
An Efficient Software Protection Scheme
(Abstract)

Rafail Ostrovsky, MIT

In 1979 Pippenger and Fischer [PF] h s owed how a two-tape Turing Machine whose head positions (as
a function of time) are independent of the input, can simulate, on-line, a one-tape Turing Machine
with a logarithmic slowdown in the running time. We show a similar result for random-access
machine (RAM) model of computation. In particular, we show how to do an on-line simulation of
arbitrary RAM program by probabilistic RAM whose memory access pattern is independent of the
program which is being executed with a poly-logarithmic slowdown in the running time.

A main application of our result concerns software protection, one of the most important issues in
computer practice. A theoretical formulation of the problem for a generic one-processor, random-
access machine (RAM) model of computation was given by Goldreich [G]. In this paper, we present
a simple and an efficient software protection scheme for this model. In particular, we show how to
protect any program at the cost of a poly-logarithmic slowdown in the running time of the protected
program, previously conjectured to be impossible.

Software is very expensive to create and very easy to steal. “Software piracy” is a

major concern (and a major loss of revenue) to all software-related companies_ Software

pirates borrow/rent software they need, copy it to their computer and use it without paying

anything for it. The question of how one prevents a pirate from illegal copying of software is

a question of ‘software protection”. Ad-hoc methods have been used for decades, but only

recently, a precise formulation of the problem and a solution to it was given by Goldreich

[G]. Current work builds on work started in [G], making the software protection scheme

more efficient and using weaker assumptions.

Let us examine various options which any software company has when considering how

to protect its software. On one hand, it can sell a physically shielded computer with all the

software installed, which self-destructs if ever opened. Clearly, such a “solution* eliminates

the problem of software piracy at the price of forcing customer to purchase a new computer

for each new task. We consider such a %olution” infeasible and contradictory to a general-

purpose machine paradigm. One would want to sell just the software, which runs on any

general-purpose computer, but which is impossible to copy. This, however, is unachievable:

if one sells software which runs on any general-purpose computer, the software can always

be duplicated. Thus, we always need some physically-shielded hardware to prevent the

duplication. What is the minimal amount of protected hardware one needs?

We require only a constant number of registers to be physically protected. That is, only

a single chip with a fixed number of registers is protected while the entire memory is open to

the pirate, who can inspect it and alter it, in order to learn something about the protected

program. Thus, we assume that a physically shielded chip is connected to a random access

memory (RAM) to which the pirate has a complete read/write access.

The next question we turn to is the interpretation of “software protection”. Let us
consider the following hypothetical situation: suppose you are a software producer selling a

protected program which took you an enormous effort to write. Your competitor purchases

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 610-611, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

61 1

your program, experiments with it widely and learns some partial information about your
implementation. Intuitively, if the information he gained through experimentation with
your protected program simplifies his task of writing a software package, then we consider
the protection scheme to be insecure. Thus, the software protection must hide all the
information about the implementation.

Software protection is secure if, intuitively, whatever any poly-time adversary can do
when having access to an (encrypted) program running on a protected chip, he can also
do when having access to a “specification oracle” (such an oracle on any input “magically”
gives the output and the running time). Essentially, the protected program must behave
like a black box which, on any input, hums for a while and gives an output and such that no
information except its 1/0 behavior and running time can be extracted. Thus, not only the
values stored in the general-purpose memory must be hidden (using encryption) but also
the sequence in which memory locations are accessed during program execution must be
hidden. Notice that if this is not the case, the program “loop structure” is revealed to the
adversary, even if all the memory locations are securely encrypted. Surely, the information
about the “loop structure” does provide some information about the structure of the code.
To prevent this, the memory access pattern should be independent of the program which is
being executed.

Nothing in this world comes for free. What is the price one has to pay for protecting
the software? The answer is “speed”. The protected program will run slower then the
unprotected one. What is the minimal slowdown we can achieve without sacrificing the
security of the protection? Sofiware protection overhead is defined as the number of steps
the protected program must make for each step of the source-code program.

The key problem of efficient software protection is to be able to hide the access pattern
efficiently. Goldreich shows how to achieve O((1og m)‘ . 2JZbgmm.10g’~m) overhead for hiding
the access pattern, where m is the total (RAM) memory size and c is some small constant.
He conjectures that a poly-logarithmic (in m) overhead is impossible to achieve.

The main contribution of this paper is to show how to achieve a poly-logarithmic over-
head of hiding the access pattern. (Actually, our result is even stronger: we show how to
achieve a poly-logarithmic overhead as a function of the progmrn running time for hiding
the access pattern, instead of poly-logarithmic overhead of total RAM memory size, which
could be much bigger then the program running time.)

Moreover, in addition to considerable efficiency speedup, the scheme presented in this
paper gives a simple and explicit construction of the protection scheme, while the scheme
shown in [GI, gives a non-trivial recursive solution. It should also be noticed that in [GI
one-way permutations are used, while here, we reduce the assumption to the existence of
one-way functions only.

References

[GI Goldreich, 0. Towards a Theory of Software Protection and simulation by Oblivious
RAMS” STOC87.

Pippenger , N., and M.J. Fkcher, “Relations Among Complexity Measures” JACM, Vol
26, No. 2, 1979, pp. 361-381.

[PF]

	An Efficient Software Protection Scheme
	References

