combination of sDAF
and sMCP was more effective than each protein alone. A fusion protein of
sDAF and sMCP was constructed (CAB-2) which retained both decay
acceleration (DAF) and co-factor activity (MCP). CAB-2 was protective in
the passive reverse Arthus reaction and in Forssman shock (120), and
prolonged pig-to-primate heart xenotransplant survival (121) as well as ex
vivo porcine-to-human heart transplant graft survival (122).

4.2.4 Soluble CD59

A recombinant soluble form of CD59, sCD59, has been constructed, but
is rather inefficient in the fluid phase (123). A fusion protein of sCD59 and
sDAF has been constructed (124), with the aim of combining a C3/C5
convertase inhibitor activity with a C5b-9 inhibitor. It remains to be shown
whether this molecule has any clinical application. A soluble form of CD59
has been fused with a soluble form of the rodent C3 convertase inhibitor,
Crry, enabling inhibition of rodent complement activation both at the C3 and
C9 level (125). A selective inhibition of C5b-9 may have limited indications
in clinical medicine, but certain forms of glomerulonephritis, arthritis and
encephalomyelitis may depend mainly on C5b-9 formation.
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4.2.5 Microbial Proteins

Microbes frequently make proteins with high homology to human
complement regulatory proteins and thus protect themselves against
complement attack. One such protein, vaccinia virus complement control
protein, has CR1-like activity and has been studied in detail (126). It has
been postulated as a candidate for complement therapy. In addition to the
complement-inhibitory function this protein has a binding site for heparin
and direct interferes with binding of xenoantibodies to their targets.

4.3 Antibodies

Monoclonal antibodies have the advantage of high specificity, relatively
long half-life and amenability for largescale production. A main limitation is
the need for parenteral administration and the risk of immunization. The
latter can be reduced by humanizing the antibody, or by producing human
monoclonal antibodies, as recently described for an anti-C5 antibody
isolated from a human phage display library (127).

4.3.1 Anti-MBL, -Factor D and -Properdin

Several recent data indicate that the lectin pathway is of importance in
the pathogenesis of I/R injury (128, 129) and in experimental septicaemia
where MBL-A deficiency improved survival (130). Anti-MBL antibodies
blocking the lectin pathway have been developed (131, 132). A plant lectin,
Ulex europaeus agglutinin II (UEA-II), has been identified as a potent
inhibitor of MBL binding and thus of lectin pathway activation (133).

Factor D is the rate-limiting component in the alternative pathway and of
pivotal importance for the I/R injury in mice (134), either by direct
activation or through the amplification loop. An anti-human factor D
monoclonal antibody (mAb) (166-32) has been characterized (135, 136) and
found to inhibit complement and leukocyte activation in baboons undergoing
CPB (137). An alternative approach for inhibition of the AP is blocking of
properdin, although this will not lead to complete inhibition. Anti-properdin
antibodies have been used in vitro and the data underscored the importance
of AP as amplification from CP activation (138).

4.3.2 Anti-C5

Since there are no natural inhibitors acting directly on C5, there is a
particular need to develop specific C5 inhibitors. Furthermore, it has been
shown in vitro that C5 can be activated directly by leukocyte enzymes
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independent of C3 activation (139), but it is unclear whether this can occur
in vivo. Monoclonal antibodies to mouse C5, like the mAb BB5.1 (140) were
important tools to demonstrate the role of the terminal complement pathway
in experimental diseases like collagen-induced arthritis (36) and lupus-like
nephritis (141). Notably, such treatment of collagen-induced arthritis with
anti-C5 antibody not only prevented disease onset, but also ameliorated
established disease. An anti-rat C5 mAb was found to be protective in
experimental myocardial infarction (142). The human anti-C5 antibody
N19/8 described by Würzner et al. (143) was a breakthrough in this field. It
was used to demonstrate inhibition of terminal pathway activation in an
artificial cardiopulmonary bypass model where leukocyte and platelet
activation was also attenuated (144) and it prevented hyperacute graft
rejection in a model of porcine-to-human heart transplantation (145). Later
several anti-C5 antibodies have been generated. One of these, the scFv
fragment h5G1.1-scFv (146) has reached clinical trials as pexelizumab
(Alexion Pharmaceuticals, Cheshire, CT). In a study of patients undergoing
CPB complement inhibition was obtained with subsequent reduced
leukocyte activation and postoperative complications, including cognitive
defects, myocardial damage and blood loss (147). Studies in rheumatoid
arthritis, idiopathic membranous nephropathy, lupus nephritis and
myocardial infraction are underway, but until to date the results have been
described only in abstract form.

4.3.3 Anti-C5a

C5a is the biologically most potent fragment formed during complement
activation and is therefore regarded as an important target for inhibition
(148, 149). In animal studies anti-C5a antibodies reduced myocardial I/R
injury (150), reduced neutrophil-mediated impairment of endothelium-
dependent relaxation after CPB (151), reduced local and remote injury in
intestinal I/R injury (152), improved survival (153, 154) and reduced IL-6
production (155) and oxygen demand (156) in sepsis, inhibited sepsis-related
thymic cell apoptosis (157, 158), alleviated symptoms of ARDS in septic
primates (159) and reduced lung vascular injury following thermal trauma
(160). Recently anti-C5a antibodies were shown to have direct effects on the
coagulation and fibrinolytic systems in a rat model of sepsis, emphasizing a
possible role of C5a in activation of other plasma cascade systems (161).
Anti-guinea pig C5 and anti-C5a mAbs have also been generated for
examination of the terminal pathway in experimental xenotransplantation
(162).

A novel approach for C5a inhibition was recently demonstrated using a
mAb reacting with the C5a moiety of the C5 molecule without inhibiting C5
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cleavage (163). Thus, C5a is “pre-neutralized” before it is formed and
thereby increases efficacy of C5a neutralization. This antibody has been
investigated in a human blood model of Neisseria, with virtually complete
inhibition of the inflammatory reaction while bacterial killing was not
affected (164).

4.3.4 Anti-C5-9

Anti-C8, which blocks C5b-9 (TCC) formation without interfering with
C5 cleavage, was found to reduce tissue damage in rat hearts perfused with
human serum (165). Furthermore, anti-C8 inhibited platelet activation during
simulated CPB (166).

4.4 Small Molecule Inhibitors

4.4.1 C1 Binding Peptides

Peptides interacting with the function of C1q has been produced form
phage display libraries (167, 168). Synthetic peptides interacting with IgG
binding to C1 prolonged xenograft survival (169). It should be noted that
C1q is not only activated by antibodies, but by several other substances
which may be of pathogenic importance in human diseases, like beta-
amyloid in Alzheimers disease, and C-reactive protein with possible
implications for the pathogenesis of atherosclerosis. Inhibition of C1q has
recently been extensively reviewed (26). A novel highly selective small
molecule C1s inhibitor (C1s-INH-248, Knoll) was found to protect against
experimental myocardial I/R injury (170).

4.4.2 BCX-1470

BCX-1470 is a serine protease inhibitor which was made on the basis of
the 3D crystal structure of factor D. It was found to attenuate the reverse-
passive Arthus reaction (171). It was found to be safe in animal toxicity
studies and was tested in healthy volunteers. BCX-1470 inhibits factor D,
but also C1s and several other serine proteases, which is in contrast to the
specificity of the anti-factor D mAb described above. In general, serine
protease inhibitors which inhibit factor D, also inhibit other serine proteases.
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4.4.3 Compstatin

A 13-residue cyclic peptide was isolated using combinatorial peptide
libraries to identify C3 binding peptides (172), later characterized in detail
and named compstatin (173). This peptide blocks cleavage of C3 and is
highly specific for binding to C3. No interaction with other cascade proteins
has been demonstrated. It was found to reduce complement and granulocyte
activation in an in vitro model of extracorporeal circulation (174) and to
protect against hyperacute xenograft rejection ex vivo (175). Compstatin
works only in primates and therefore animal studies are limited. One study
showed inhibition of heparin-protamine induced complement activation in a
primate in vivo model (176).

4.4.4 C3aR Antagonists

A nonpeptide C3aR antagonist (SB 290157) blocking human C3aR also
antagonizes rodent C3aR and was found to reduce neutrophil recruitment in
LPS-induced airway neutrophilia (177). The C3a/C3aR interaction may be a
candidate for therapy in asthma (178, 179). Antibodies neutralizing C3a has
also been shown to abolish C3aR mediated function (180). Disrupting the
C3aR showed protective anti-inflammatory effects in endotoxic shock (181).

4.4.5 C5aR Antagonists

The first peptide antagonist was the linear N MeFKPdCHaWdR (182).
Later a cyclic peptide was made, AcF[OPdChaWR] (183), which has been
extensively studied in various animal models. It reacts both with primates
and rodents. Beneficial effects of this antagonist have been observed in I/R
injury in small intestine (184) and in kidneys (185). It attenuated chemotaxis
and cytokine production (186), endotoxin-induced neutropenia (187) and the
reverse passive Arthus reaction (188). It was effective when given orally to
animals with immune-complex mediated dermal inflammation (189) and
experimental arthritis (190).

C5aR antagonists were also developed by screening of phage-display
libraries and by site directed mutagenesis of C5a, both shown to be effective
in reducing complement-mediated inflammation in vivo (191, 192). The
dimeric recombinant human C5a antagonist, CGS 32359 (191), attenuated
neutrophil activation and reduced myocardial infarction size in a porcine
model of surgical revascularization (193). Another C5aR antagonist
significantly reduced murine renal I/R injury (194). The tertiary structure of
a unique C5a receptor antagonist was determined by two-dimensional NMR
spectroscopy (195) and an antisense homology box approach was used to
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design C5a antagonist peptides (196). Recently, a non-peptide C5aR
antagonist active in cynomolgus monkeys and gerbils, was shown to inhibit
C5a mediated neutropenia after oral administration (197).

4.4.6 RNA Aptamers

Screening of an RNA pool obtained by the SELEX combinatorial
chemistry technique revealed several clones binding to and inhibiting
activation of human and rat C5 (198). It remains to be shown whether these
molecules are possible complement inhibitors in vivo.

4.5 Other Inhibitors

Numerous natural and synthetic substances have been documented to
inhibit complement, but these are in general not complement specific. Only a
few are mentioned here.

Nafamostat mesilate (FUTHAN; FUT-175) and gabexate mesylate
(FOY) are synthetic serine potease inhibitors with a broad spectrum of
targets. Nafamostate is effective in several animal disease models of I/R
injury, pancreatitis, xenotransplantation and cerebral infarction, but is not
complement specific. Aprotinin, a complex polypeptide with effects on
coagulation and inflammation, reduces postoperative bleedings, has been
regarded as a candidate for general cascade inhibition. K-76 monocarboxylic
acid (MX-1) is a fungal product found to inhibit several complement
components, but in particular C5 (199). Although initially regarded as a
promising complement inhibitor (200-202) later studies on
xenotransplantation did not show efficient effect on graft survival neither by
K-76 nor by FUT-175 (203, 204).

Heparin has a number of effects on complement and coagulation.
Modifications to obtain complement-inhibitory heparin without effect on
coagulation have been made (205). Dextran potentiates the effects of several
complement inhibitory proteins including C1-inhibitor and was found to
delay ex vivo hyperacute xenograft rejection (206). Coating of artificial
devises with heparin improves biocompatibility by reducing complement
activation and subsequent inflammatory reaction (207).

High-dose intravenous immunoglobulins (IVIG) are currently used to
treat various inflammatory diseases. The list of biological effects of IVIG is
long, including several complement modulating activities (see chapter 24 in
this volume) In fact, the effect of IVIG on complement is not directly
inhibitory. IVIG act as scavenger for C1q, C4b and C3b binding, thus
diverting the activation products from the target to the immunoglobulin
molecules. Thus, IVIG should not be used as a primary complement
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inhibitor, but its effect on complement could be an additional benefit to
certain inflammatory diseases.

Cobra venom factor (CVF) is frequently on the list of complement
inhibitors. It should be noted, however, that CVF is not a complement
inhibitor, but a potent complement activator, which depletes C3 from plasma
by activating the alternative pathway amplification loop. The activation per
se may influence the results obtained, therefore specific complement
inhibitors developed to date should replace CVF in animal studies.

5. CONCLUDING REMARKS

Three decades ago the role of complement in human disease was largely
unknown. Two decades ago it became evident that complement activation
was associated with a number of pathophysiologic conditions, although the
role of this activation in the pathogenesis of the diseases was largely
unknown. During the last decade studies using specific complement
inhibitors or complement knock-out animals have revealed that complement
plays a crucial role in the pathogenesis of tissue inflammation in a number of
animal disease models. These include local and remote damage after
ischemia and reperfusion, immune-complex and autoimmune diseases in
general and joint, kidney and central nervous system diseases in particular,
ARDS and systemic inflammatory response due to sepsis or extracorporeal
circulation, antibody-mediated fetal loss, and allo- and xenotransplantat graft
rejections. Based on these encouraging data a great enthusiasm evolved for
treatment of human diseases using complement inhibitors. Unfortunately the
progress in clinical application has been relatively slow. This may be
attributed to several reasons: Human diseases may have a more complex
pathophysiology than the animal models. Experimental conditions differ
significantly from the clinical with respect to time for and mode of
application. The number of drugs for clinical use has been markedly limited
compared to those used in animal models. Targeted inhibition has hardly
reached clinical application. Finally, the selection of patients and size of test
groups may have been inadequate for demonstrating clinical benefit. The
approach of complement inhibition for treatment of human diseases is still in
its infancy, in fact it has hardly reached delivery. There is a need for more
experimental studies, which should focus on the mechanisms of
complement-mediated damage. This will provide a rational approach to
design and optimize the treatment, i.e. identifying the component(s) needed
to be inhibited in the actual condition and targeting the inhibition to the
actual site of inflammation. With the advent of numerous novel complement
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inhibitors, it is hopeful that the potential benefits of complement inhibition
in human inflammatory diseases could be validated and realized.
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