
A Fast Modular-multiplication Algorithm
based on a Higher Radix

Hikaru Morita

NTT Communications and Information Processing Laboratories

3-9-l 1, Midori-cho, Musashino-shi, Tokyo, 180 Japan

Abstract

This paper presents a new fast compact modular-multiplication algorithm,
which will multiply modulo N in log(N)/log(r) clock pulses when the algorithm
is based on radix r (r 2 4).

1 Introduction

Modular multiplication is essential for public-key cryptosystems such as the Rivest-

Shamir-Adleman scheme (RSA) [l]. T o g uarantee security, the multiplication-word

lengths have to be significantly greater than conventional computer word lengths.

Therefore, techniques for speeding-up the modular multiplication are important.

Brickell [2] has shown how to design a compact operation based on radix 2

without frequent data transmission between processors performing modular multi-

plication and memories storing data in progress.

This paper proposes a new modular multiplication algorithm based on a radix

higher than two that is faster than conventional algorithms based on radix 2. This

new algorithm overcomes the problem of overflowing a limited computation range

by using a partial product to adjust a partial remainder before a multiply-addition

of the partial product. Furthermore, an approximate method is developed to reduce

the comparator which determines the partial remainder. Consequently, the modu-

lar multiplier using this algorithm based on radix 4 can compute 512-bit modular

exponentiation at a throughput of 80 Kbits/s at 30 MHz.

2 New Fast Compact Algorithm

If “n” is the bit length of the modulus N, then modular multiplication is represented

as A x B module N where A, B, and N are n-bit binary integers related by A, B

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 387-399, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

388

E [0, N - 11. A conventional modular-multiplication algorithm shown in Figure
l (a) multiplies first and then divides the 2n-bit product by the modulus N. This
algorithm cannot accomplish high-speed computation and needs a massive amount
of hardware because data transmission between processors and memories occurs
frequent 1 y.

Consequently, methods using specialized hardware have been developed [2,3,4].

These methods use compact n-bit-length operators in which each subtraction step
in binary division is embedded in the repeated multiply-addition. Brickell 121 has
particularly proposed a modular multiplier that can perform one step of addition

and subtraction simultaneously in each clock pulse. The modular multiplier needs
about n clock pulses.

This section describes a new algorithm based on a radix higher than two, which
can reduce the amount of processing.

389

2.1 Approaches

A higher radix has been used to speed-up ordinary multiplication and division.
For modular multiplication, Baker [5] has designed an algorithm which combines
modular subtraction based on radix 4 and multiply-addition based on radix 2 to
simplify operation as shown in Figure l (b) . However, until now, no algorithm using
a higher radix to speed-up modular multiplication has been developed because of

the problem of overflowing a finite computation range.
The new algorithm presented here was designed to speed-up modular multipli-

cation by using the same Ggher radix throughout. In practice, the addition and
subtraction steps can be reduced to half or less those of the other algorithms as
shownin Figure 1 (c).

The proposed algorithm is carried out by using the following equation repeatedly.

where "k" is the s tep number of repeated processing, "r" is the radix number,
R(k) and R(k-') are partial remainders, b(k)A is a partial product, and c (k) N is a
modulus subtracter. To overcome the problem of overflowing, this algorithm uses
the following approaches:

(1) TO prevent the absolute value of the next partial remainder R(k-') from over-
flowing the upper limit d N (the variable d is derived in Appendiz A) , the
modulus subtracter c (k) N is determined by using the next partial product
b(Ic - l) A in advance.

(2) To reduce the absolute range of the partial product b(Ic)A, the multiplicand A
is modified from the range [0, N - 11 into the range [-N/2, N / 2] .

2.2 Procedure based on a Higher Radix

The main procedure of the algorithm is explained by using the modified Robertson's
diagram. Figure 2 shows the diagram for radix 4 in which the boundary variable
d equals 7/12. The horizontal a x i s shows the partial dividend (rRtk) + b (k) A) / N

plus the present partial product b(k)A. The vertical
axis shows the next remainder R(k- ') /N . The graph c (where c E {-2, -1 ,0 ,1 ,2}
for radix 4) in the diagram represents Eq. After the subtracter c (k) N is
determined by the graph to have the value of (T R (~) + b (k) A) / N in the horizontal
axis, the remainder R(k-') is calculated.

' of the present remainder

(1).

390

The graph c takes the form of several discrete lines, each with a fixed 45-degree
slope. However, this modified Robertson’s diagram is different from the ordinary
Robertson’s diagram [S). For example, in Figure 2, the window enclosing the range
[-7/3,7/3] and [-7/12 - bA/(4N), +7/12 - bA/(4N)] moves up or down according
to the value of the each coefficient b(k - 1). Then, the boundary indices, 42 , !1 , ! -1 ,

and 1 - 2 , which show the boundaries between the discrete lines, move left or right.
The algorithm procedure is as follows:

Step 1 (initialme the numbers):

where r‘ = Zog2(f).

4R‘k)+ b(k)A

.- 7
3

N,

--- 7 b(k-l)A
12 4N

Figure 2 Modified Robertson’s diagram
for the new algorithm
(in a case of radix 4)

39 1

Step 2 (repeat Ln/r'J + 1 rounds):

c (k) +- f c ((rR(k) + b(lc)A),b(lc - 1))

R(k-l) t rR(') + b(lc)A - c (k) N

k t l c - 1

(3)

(4)

Step 3 (last routine):

if R(') 2 0 A t { R(o)
R(O) + N otherwise

In this procedure, we let variables R and A have sign bits, respectively.

Notes:

function fc(R, b):

where

l;
4-i E -i + 1/2 - b A / (r N) ,
and the positive integer i is in {1,2,

i - 1/2 - b A / (r N) ,

, r / 2 } .

The boundary indices (& , t ' - i) are prepared beforehand for all 6 E { - ~ / 2 , . - * ,
-I,O,I,. , r / 2 } .

function b (k) for the multiplier B:
71-1

b (k) +- -rB[r'k] + C rB[r'k - m]/2"+' + B[r'k - r'] (6)
m=O

where by choosing bit-level representation, the variable B is represented by the

vectors B(n], B[n - 11, - - - , and B[l], and B[O] = 0. Eq. (6) can satisfy Yk) E
{ - r / 2 , - * - , -1 ,O , 1, - - - , r / 2 } .

We can let R represent the usual binary remainder in a carry-save redundant
form. R has two components: the sum R, and the carry R,, where R R, + 2R,.
By using carry-save adders, we can reduce carry propagation until every addition
and subtraction pair takes only one clock.

392

2.3 Approximate method

To simplify the n-bit-length comparison in Eq. (5) for determining the modulus
subtracter c N , the comparison is replaced with a short-precision comparison of e;N
and R. Consequently, the previous function f ,(R,b) in section 2.2 is replaced the
following function.

function f,(R, b):

where
L . = - i - 1/2 - bAt,/(rNt,),

L-i = -i + 1/2 - bAtq/(rNt ,) ,
Rt, (top (z + logz(r)) bits of R},
Nt, {top z bits of N},
At, {top z bits of A).

The number of top bits x (x = 7 for radix 4) is derived in Appendiz B. Li and L-i
which are approximate numbers corresponding to the boundary indices t; and t-;
are prepared beforehand for b E { - r / 2 , . . . ,-l,O,l,.--,r/2}.

2.4 Remarks

This algorithm is fast (as shown in Table I) because steps for addition and sub-
traction are reduced, and it can use a compact operator with an n-bit word. Other
features of the algorithm related to hardware are as follows:

(1) Small amount of hardware:
The partial product bA and the modular subtracter cN are produced by using
only selectors and exclusive ORs. The coefficient c (k) is determined by the
short-precision comparator.

(2) Easy to speed-up:
The algorithm can use carry-save adders which have no carry propagation.

393

worst
case

Table 1 Comparison of modular multiplication
algorithms

2n/r' 2n r'
(multiply: n/r') (multip1y:n) (2 if r=4)
(modulo: n/r') (modulo:n) (3 if r=8)

#action I ratio
alaorit m

2n(r-1)/(rr') 5n/4 1 average
case (multiply: n(r-1)/(rr')) (multiply: n/2) i~ . i if r =4)

(modulo:n(r-l)/(rr')) (modulo:3n/4) (2.1 if r =8)

(3) Easy to expand:
The algorithm has a bit-slice structure.

3 Applications for Radix 4

A radix-4 modular multiplier is suitable for implementing the proposed algorithm
in the latest C-MOS technology, so applications for radix 4 are described in this
section.

3.1 Procedure for Radix 4

In the procedure in Jectiorr 2.2, the new algorithm has to perform Eqs. (3) and (4)

simultaneously. However, it is hard to speed-up this procedure, because the t o t d
delay time is the delay time of the function fc of Eq. (3) plus the addition operation
in Eq. (4).

Therefore, the procedure is modified to the following procedure:
Step 1 (initialize the numbers):

If N < 2A, A t -4 - N .

394

Step 2 (repeat Ln/2J + 1 rounds):

R(k-') t 4(R(k) - c(k + 1)N) + b(k)A

c (k) + f,(R("-'),b(k - 1))

k + k - 1

Step 3 (last routine):

The modified procedure gives the function f, a delay time of one clock pulse to
produce the coefficient c{lc).

3.2 Generation of Partial Product Coefficient b related by
Redundant Multiplier B

To speed-up modular exponentiation using the modular multiplier, the modular
multiplier has to be able to deal directly with the multiplier B in a carry-save
redundant form because the final remainder R(') may be put in the place of the
multiplier B. Brickell's algorithm can successfully deal with redundant numbers B,
and B, of the multiplier B (B = B, + 2B,) by using the characteristic that

where s + u @ v, u t u A v , and u and v are independently 0 or 1. However,
our algorithm cannot use Brickell's technique which is based on radix 2. Therefore,
we have extended Booth's multiplication [6] for the redundant multiplier B. Eq.
(6) is modified to the following function b (k) . This new method produces a radix-4
partial product bA by using 4 neighborhood bits of B, and B, {shown in Appendix

0

395

0 function b (k) for the redundant multiplier B:

+ B , [2 k - 21 V Bc[2k - 31 V (B,[2k - 31 A Bc[2k - 41)

Eq. (13) is derived in Appendiz C. It satisfies b (k) E {-2, -1,O, 1 , 2 } .
If the multiplier B is a single number, then B, = 0.

3.3 Hardware Implementation

The modular multiplier using this algorithm, which can perform one step of addition
and subtraction simultaneously in each clock pulse, is constructed by arranging n
cells into an array. Each cell, which has 5 registers, 3 full adders, and some logic
gates as shown in Figure 3, contains about 100 gates.

u w w u w w x

1-bit register of y
1 u UOVOW

Figure 3 Cell of "R (k-1) +4(R'k'-c(kt1)N) tb (k)A"

396

Using the latest C-MOS technology, the total delay time, most of which is the
delay time of adders and the writing time for registers, is about 20 to 30 ns. There-
fore, the 512-bit modular multiplier has about 50 Kgates and a delay time of about
8 ~ s . The delay time for 512-bit modular exponentiation using it is about 6 ms.

4 Conclusion

A new compact modular-multiplication algorithm has been developed based on a

higher radix using an n-bit-length operator. The throughput of the algorithm is
more than twice as fast as conventional ones. This algorithm allows a 512-bit mod-
ular multiplier based on radix 4 to be made with about 50 Kgates. The throughput
of 512-bit modular exponentiation using it will be about 80 Kbits/s at 30 MHz.

Acknowledgment

The author wishes to express his thanks to Dr Kunio Murakami who provided him
with the opportunity to pursue this research. He would also like to thank Tsutomu
Ishikawa and the other members of NTT LABS who discussed the research.

References

11) Rivest, R.L., Shamir, A., and Adleman, L., “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Comm.ACM, V01.21(2), pp.120-
126, Feb.1978.

[2] Brickell, E.F., “A Fast Modular Multiplication Algorithm with Application
to Two Key Cryptography,” Advances in Cryptology- CRYPT0’82, pp.51-60,
Plenum NY, 1983.

[3] BlaMey, G.R., “A Computer Algorithm for Calculating the Product AB Modulo
M,” IEEE Trans.Comput., V01.c-32, pp.497-500, May 1983.

[4] Hoornaert, F., Decroos, M., Vandewdie, J., and Govaerts, R., “Fast RSA-
hardware: Dream or Reality ?,” Advances in Cryptology- EUROCRYPT’88,
pp.257-264, Springer-Verlag, 1988.

[5] Baker, P.W., “Fast Computation of A * B Modulo N,” ElectronLett., Vo1.23,
No.15, pp.794-795, July 1987.

397

[6] Hwang, K.,"Computer Arithmetic: Principles, Architecture, and Design," John
Wiley & Sons, 1979.

Appendix A:
Derivation of the boundary variable d
(For mdiz 4)
The vertical boundary variable 7/12 in Figure 2 is assumed to be the boundary
variable d.
First, the following equation is the necessary condition for the graph to continue.

(14)
1

d > -.
2

The condition that (4R + b A) / N exists in the horizontal range [-4d,44 is

lbAl 4d 5 2 + d - -
4N *

The conditions of lbl 5 2 and IAl 5 N / 2 allow Eqs. (14) and (15) to be transformed
into

1 7
- < d < - - .
2 12

Consequently,

7 d = -
12

is obtained.

(General case for mdiz r)
By using the same method as in the previous case and the conditions of Ibl 5 r / 2 ,
I - cI < r / 2 , and IAI 5 N / 2 ,

1 1 d = - + -
2 4(r - 1)

is obtained.

Appendix B: Derivation of a top-bit number
(Definitions)

R = r R + b A
{ top 3: bits of N }
{ top z bits of A }

}

Ntop
A t ,

&, = { top (z + l og , (r)) bits of

398

where "2" is a positive integer, and b b (k) .

Case of mdiz 4)
Figure 2, the boundary index el between c = 0 and c = +1 is

1 bA e l = - - -
2 4N

where b G b(k - 1).
Let L1 be the approximate value of C1,

(23)

If the following equation is satisfied, then the n-bit-length comparison between ti
and R can be replaced by the short-precision comparison between L1 and R,.

€ 5 6 - 6 ' (25)
where

E = l R / N - Rt,/Nt,l
5 = d - 1/2 = 1/12

6' 5 IL1 - ell
By using Ei/N 5 rd = 7/3, Eq. (26) is transformed into

By using Ibl 5 2,

From Eqs. (25), (27), (29), and (30),

N t , 2 52.

Because the top bit of N t , is always 1,

N t , 2 2"-'. (32)

Consequently, selecting the minimum value of z under the conditions of Eqs. (31)
and (32) gives

x = 7. (33)
In the other cases for the indices, t?,, L1, and L2, Eq. (33) is also satisfied.

eneral case for radiz r) LG Y using the same method as in the previous case, we obtain

Ntop 2 4(r - l) (r d + 2).

21 = CIOgz{ (T - l) (r d + 2)}1 t 3.

(34)

(35)

Therefore, the minimum d u e of x is

399

Bc : . a . Bd2k-11 Bc[2k-2] Bc[2k-3]

Appendix C : Derivation of Eq. (13)

Let us modify the digits in the upper region "k" to radix-4-multiply coefficient b (k)
(b(h) E {-2,-110,112}) by using the digits in the lower region "k-1" where the
condition of Eq. (12) is satisfied (these regions are shown in Figure C.1).

First, assume the auxiliary variables (c k + * , s k in the upper region "k" are the
carry c k + l and the sum C?k shown in Table c.1. d h ese satisfy the conditions c k + l E
{0,1} and 8k E {-2,-1,0,1} .

Bc[2k-4]1 . a .

If the next equation is performed:

b (k) s k -k c k , (36)

then Eq. (36) satisfies b (k) E { -2 , -1 ,0 ,1 ,2} . Consequently, Eq. (13) is derived
from Eq. (36) and the auxiliary variables shown in Table C. l .

Lthe upper region "k" - 1 r, 1 - the lower regiod'k-1J'

Figure C. 1 Alignment of Bs and Bc

Table C.1 Definition of (c k + l r s k)

Note: X means that (Ck+l,Sk)dOeSn'f have any value.

	A Fast Modular-multiplication Algorithmbased on a Higher Radix
	Introduction
	New Fast Compact Algorithm
	Approaches
	Procedure based on a Higher Radix
	Approximate method
	Remarks

	Applications for Radix 4
	Procedure for Radix 4
	Generation of Partial Product Coefficient b related byRedundant Multiplier B
	Hardware Implementation

	Conclusion
	Acknowledgment
	References
	Derivation of the boundary variable d
	Derivation of a top-bit number
	Derivation of Eq. (13)

