Skip to main content
  • 4739 Accesses

Abstract

Inelastic scattering of light—or Raman scattering—from elementary excitations in a material yields structural and dynamic information on a molecular level. The Raman spectrum can be analyzed in terms of the molecular components or functional groups thus providing a “fingerprint” of the molecule. The Raman effect was first observed in 1928 by C.V. Raman and K.S. Krishnan [1], but wide application was delayed until the development of the laser. The nondestructive nature of the probe, flexibility in sampling arrangements, and a technical revolution [2, 3, 4, 5] in multi-channel detection and Rayleigh filters opened up many new areas where Raman measurements have proven to be very informative [6, 7]. Applications in the electronics and chemical industries are increasing and range from process control in semiconductor and polymer production to microanalysis of integrated circuits [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raman, C.V. & Krishnan, K.S. (1928) Nature 121, 501.

    Article  ADS  Google Scholar 

  2. McCreery, R.L. (2000) Raman Specctroscopy for Chemical Analysis New York:Wiley.

    Book  Google Scholar 

  3. Chase, B. (1994) Appl. Spectrosc. 48, 14A.

    Article  ADS  Google Scholar 

  4. Pelletier, M. (1999) Analytical applications of Raman spectroscopy Blackwell Science.

    Google Scholar 

  5. Laserna, J.J. (Ed.) (1996) Modern Techniques in Raman Spectroscopy New York: Wiley.

    Google Scholar 

  6. Colomban, Ph. & Corset, J. (Eds.) (1999) J. Raman Spectrosc. 30 Special Issue: Raman (Micro) Spectrometry and Materials Science.

    Google Scholar 

  7. Weber, W.H. & Merlin, R. (Eds.) (2000) Raman Scattering in Materials Science New York: Springer.

    Google Scholar 

  8. Zhang, S.-L. & Zhu, B.-F. (Eds.)(2000) Proc. XXVIth Intl. Conf. on Raman Spectroscopy New York: Wiley.

    Google Scholar 

  9. Schulte, A. & Richardson, K. (2002) In Eds. M. Kawasaki, N. Ashgriz, & R. Anthony, Recent Research Developments in Non-Crystalline Solids 2, p 143–158 Vol 1 Trivandrum: Transworld Research Network.

    Google Scholar 

  10. Cardinal, T., Richardson, K.A., Shim, G. Stregeman, G., Beathy, R., Schulte, A., Meghini, C., Viens, J.-F., Le Foulgoc, K. & Villeneuve, A. (1999) J. Non-Cryst. Solids 256 & 257, 353.

    Article  Google Scholar 

  11. Ramachandran, S., Bishop, S., Guo, J.P. & Brady, D.J. (1996) IEEE Phot. Tech. Lett. 8.

    Google Scholar 

  12. Efimov, O.M., Glebov, L.B., Richardson, K.A., Van Stryland, E., Cardinal, T., Park, S.H., Couzi, M. & Glebov, J.L. (2001) J. Opt. MTER. 17, 379

    Article  Google Scholar 

  13. Andriesh, A.M., Bykovskii, Yu.A., Kolomeiko, E.P., Makovkin, A.V., Smirnov, V.L. & Shmal'ko, A.V. (1977) Sov. J. Quantum Electron. 7, 347.

    Article  ADS  Google Scholar 

  14. Asobe, M., Kanamori, T. & Kubodera, K. (1993) IEEE J. Quant. Electr. 29, 2325.

    Article  ADS  Google Scholar 

  15. Pope, A., Schulte, A., Guo, Y., Ono, L.K., Roldan-Cuenya, B., Lopez, C., Richardson, K., Kitanowski, C. & Winningham, T. (2005) Vibrationaal Spectroscopy in press.

    Google Scholar 

  16. Rabolt, J.F. (1994) In Fourier Transform Raman Spectroscopy p 133 Eds. Chase, D.B. & Rabolt, J. F. San Diego: Academic Press.

    Google Scholar 

  17. Schulte, A., Rivero, C., Richardson, K., Turcotte, K., Laniel, J., Hamel, V., Villeneuve, A., Saliminia, A. & Galstian, T. (2001) Optics Comm. 198, 125–128.

    Article  ADS  Google Scholar 

  18. Adar, F. (2001) Evolution and Revolution of Raman Instrumentation. In Eds. Lewis, I.R. & Edwards, H.G.M. Handbook of Raman Spectroscopy p 11–40 New York: Dekker.

    Google Scholar 

  19. Lewis, I.R. & Edwards, H.G.M. (Eds.) (2001) Handbook of Raman Spectroscopy. New York: Dekker.

    Google Scholar 

  20. Chase, D.B. & Rabolt, J.F. (Eds.) (1994) Fourier Transform Raman Spectroscopy San Diego: Academic Press.

    Google Scholar 

  21. Long, D.A. (1977) Raman Spectroscopy New York: McGraw Hill.

    Google Scholar 

  22. Schrader, B. (2001) Infrared and Raman Spectroscopy: Methods and Applications New York: VCH Publishers.

    Google Scholar 

  23. Hayes, W. & Loudon, R. (1978) Scattering of Light by Crystals New York: John Wiley & Sons

    Google Scholar 

  24. Berne, B.J. & Pecora, (1976) Dynamic Light Scattering New York: Wiley.

    Google Scholar 

  25. Faurskov Nielsen, O. (2001) Low-Frequency Raman Spectroscopy and Biomolecular Dynamics, In Eds. Lewis, I.R. & Edwards, H.G.M. Handbook of Raman Spectroscopy p 593–615 (New York: Dekker)

    Google Scholar 

  26. Carraba, M.M., Spencer, K.M., Rich, C. & Rauh, D. (1990) Appl. Spectrosc. 44, 1558–1561.

    Article  ADS  Google Scholar 

  27. Yang, B., Morris, M. & Owen, H. (1991) Appl. Spectrosc. 45, 1533–1536.

    Article  ADS  Google Scholar 

  28. Schulte, A. (1992) Appl. Spectrosc. 46, 891–893.

    Article  ADS  Google Scholar 

  29. Spiro, T.G. (Ed.) (1998) Biological Applications of Raman Spectroscopy New York: Wiley.

    Google Scholar 

  30. Hirschfeld, T. & Chase, B. (1986) Appl. Spectrosc. 40, 1079.

    Article  Google Scholar 

  31. Zimba, C.G., Hallmark, V.M., Swalen, J.D., Rabolt, J.F. (1987) Appl. Spectrosc. 41, 721.

    Article  ADS  Google Scholar 

  32. Hallmark, V.M., Sooriyakumaran, R., Miller, R.D. & Rabolt, J.F. (1989) J. Chem. Phys.90, 2486.

    Article  ADS  Google Scholar 

  33. Hallmark, V.M. & Rabolt, J.F. (1989) Macromolecules 22, 500–502.

    Article  ADS  Google Scholar 

  34. Lewis, E.N., Kalasinsky, V.F. & Levin, I.W. (1988) Appl. Spectrosc. 42, 1188.

    Article  ADS  Google Scholar 

  35. Schulte, A., Hallmark, V.M. & Rabolt, J.F., unpublished.

    Google Scholar 

  36. Myers, A.B., Harris, R.A. & Mathies, R.A. (1983) J. Chem. Phys. 79, 603.

    Article  ADS  Google Scholar 

  37. Schulte, A., Lenk, T., Hallmark, V. & Rabolt, J.F. (1991) Appl. Spectrosc. 45, 325–327.

    Article  ADS  Google Scholar 

  38. Williamson, J.M., Bowling, R.J. & McCreery, R.L. (1989) Appl. Spectrosc. 43, 372.

    Article  ADS  Google Scholar 

  39. Refi, J.J. (1999) Bell Labs Techn. J. Jan-March 246–260.

    Article  Google Scholar 

  40. Hopf, F.A. & Stegeman, G.I. (1986) In Applied Classical Electrodynamics, Chapter 20 New York: Wiley Interscience .

    Google Scholar 

  41. Stegeman, R., Jankovic, L., Kim, H., Rivero, C., Stegeman, G., Richardson, K., Delfyett, P., Guo, Y., Schulte, A. & Cardinal, T. (2003) Optics Lett. 28, 1126–1128.

    Article  ADS  Google Scholar 

  42. Guo, Y., Nonnenmann, S., Schulte, A., Rivero, C., Richardson, K., Stegeman, R., Stegeman, G. & Cardinal, T. (2004) Conference on Lasers and Electro-Optics (CLEO) Technical Digest (OSA) CThP2.

    Google Scholar 

  43. Shuker, R.V. & Gammon, R.W. (1970) Phys. Rev. Lett. 25, 222.

    Article  ADS  Google Scholar 

  44. Surovtsev, N.V. & Sokolov, A.P. (2002) Phys. Rev. B 66, 054205.

    Article  ADS  Google Scholar 

  45. Elliott, S.R. (2001) Amorphous Materials, In Encyclopedia of Materials Science and Technology p 171–174, Elsevier.

    Google Scholar 

  46. Schirmacher, W., Diezemann, G. & Ganter, C. (1998) Phys. Rev. Lett. 81, 136–139.

    Article  ADS  Google Scholar 

  47. Schirmacher, W., Pöhlmann, M. & Maurer, E. (2002) Phys. Stat. Sol. (b) 230, 31.

    Article  ADS  Google Scholar 

  48. Asobe, M., Kanamori, T. & Kubodera, K. (1993) IEEE J. Quant. Electr. 29, 2325.

    Article  ADS  Google Scholar 

  49. Zoubir, A., Richardson, M., Rivero, C., Schulte, A., Richardson, K., Ho, N. & Vallee, R. (2004) Opt. Lett. 29, 748–750.

    Article  ADS  Google Scholar 

  50. Pope, A. (2005) Honor's thesis, University of Central Florida.

    Google Scholar 

  51. Li, W., Rivero, C., Pope, A., Myneni, S., Lopez, C., Schulte, A., Richardson, K., Seal, S., Jain, H., Antoine, K. & Miller, A. (2005) J. Appl. Phys. in press.

    Google Scholar 

  52. Frumar, M., Vlcek, M., Cernosek, Z., Polak, Z. & Wagner, T. (1997) J Non-Cryst. Solids 213&214, 215

    Article  Google Scholar 

  53. Krecmer, P., Vlcek, M. & Elliot, S.R. (1998) J. Non-Cryst. Solids 227–228, 682.

    Article  Google Scholar 

  54. Lucovsky, G. & Martin, R. (1972) J. Non-Cryst. Solids 8–10, 185.

    Article  Google Scholar 

  55. Levy, Y., Imbert, C., Cipriani, J., Racine, S. & Dupeyrat, R. (1974) Opt. Comm. 11, 66.

    Article  ADS  Google Scholar 

  56. Hetherington III, W.M., Van Wyck, N.E., Koenig, E.W., Stegeman, G.I. & Fortenberry, R.M. (1984) Optics Lett. 8, 88.

    Article  ADS  Google Scholar 

  57. Duverger, C., Nedelec, J.-M., Benatsou, M., Bouazoui, M., Capoen, B., Ferrari, M. & Turrell, S. (1999) J. Mol. Struct. 480–481, 169.

    Article  Google Scholar 

  58. Urlacher, C., Marty, O., Plenet, J.C., Serughetti, J. & Mugnier, J. (1999) Thin Solid Films 349, 63.

    Article  Google Scholar 

  59. Wise, K.J., Gillespie, N.B., Stuart, J.A., Krebs, M.P. & Birge, R.R. (2002) Trends in Biotech. 20, 387

    Article  Google Scholar 

  60. Hampp, N. (2000) Chem. Rev. 100, 1755–1776.

    Article  Google Scholar 

  61. Mathies, R.A., Smith, S.O. & Palings, I. (1987) In Spiro T G (Ed.) Biological Applications of Raman Spectroscopy Vol 2 p. 59–108 (New York: Wiley).

    Google Scholar 

  62. Friedman, J., Rousseau, D.L. & Ondrias, M.R. (1982) Annu. Rev. Phys. Chem. 33, 471–491.

    Article  ADS  Google Scholar 

  63. Bangcharoenpaurpong, O.K., Schomaker, T. & Champion, P.M. (1984) J. Am. Chem. Soc. 108, 1163–1167.

    Google Scholar 

  64. Ahmed, A.M., Campbell, B.F., Caruso, D., Chance, M.R., Chavez, M.D., Courtney, S.H., Friedman, J.M., Iben, I.E.T., Ondrias, M.R. & Yang, M. (1991) Chem. Phys. 158, 329–352.

    Article  Google Scholar 

  65. Weber, G. & Drickamer, H.G. (1983) Quart. Rev. Biophys. 16, 89–112.

    Article  Google Scholar 

  66. Kauzmann, W. (1987) Nature 325, 763.

    Article  ADS  Google Scholar 

  67. Winter, R. (Ed.), (2003) Advances in High Pressure Bioscience and Biotechnology II, New York: Springer.

    Google Scholar 

  68. Wong, P.T. (1984) Ann. Rev. Biophys. Bioeng. 13, 1 (1984).

    Article  ADS  Google Scholar 

  69. Schulte, A., Buchter, S., Galkin, O. & Williams, W. (1995) J. Am. Chem. Soc. 117, 10149–10150.

    Article  Google Scholar 

  70. Morild, E. (1981) Theory of the pressure effects on enzymes in Adv. Protein Chem. 34, 93.

    Article  Google Scholar 

  71. Galkin, O., Buchter, S., Tabirian, A. & Schulte (1997) Biophys. J. 73, 2752–2763.

    Article  Google Scholar 

  72. Schulte, A. & Bradley II, L. (1995). Biophys. J. 69, 1554–1562.

    Article  ADS  Google Scholar 

  73. Kitagawa, T. (1988) Heme protein structure and the iron histidine stretching mode. In Spiro, T.G. (Ed.) Biological Applications of Raman Spectroscopy. 97–132, vol 3 (New York: Wiley).

    Google Scholar 

  74. Rousseau, D.L. & Friedman, J.M. (1988) Transient and cryogenic studies of photodissociated hemoglobin and myoglobin. In Spiro, T.G. (Ed.) Biological Applications of Raman Spectroscopy. vol. 3 133–216 (New York: Wiley).

    Google Scholar 

  75. Sassaroli, M.S., Dasgupta & Rousseau, D.L. (1986) J. Biol. Chem. 261, 13704–13703.

    Google Scholar 

  76. Choi, S. & Spiro, T.G. (1983) J. Am. Chem. Soc. 105, 3683–3692.

    Article  Google Scholar 

  77. Schlichting, I., Berendzen, J., Phillips, Jr. G.N. & Sweet, R.N. (1994) Nature 371, 808–812.

    Article  ADS  Google Scholar 

  78. Sage, J.T., Schomacker, K.T. & Champion, P.M. (1995) J. Phys. Chem. 99, 3394–3405.

    Article  Google Scholar 

  79. Urayama, P., Phillips, G.N. & Gruner, S. (2002) Probing substates in spermwhale myoglobin using high-pressure x-ray crystallography. Structure 10, 51–60.

    Article  Google Scholar 

  80. Schulte, A. & Galkin, O. (2003) In Ed. R. Advances In High Pressure Bioscience and Biotechnology II, (New York: Springer) p 121–124.

    Google Scholar 

  81. Delhaye, M. & Dhamelincourt, P. (1975) J. Raman Spectrosc. 3, 33–43.

    Article  ADS  Google Scholar 

  82. Bergman, L., Dutta, M. & Nemanich, R.J. (2000) In Eds. Weber, W.H. & Merling, R. Raman Scattering in Materials Science (Berlin: Springer).

    Google Scholar 

  83. Pearton, S.J., Zoiper, J.C., Shul, R.J. & Ren, F. (1999) J. Appl. Phys. 86, 1.

    Article  ADS  Google Scholar 

  84. Nootz, G., Schulte, A., Chernyak, L., Osinsky, A., Jasinski, J., Benamara, M. & Liliental-Weber (2002) Appl. Phys. Lett. 80, 1355–1357.

    Article  ADS  Google Scholar 

  85. Zhang, J.M., Ruf, T., Cardona, M., Ambacher, O., Stutzmann, M., Wagner, J.-M. & Bechstedt, F. (1997) Phys. Rev. B 56, 14399.

    Article  ADS  Google Scholar 

  86. Rousseau, D.L. (1981) J. Raman Spectrosc. 10, 94.

    Article  ADS  Google Scholar 

  87. Perlin, P., Jauberbie-Carillon, C., Itie, A.S., Miguel, I., Grzegory, I. & Polian, A. (1992) Phys. Rev. B 45, 83.

    Article  ADS  Google Scholar 

  88. Kiesielowski, C., Krueger, J., Ravimov, S., Suski, T., Ager III, J.W., Jones, E., Liliental- Weber, Z., Rubin, M., Weber, E.R., Bremser, M.D. & Davis, R.F. (1996) Phys. Rev. B 54, 17745.

    Article  ADS  Google Scholar 

  89. De Wolf, I. (1999) J. Raman Spectrosc. 30, 877–883.

    Article  ADS  Google Scholar 

  90. Puppels, G. et al. (2001) In-vivo Raman spectroscopy, In Eds. Lewis I.R. & Edwards, H.G.M. Handbook of Raman Spectroscopy p 549–574 (New York: Dekker).

    Google Scholar 

  91. Diem, M., Romeo, M., Boydston-White, S., Miljovic, M. & Matthäus, C. (2004) Analyst 129, 880–885.

    Article  ADS  Google Scholar 

  92. Adar, F., LeBurdon, G., Reffner, J. & Whitley, A. (2003) Spectroscopy 16, 34–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Schulte, A., Guo, Y. (2006). LASER RAMAN SPECTROSCOPY. In: Vij, D. (eds) Handbook of Applied Solid State Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-37590-2_15

Download citation

Publish with us

Policies and ethics