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Abstract 

In this note we first develop a new computationally zero-knowledge interac- 
tive proof system of knowledge, which then is modified into an authentication 
scheme with secret key exchange for subsequent conventional encryption. 
Implemented on a standard 32-bit chip or similar, the whole protocol, which 
involves mutual identification of two users, exchange of a random common se- 
cret key and verification of certificates for the public keys (RSA, 512 bits) takes 
less than 0.7 seconds. 

1 Introduction 

Recently, some very effective zero-knowledge identification-schemes have been con- 
structed, such as Fiat-Shamir, [FS], Micali-Shamir, [MS], and Guillou-Quisquater, 
[GQ]. However, they only provide authentication, not confidentiality. Consequently, 
if one aims at implementing a hybrid system based on public keys to provide user 
authentication and secret key exchange, these fast schemes are of no help. 

The protocol, we are going to describe, is designed for software implementation 
on a standard chip such as Intel 80386 or Motorola 68030 or perhaps on a DSP-chip 
with the extra requirement that the whole communication setup is based on 512 bits 
RSA-modulus and takes less than 2 seconds. 

2 The Basic Authentication Scheme 

We first describe an example of a more genera1 construction of a computationally 
zero-knowledge interactive proof system of knowledge based on a public key system. 
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In the example we use RSA as the public key system, but the method would work in 
general under some reasonably weak assumptions. 

For proof technical reasons we need two independent general public key pairs 
(one-way functions with trapdoor) i i  = jij, L? a public exponent prime to #(fi), and 
iT. = pij, E a public exponent prime to q 5 ( ~ ) .  ( i i ,  2) and ( R ,  e )  can be generated when 
the system is set up. Then j j , i j ,p  and p can be deleted and are therefore assumed 
unknown to all users. Thus the prover, P and the verifier, V ,  receive as auxiliary 
input 5 and A, which they must trust to be generated correctly. This is similar to the 
non-interactive zero-knowledge model where P and V share a bit-string which they 
must trust to be random [BFM]. 

In the final version of this paper, we remove the need for fi. This requires a 
more complicated argument to prove the zero-knowledge property, but simplifies the 
protocol (see Section 4). 

Moreover each prover computes his own public-key pair n = p q ,  e public expo- 
nent, d secret (ed 3 1 mod $(n) ) .  The "knowledge" he is going to prove to possess is 
that he can provide arbitrary signatures md mod n. For convenience, we assume that 
k = logn = log5 = logfi. 

Protocol: 

1. V chooses arbitrary bit-strings Q, R of length $logn, subject to (Q 11 R )  < n, 
where (Q 11 R )  is the number represented by the concatenation, R in the least 
significant half. 
He also chooses S,S' of length f log6 ,  subject to (S 11 R),(S '  11 &) < 6. 
He computes (Q 11 R)" mod n, (S 11 R)? mod ii and (S' I( Q)' mod fi and sends 
these numbers to P.  

2. P recovers (Q 11 R) ,  chooses T ,  T', arbitrary bit strings of length f log n ,  subject 
to (T 1) R),(T' 11 Q) < R ,  computes (T  11 R)' mod FL and (T' 11 Q)z mod f i  and 
sends these numbers to V .  

3. V sends S, S' to P.  

4. Using what he received in step 2) and 3), P checks the values for (S 11 R)' mod fz 
and (S' 11 Q)' mod 6 that he received in step 1). 
If OK, he sends T ,  T' to V .  Otherwise, he halts. 

5.  V uses T ,  T' to check the value for (T 11 R ) E  mod fi and (T' 11 &)'mod 6 he 
received in step 2).  
If OK, he accepts. Otherwise he rejects. 

We now informally sketch how to prove the correctness and security of this protocol. 
We will say that f(z) is pseudorandom given g(z) (where x E (0, I l k )  if no polynomial 
time probabilistic algorithm can distinguish between pairs of the form (g(z), f(z)) and 
(g(z), r), where r is chosen uniformly from lrn(f). 
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It has been shown earlier, [ACGS], that the least significant logk bits of x are 
pseudorandom given ze mod n. Following Micali and Schnorr [MS] we stretch this a 
little to get 

Assumption*: 
The least significant ik bits of 5 are pseudorandom given ze mod n if the factors of 
n are unknown. 

When we speak of a proof system of knowledge, we mean that the following must 
hold for an arbitrary prover P': if P' completes the protocol successfully with non- 
negligible probability, then there exists a probabilistic polynomial time algorithm, 
which with the help of P" finds x from xc mod n with non-negligible probability. 

This is a little twist of the notion defined by Fiat, Feige and Shamir in [FFS]: 
a prover does not prove his possession of a certain bit-string, but his ability to do 
something. 

Theorem 1. 
Under * the protocol is a zero-knowledge proof system of knowledge. 

Proof 
Zero- knowledge: 
Given an arbitrary verifier, V",  we describe a simulator, M p .  We may wsume that 
the algorithm used to generate f i  is public. Therefore Mv.  can generate ii with known 
factorization and correct distribution and give this number to V' as input. We may 
now proceed as follows: 

1. Receive (& I/ R)" mod n, (S ] I  R)E mod ii and (S' 11 Q ) E  mod ii ifrom V'. 

2. Recover (Q  11 R) ,  and check against (Q 11 R)" mod n. If OK, compute and send 
(T 1) R)' mod f i  and (7'' 11 Q)z mod A as P would have done. Otherwise send 
X' mod f i ,  Y' mod f i  for random X , Y .  

Now observe: 

If V' sends correct messages in step I), we can complete the protocol with 
exactly the right distribution of messages. 

If this is not the case, P would always stop in step 3) ,  and the random X e  mod f i ,  
Y e  mod f i  cannot be distinguished from the "real" (T 11 R)? mod i i ,  (T' 11 &Ie mod 
ii - by *. 

iFrom this, it is clear that the simulation works. 

Proof-s ystem: 
Completeness is obvious. As for soundness assume some P' completes the protocol 
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with non-negligible probability. We now describe an algorithm Mp. which will find 
z from ze mod n with non-negligible probability. 
Choose i i  with known factorization and give this as input to P'. Suppose we are 
given zc mod n, z unknown. Then choose y ,  z < fi and send x" mod n, y E  mod 5 and 
z E  mod ii to P'. 
Receive (T 1 1  B ) E  mod ii and (T' I/ Q)z mod f i  ifrom P', recover (Q 1 1  R)  = 2. 
By *, P' cannot distinguish the random y E  mod 5 ,  z' mod fi ifrom the real (S  11 Iz)z mod 
ii and (S' 11 Q)' mod f i )  hence the recovered (Q 11 R )  will be correct with essentially 
the same (i.e. non-negligible) probability as in an actual conversation with V .  0 

In a formal proof of this fact, what we get is a result saying that P' finds x with the 
same probability when talking to V as when talking to Mp. the combined system 
(P*,  M p - )  can invert yz mod fi. But this is an empty statement if M p  already knows 
(@,a ) .  This is why we cannot use f i  = 5. 

3 Combining with Key-Exchange 

For this, we can use exactly the same protocol as before, except that V will choose 
first I< < n and compute (Q 11 R)  G I<" mod n. The protocol runs as before, but P 
can recover I< as K 3 ((Q 11 R)')" mod n. We can now use the least significant $ k  
bits of I< as secret key. 

Theorem 2. 
The secret key exchanged as above is pseudorandom given the conversation between 
P and V ,  assuming *. 

Proof 
By *) the key is pseudorandom given (Q I /  R) ,  and given (Q / I  R) ,  the rest of the 
conversation can be simulated exactly. O 

4 Practical Implementation 

As mentioned earlier, it is possible to redesign the protocol so that it does not use i i. 
The resulting version is given below. By a somewhat complicated argument, given in 
the final version of this paper, also this version can be proved to be a zero-knowledge 
proof system. It is an open problem, whether the protocol remains correct if we use 
the tempting simplification of putting R = n. 

Our protocol is intended for use in a public network, where users wish to be 
convinced about each others identities before communicating secretly. Part of this 
goal is often achieved by letting some center. C ,  provide signatures (certificates) on 



public keys. It would be  natural to let C provide f i  too. This does not constitute any 
serious problems: as mentioned, the factorization of fi can simply be forgotten after 
setting up the system. 

Thus the practical version of the protocol will be as follows: 

1. V chooses IC < n randomly and computes Q and R as (Q 1 1  R) E K e  mod n. 
He then computes (Q ( 1  R)‘ mod TI and sends this number to P .  

2. P recovers K ,  Q and R. As before P chooses T ,  T’, computes (T 11 R ) E  mod ?i 
and (T’ 11 Q)‘ mod f i  and sends these numbers to V .  

3. V sends Q, R to P. 

4. P checks the values for Q and R. 
If OK, he sends T ,  T‘ to V. Otherwise, he halts. 

5.  V checks the value for (T ]I  R)‘ mod 5 and (T’ 11 Q ) E  mod ~ he received in step 
2). 
If OK, he accepts. Otherwise he rejects. 

For efficiency, it is advisable to choose e and E small, i.e. M 3. Then the only 
really time consuming part is finding zd2 mod n from x. Note that the version with key 
exchange does not require more time, if e is small. P can precompute d2 mod 4(n), 
and the protocol will then only require 2 extra exponentiations to the e’th power, 
which is negligible. With a little care, it is possible to use e = 2, which will be even 
more efficient. 

Finally note, that A can prove himself to B while B is proving himself to A. In 
particular we can ensure that “decryption” of (Q ( 1  R)“ takes place simultaneosly for 
A and B. Thus this will not take more time than the basic version of the protocol. 

It will be natural to obtain the final key as the xor of the two produced keys, since 
this will ensure that the key is known to precisely A and B ,  and no one else. 

The basic operations needed for this protocol have been implemented on a stan- 
dard 16 MHz Intel 80386 processor. The results of this show that the whole protocol, 
including verification of public-key certificates can be completed in less than 0.7 sec- 
onds. 
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