Skip to main content

Automated Particle Analysis: Calcareous Microfossils

  • Chapter
Image Analysis, Sediments and Paleoenvironments

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ATT Laboratories Archive, Olivetti Research Laboratory Database of Faces, http://www.uk.research.att.com/facedatabase.html.

  • Bé A.W.H., Harrison S.M. and Lott L. 1973. Orbulina universa ďOrbigny in the Indian Ocean. Micropaleontology 19: 150–192.

    Google Scholar 

  • Beaufort L., de Garidel-Thoron T., Mix A.C. and Pisias N.G. 2001. ENSO-like forcing on oceanic primary production during the Late Pleistocene. Science 293: 2440–2444.

    Article  Google Scholar 

  • Belgrano A., Malmgren B.A. and Lindahl O. 2001. Application of artificial neural networks (ANN) to primary production time-series data. J. Plankton Res. 23: 651–658.

    Article  Google Scholar 

  • Belyea P.R. and Thunell R.C. 1984. Fourier shape analysis and planktonic foraminiferal evolution: The Neogloboquadrina — Pulleniatina lineages. J. Paleontol. 58: 1026–1040.

    Google Scholar 

  • Bishop C.M. 1995. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 482 pp.

    Google Scholar 

  • Bollmann J. 1997. Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments. Mar. Micropaleontol. 29: 319–350.

    Article  Google Scholar 

  • Bollmann J., Brabec B., Cortés M.Y. and Geisen M. 1999. Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS method). Mar. Micropalaeontol. 38: 29–38.

    Google Scholar 

  • Bollmann J., Cortés M.Y., Lenz B., Llinas O., Müller T. and Reuter R. 2000. Distribution of living coccolithophores North of the Canary Islands: Vertical, seasonal and interannual variations. EOS Transactions AGU 81 48: F204.

    Google Scholar 

  • Bollmann J., Cortés M.Y., Haidar A.T., Brabec B., Close A., Hofmann R., Palma S., Tupas L. and Thierstein H.R. 2002a. Techniques for quantitative analyses of calcareous marine phytoplankton. Mar. Mircropaleontol. 44: 163–185.

    Google Scholar 

  • Bollmann J., Henderiks J. and Brabec B. 2002b. Global Calibration of Gephyrocapsa coccolith abundance in Holocene sediments for paleotemperature assessment. Paleoceanography 17: 7-1 to 7-9.

    Article  Google Scholar 

  • Bown P.R. and Young J.R. 1998. Techniques. In: Bown P.R. (ed.), Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publication Series, pp. 16–28.

    Google Scholar 

  • Brechner S. 2000. Automatic coccolith classification and extraction of morphological features in SEM images. Selected Readings in Vision and Graphics 5, Hartung-Gorre Verlag, Konstanz, 205 pp.

    Google Scholar 

  • Burke C.D., Full W.E. and Gernant R.E. 1987. Recognition of fossil freshwater ostracodes — fourier shape analysis. Lethaia 20: 307–314.

    Google Scholar 

  • CLIMAP Project Members, 1976. The surface of the ice-age earth. Science 191: 1131–1137.

    Google Scholar 

  • COSOD II Working Group Members, 1986. Report of the Second Conference on Scientific Ocean Drilling (COSOD II). Strasbourg. European Science Foundation.

    Google Scholar 

  • Culverhouse P.F., Simpson R.G., Ellis R., Lindley J.A., Williams R., Parisini T., Beguera B., Bravo I., Zoppoli R., Earnshaw G., McCall H. and Smith G. 1996. Automatic classification of field-collected dinoflagellates by artificial neural network. Mar. Ecol. Prog. Ser. 139: 281–287.

    Google Scholar 

  • Dollfus D. 1997. Reconnaissance de formes naturelles par des réseaux de neurones artificiels: application au nannoplancton calcaire. Ph.D. thesis, CEREGE, Université ďAix-Marseilles.

    Google Scholar 

  • Dollfus D. and Beaufort L. 1999. Fat neural network for recognition of position-normalised objects. Neural Networks 12: 553–560.

    Article  Google Scholar 

  • du Buf H. and Bayer M.M. 2002. Automatic diatom identification. World Scientific, Series in machine perception and artificial intelligence 51, 316 pp.

    Google Scholar 

  • Ehrlich R. and Weinberg B. 1970. An exact method for characterization of grain shape. J. Sed. Petrol. 40: 205–212.

    Google Scholar 

  • Felix D.W. 1969. An inexpensive recording settling tube for analysis of sands. J. Sed. Petrol. 39: 777–780.

    Google Scholar 

  • France I., Duller A.W.G., Duller G.A.T. and Lamb H.F. 2000. A new approach to automated pollen analysis. Quat. Sci. Rev. 19: 537–546.

    Article  Google Scholar 

  • Fueten F. 1997. A computer-controlled rotating polarizer stage for the petrographic microscope. Comp. Geosci. 23: 203–208.

    Google Scholar 

  • Garratt J. and Swan A. 1992. Morphological data from coccolith images. In: Hamrsmid B. and Young J.R. (eds), Nannoplankton Research, Proceedings of the Fourth INA Conference, Prague 1991 Volume 1 Hodonin Prague, pp. 11–34.

    Google Scholar 

  • Healy-Williams N. 1983. Fourier shape analysis of Globorotalia truncatulinoides from Late Quaternary sediments in the southern Indian Ocean. Mar. Micropaleontol. 8: 1–15.

    Google Scholar 

  • Healy-Williams N. 1984. Quantitative image analysis: Application to planktonic foraminiferal paleoecology and evolution. Geobios Mémoire Spécial 8: 425–432.

    Google Scholar 

  • Hecht A.D. 1976. An ecologic model for test size variation in recent planktonic foraminifera: applications to the fossil record. J. Foraminiferal Res. 6: 295–311.

    Google Scholar 

  • Hills S. 1988. Outline extraction of microfossils in reflected light images. Comp. Geosci. 14: 481–488.

    Google Scholar 

  • Imbrie J. and Kipp N. 1971. A new micropaleontological method for quantitative paleoclimatology: Application to a Late Pleistocene Caribbean Core. In: Turekian K.K. (ed.), The Late Cenozoic Glacial Ages. Yale Univ. Press, New Haven, Connect., pp. 71–181.

    Google Scholar 

  • Knappertsbusch M. 2000. Morphologic evolution of the coccolithophorid C. leptoporus from the Early Miocene to Recent. J. Paleontol. 74: 712–730.

    Google Scholar 

  • Knappertsbusch M., Cortés M.Y. and Thierstein H.R. 1997. Morphologic variability of the coccolithophorid Calcidicus leptoporus in the plankton, surface sediments and from the Early Pleistocene. Mar. Micropaleontol. 30: 293–317.

    Article  Google Scholar 

  • Kennett J.P. 1968. Globorotalia truncatulinoides as a Paleo-oceanographic Index. Science 159: 1461–1463.

    Google Scholar 

  • Lazarus D., Hilbrecht H., Spencer-Cervato C. and Thierstein H.R. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides. Paleobiology 21: 28–51.

    Google Scholar 

  • Lawrence S., Giles C.L., Tsoi A.C. and Black A.D. 1997. Face recognition: A convolutional neural network approach. IEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition 8: 89–113.

    Google Scholar 

  • LeCun Y. 1987. Modèles connexionnistes de ľapprentissage. Ph.D. thesis, Université Pierre et Marie Curie, Paris, France.

    Google Scholar 

  • LeCun Y., Boser B., Denker J.S., Henderson R.E., Howard W., Hubbard W. and Jackel L.D. 1990. Handwritten digit recognition with a back-propagation network. In: Touretzky D.S. (ed.), Advances in Neural Information Processing Systems. Morgan Kaufmann, pp. 396–404.

    Google Scholar 

  • LeCun Y. and Bengio Y. 1995. Convolutional networks for images speech and time-series. In: Arbib M.A. (ed.), The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, Massachusetts, pp. 255–258.

    Google Scholar 

  • Lipps J. 1993. Fossil Prokaryotes and Protists. Blackwell Scientific Publications, Boston, 342 pp.

    Google Scholar 

  • Malmgren B.A. and Nordlund U. 1997. Application of artificial neural networks to paleoceanographic data. Palaeogeogr. Palaeoclim. Palaeoecol. 136: 359–373.

    Google Scholar 

  • Malmgren B.A. and Winter A. 1999. Climate zonation in Puerto Rico based on principal components analysis and an artificial neural network. J. Climate 12: 977–985.

    Article  Google Scholar 

  • Ratmeyer V. and Wefer R. 1996. A high resolution camera system (ParCa) for imaging particles in the ocean: System design and results from profiles and a three-month deployment. J. Mar. Res. 54: 589–603.

    Article  Google Scholar 

  • Ripley B.D. 1996. Pattern Recognition and Neural NetwSorks. Cambridge University Press, Cambridge, 403 pp.

    Google Scholar 

  • Schalkoff R.J. 1997. Artificial Neural Networks. MIT Press and The McGraw-Hill Companies Inc., New York, 421 pp.

    Google Scholar 

  • Schmidt D.N. 2002. Size variability in planktic foraminifera. Ph.D. thesis, ETH No. 14578, 121 pp.

    Google Scholar 

  • Schmidt D.N., Renaud S. and Bollmann J. 2003. Response of planktic foraminiferal size to late Quaternary climate change. Paleoceanography 18: 17–1 to 17–12.

    Google Scholar 

  • Schwarcz H.P. and Shane K.C. 1969. Measurement of particle shape by Fourier analysis. Sedimentology 13: 213–231.

    Google Scholar 

  • Swaby P. 1990. Integrating artificial intelligence and graphics in a tool for microfossil identification for use in the petroleum industry. Proceedings of the 2nd Annual Conference on Innovative Applications of Artificial Intelligence, Washington, 203–218 pp.

    Google Scholar 

  • Weiss S.M. and Kulikowski C.A. 1991. Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning and expert systems. Morgan Kaufmann Publishers Inc, San Francisco, California, 223 pp.

    Google Scholar 

  • Westbroek P., Brown C.W., Van Bleijswijk J., Brownlee C., Grummer G.J., Conte M., Egge J., Fernandez E., Jordan R., Knappertsbusch M., Stefels J., Verdhuis M., Van der Wal P. and Young J.R. 1993. A model system approach to biological climate forcing. The example of Emiliania huxleyi. Glob. Planet. Change 8: 1–20.

    Google Scholar 

  • Young J.R., Kucera M. and Chung H.-W. 1996. Automated biometrics on captured light microscope images of Emiliania huxleyi. In: Moguilevsky A. and Whatley R. (eds), Microfossils and Oceanic environments. Aberystwyth Press, Aberystwyth, pp. 261–280.

    Google Scholar 

  • Yu S., Saint-Marc P., Thonnat M. and Berthold M. 1996. Feasibility study of automatic identification of planktic foraminifera by computer vision. J. Foraminiferal Res. 26: 113–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Francus

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Bollmann, J. et al. (2005). Automated Particle Analysis: Calcareous Microfossils. In: Francus, P. (eds) Image Analysis, Sediments and Paleoenvironments. Developments in Paleoenvironmental Research, vol 7. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2122-4_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2122-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2061-2

  • Online ISBN: 978-1-4020-2122-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics