
Zero-Knowledge Authentication Scheme with
Secret Key Exchange
(extended abstract)

Jgrgen Brandt, Ivan Damgkd, Peter Landrock, Torben Pedersen

University of Aarhus,
Department of Mathematics and Computer Science.

Abstract

In this note we first develop a new computationally zero-knowledge interac-
tive proof system of knowledge, which then is modified into an authentication
scheme with secret key exchange for subsequent conventional encryption.
Implemented on a standard 32-bit chip or similar, the whole protocol, which
involves mutual identification of two users, exchange of a random common se-
cret key and verification of certificates for the public keys (RSA, 512 bits) takes
less than 0.7 seconds.

1 Introduction

Recently, some very effective zero-knowledge identification-schemes have been con-
structed, such as Fiat-Shamir, [FS], Micali-Shamir, [MS], and Guillou-Quisquater,
[GQ]. However, they only provide authentication, not confidentiality. Consequently,
if one aims at implementing a hybrid system based on public keys to provide user
authentication and secret key exchange, these fast schemes are of no help.

The protocol, we are going to describe, is designed for software implementation
on a standard chip such as Intel 80386 or Motorola 68030 or perhaps on a DSP-chip
with the extra requirement that the whole communication setup is based on 512 bits
RSA-modulus and takes less than 2 seconds.

2 The Basic Authentication Scheme

We first describe an example of a more genera1 construction of a computationally
zero-knowledge interactive proof system of knowledge based on a public key system.

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 '88, LNCS 403, pp. 583-588, 1990.
0 Spnnger-Verlag Berlin Heidelberg 1990

584

In the example we use RSA as the public key system, but the method would work in
general under some reasonably weak assumptions.

For proof technical reasons we need two independent general public key pairs
(one-way functions with trapdoor) i i = jij, L? a public exponent prime to #(fi), and
iT. = pij, E a public exponent prime to q 5 (~) . (i i , 2) and (R , e) can be generated when
the system is set up. Then j j , i j ,p and p can be deleted and are therefore assumed
unknown to all users. Thus the prover, P and the verifier, V , receive as auxiliary
input 5 and A, which they must trust to be generated correctly. This is similar to the
non-interactive zero-knowledge model where P and V share a bit-string which they
must trust to be random [BFM].

In the final version of this paper, we remove the need for fi. This requires a
more complicated argument to prove the zero-knowledge property, but simplifies the
protocol (see Section 4).

Moreover each prover computes his own public-key pair n = p q , e public expo-
nent, d secret (ed 3 1 mod $(n)) . The "knowledge" he is going to prove to possess is
that he can provide arbitrary signatures md mod n. For convenience, we assume that
k = logn = log5 = logfi.

Protocol:

1. V chooses arbitrary bit-strings Q, R of length $logn, subject to (Q 11 R) < n,
where (Q 11 R) is the number represented by the concatenation, R in the least
significant half.
He also chooses S,S' of length f log6 , subject to (S 11 R),(S ' 11 &) < 6.
He computes (Q 11 R)" mod n, (S 11 R)? mod ii and (S' I(Q)' mod fi and sends
these numbers to P.

2. P recovers (Q 11 R) , chooses T , T', arbitrary bit strings of length f log n , subject
to (T 1) R),(T' 11 Q) < R , computes (T 11 R)' mod FL and (T' 11 Q)z mod f i and
sends these numbers to V .

3. V sends S, S' to P.

4. Using what he received in step 2) and 3), P checks the values for (S 11 R)' mod fz
and (S' 11 Q)' mod 6 that he received in step 1).
If OK, he sends T , T' to V . Otherwise, he halts.

5. V uses T , T' to check the value for (T 11 R) E mod fi and (T' 11 &)'mod 6 he
received in step 2).
If OK, he accepts. Otherwise he rejects.

We now informally sketch how to prove the correctness and security of this protocol.
We will say that f(z) is pseudorandom given g(z) (where x E (0, I l k) if no polynomial
time probabilistic algorithm can distinguish between pairs of the form (g(z), f(z)) and
(g(z), r), where r is chosen uniformly from lrn(f).

585

It has been shown earlier, [ACGS], that the least significant logk bits of x are
pseudorandom given ze mod n. Following Micali and Schnorr [MS] we stretch this a
little to get

Assumption*:
The least significant ik bits of 5 are pseudorandom given ze mod n if the factors of
n are unknown.

When we speak of a proof system of knowledge, we mean that the following must
hold for an arbitrary prover P': if P' completes the protocol successfully with non-
negligible probability, then there exists a probabilistic polynomial time algorithm,
which with the help of P" finds x from xc mod n with non-negligible probability.

This is a little twist of the notion defined by Fiat, Feige and Shamir in [FFS]:
a prover does not prove his possession of a certain bit-string, but his ability to do
something.

Theorem 1.
Under * the protocol is a zero-knowledge proof system of knowledge.

Proof
Zero- knowledge:
Given an arbitrary verifier, V", we describe a simulator, M p . We may wsume that
the algorithm used to generate f i is public. Therefore Mv. can generate ii with known
factorization and correct distribution and give this number to V' as input. We may
now proceed as follows:

1. Receive (& I/ R)" mod n, (S] I R)E mod ii and (S' 11 Q) E mod ii ifrom V'.

2. Recover (Q 11 R) , and check against (Q 11 R)" mod n. If OK, compute and send
(T 1) R)' mod f i and (7'' 11 Q)z mod A as P would have done. Otherwise send
X' mod f i , Y' mod f i for random X , Y .

Now observe:

If V' sends correct messages in step I), we can complete the protocol with
exactly the right distribution of messages.

If this is not the case, P would always stop in step 3) , and the random X e mod f i ,
Y e mod f i cannot be distinguished from the "real" (T 11 R)? mod i i , (T' 11 &Ie mod
ii - by *.

iFrom this, it is clear that the simulation works.

Proof-s ystem:
Completeness is obvious. As for soundness assume some P' completes the protocol

586

with non-negligible probability. We now describe an algorithm Mp. which will find
z from ze mod n with non-negligible probability.
Choose i i with known factorization and give this as input to P'. Suppose we are
given zc mod n, z unknown. Then choose y , z < fi and send x" mod n, y E mod 5 and
z E mod ii to P'.
Receive (T 1 1 B) E mod ii and (T' I/ Q)z mod f i ifrom P', recover (Q 1 1 R) = 2.
By *, P' cannot distinguish the random y E mod 5 , z' mod fi ifrom the real (S 11 Iz)z mod
ii and (S' 11 Q)' mod f i) hence the recovered (Q 11 R) will be correct with essentially
the same (i.e. non-negligible) probability as in an actual conversation with V . 0

In a formal proof of this fact, what we get is a result saying that P' finds x with the
same probability when talking to V as when talking to Mp. the combined system
(P*, M p -) can invert yz mod fi. But this is an empty statement if M p already knows
(@,a) . This is why we cannot use f i = 5.

3 Combining with Key-Exchange

For this, we can use exactly the same protocol as before, except that V will choose
first I< < n and compute (Q 11 R) G I<" mod n. The protocol runs as before, but P
can recover I< as K 3 ((Q 11 R)')" mod n. We can now use the least significant $ k
bits of I< as secret key.

Theorem 2.
The secret key exchanged as above is pseudorandom given the conversation between
P and V , assuming *.

Proof
By *) the key is pseudorandom given (Q I / R) , and given (Q / I R) , the rest of the
conversation can be simulated exactly. O

4 Practical Implementation

As mentioned earlier, it is possible to redesign the protocol so that it does not use i i.
The resulting version is given below. By a somewhat complicated argument, given in
the final version of this paper, also this version can be proved to be a zero-knowledge
proof system. It is an open problem, whether the protocol remains correct if we use
the tempting simplification of putting R = n.

Our protocol is intended for use in a public network, where users wish to be
convinced about each others identities before communicating secretly. Part of this
goal is often achieved by letting some center. C , provide signatures (certificates) on

public keys. It would be natural to let C provide f i too. This does not constitute any
serious problems: as mentioned, the factorization of fi can simply be forgotten after
setting up the system.

Thus the practical version of the protocol will be as follows:

1. V chooses IC < n randomly and computes Q and R as (Q 1 1 R) E K e mod n.
He then computes (Q (1 R)‘ mod TI and sends this number to P .

2. P recovers K , Q and R. As before P chooses T , T’, computes (T 11 R) E mod ?i
and (T’ 11 Q)‘ mod f i and sends these numbers to V .

3. V sends Q, R to P.

4. P checks the values for Q and R.
If OK, he sends T , T‘ to V. Otherwise, he halts.

5. V checks the value for (T]I R)‘ mod 5 and (T’ 11 Q) E mod ~ he received in step
2).
If OK, he accepts. Otherwise he rejects.

For efficiency, it is advisable to choose e and E small, i.e. M 3. Then the only
really time consuming part is finding zd2 mod n from x. Note that the version with key
exchange does not require more time, if e is small. P can precompute d2 mod 4(n),
and the protocol will then only require 2 extra exponentiations to the e’th power,
which is negligible. With a little care, it is possible to use e = 2, which will be even
more efficient.

Finally note, that A can prove himself to B while B is proving himself to A. In
particular we can ensure that “decryption” of (Q (1 R)“ takes place simultaneosly for
A and B. Thus this will not take more time than the basic version of the protocol.

It will be natural to obtain the final key as the xor of the two produced keys, since
this will ensure that the key is known to precisely A and B , and no one else.

The basic operations needed for this protocol have been implemented on a stan-
dard 16 MHz Intel 80386 processor. The results of this show that the whole protocol,
including verification of public-key certificates can be completed in less than 0.7 sec-
onds.

References

[ACGS] Alexi,W., Chor, B., Goldreich, 0. and Schnorr, C.P.: “RSA and Rabin Func-
tions: Certain Parts Are as Hard as the Whoie’. Proc. of the 25th FOCS,
1984, pp. 449-457.

[BFM] Blum, M., Feldman, P. and Micali, S.: “Proving Security Against Chosen
Cyphertext Attack”. These proceedings.

[FFS] Feige, U., Fiat, A. and Shamir, A.: “Zero Knowledge Proofs of Identity”. Proc.
of the 19th STOC, 1987, pp. 210-217.

[FS] Fiat, A. and Shamir, A.: ‘How to Prove Yourself: Practical Solution to Iden-
tification and Signature Problems”. Advances in Cryptology - CRYPTO’86,
Lecture Notes in Computer Science 263, 1 9 8 7 ; ~ ~ . 186-199.

[GQ] Guillou, L. and Quisquater, J-J: “A “Paradoxical” Identity-Based Signature
Scheme Resulting from Zero-Knowledge” . These proceedings.

[MS] Micali, S. and Shamir, A.: “An Improvement of the Fiat-Shamir Identification
and Signature Scheme”. These proceedings.

	Abstract
	Introduction
	The Basic Authentication Scheme
	Combining with Key-Exchange
	Practical Implementation
	References

