
Diffie-Hellman is as Strong as Discrete Log for
Certain Primes

Berr den Boer *

Centre for Mathematics and Computer Science
Kruislaan 413 1098SJ Amsterdam The Netherlands

Abstract

Diffie and Hellman proposed a key exchange scheme in 1976, which got
their name in the literature afterwards. In the same epoch-making paper,
they conjectured that breaking their scheme would be as hard as taking
discrete logarithms. This problem has remained open for the
multiplicative group modulo a prine P that they originally proposed.
Here it is proven that both problems are (probabilisticly) polynomial-time
equivalent if the totient of P-1 has only small prime factors with respect to
a (fixed) polynomial in 2lugP.

There is no algorithm known that solves the discrete log problem in
probabilistic polynomial time for the this case, i.e., where the totient of
P-I is smooth. Consequently, either there exists a (probabilistic)
polynomial algorithm to solve the discrete log problem when the totient of
P-1 is smooth or there exist primes (satisfying this condition) for which
Difie-Hellman key exchange is secure.

Introduction

Let P be a prime and g be a generator of the multiplicative group
GF(P)*. Letfbe an element of GF(P)*. Solving for x

f = g"modP,

*Supported in pan by the Netherlands Organization for Scientific Research (NWO).

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 '88, LNCS 403, pp. 530-539, 1990.
0 Spnnger-Verlag Berlin Heidelberg 1990

53 1

is called the Discrete Logarithm Problem (D.L. problem). Until now, no
general purpose algorithm has appeared that computes x mod P-I in
probabilistic polynomial time (see [Odl]). In [Poh], an algorithm is given
which solves the D.L. problem in polynomial time for the case where all
prime factors of P-I are smaller than some constant B. The time remains
polynomial if we take B = q(2logP), for some fixed polynomial q(.).
Numbers with this property will be called smooth(with respect to P and

4).
Based on the difficulty of solving the general D.L. problem a key

exchange protocol is proposed in [DH]: The first step is to establish a prime
P and a generator g of GF(P)* common for all participants. Each party

j chooses randomly a secret number z, and computesfj = g?. T h e 4
are made public. The public numbers are sufficient to establish a secret and
common key for each pair of participants. For example let us assume that
the first party has secret x and computed

(2) fi = gx mod P.

and similarly the second party has secret y and computed

(3) f2 = gY mod P.

The first party computesf2 X and the second party computes fir.
Thus both parties obtain

(4) f 3 = gXr mod P,

which they can use as a common secret key. For a passive eavesdropper to
determine this key, he must find f3 satisfying (4) with suitable x and y
satisfying (2) and (3) where the gathered data is just

This problem will be called the D.H. problem. An obvious way to solve it
is to solve a D.L. problem with input (P,g,fl) and then to use the output x

532

to computef3 byf3 = fp. The critical question is canf3 be found
without obtaining (much) information about x or y in the process. In
[DH] the authors conjecture that solving x or y is basicly the only way to
solve the D.H. problem. More precisely they conjecture that the D.H.
problem is hard if the D.L. problem is hard. A sufficient way to prove this
is showing there exists an algorithm to solve the D.L. problem comprising
of a (probabilistic) polynomial number of calls to an algorithm which
solves the D.H. problem (here after called a D.H. oracle) and a
(probabilistic) polynomial number of "elementary" operations.

In this paper we present such an algorithm for the case where the totient
of P-1 is smooth with respect to P and q(.). In the literature no
probabilistic time algorithm '31 exists to solve the D.L. problem for primes
P for which the totient of P-I is smooth (notice that P-Z itself has to be
smooth for Pohlig-Hellman algorithm to be polynomial-time, see[Poh]).
From our design follows that either such an algorithm 3 exists or primes
P exist for which the D.H. problem is hard. In the latter case primes P
for which the biggest prime factor of P-Z is bigger than Pe for some
fixed positive real number e serve as candidates (while the double totient
of P is smooth).

Main idea

Let B be a number which depends polynomially on the logarithm of
P. It always holds that P-Z has a unique factorization MN, where the
prime factors of M are smaller than B and the prime factors of N are
bigger (or equal) than B . Assume also that the totient of P-Z is smooth.
Given a generator g of the multiplicative group modulo P and a member
fof that group we are interested in solving x from (1). It suffices to
compute x modulo M and x modulo N and use them in a Chinese
Remainder Algorithm. A solution z of the equation

fN = gzN mod P

533

is equal to x mod M . This number can be computed in polynomial time
with techniques similar to Pohlig-Hellman[Poh].

wouId give us x modulo N . At this moment it is not (publicly) known
how to solve this in polynomial time. What we do is exploiting the
D.H.oracle to solve that new equation. Because the totient of P -1 is
smooth, each prime factor Q of N appears with multiplicity 1 (otherwise
Q would be a prime factor of the totient of P - I) and moreover it holds
that Q-1 is smooth. We proceed computing x modulo N by computing
x modulo Q for each prime divisor of N .

This algorithm requires a generator h of the multiplicative group
GF(Q)*, which can be found in probabilistic polynomial time, [Riel (in a
practical setting h is already constructed while constructing the big prime
P). Either x = 0 mod Q or x = hY mod Q for some y. The first
possibility appears i f f f l= I mod P, where LQ = P-1 =MN. In this
(unlikely) case we are lucky, having found the answer (x mod Q) already.
In the other case we proceed by computing the unknown y mod Q-1.

divisor of Q-I because we can combine these answers with the Chinese
Remainder Algorithm to get y modulo Q-I . We wiIl only show how to
compute y modulo a prime divisor p of Q-1 .

Replacing N by A4 in the last equation and solving the new equatim

To compute y it is sufficient to compute y modulo any prime power

Let I be (Q-l)lp and compute U = 8. This can be done by less
than 2 210g(l) calls to the D.H.oracle. This indeed can be done because on

input (g,g@,g.b) the D.H.oracle should output @'b, Next one

computes UL and compares this with gLhla for 0 I a < p . There is
bound to be equality for one of the choices of a and for this a it holds that
a = y modulop .

The above mentioned equality occurs because it is equivalent to the
equality LhYl = Lhal mod P - I and this is equivalent to the equality
hY1 = ha1 mod Q. This last equality is equivalent to y l = a1 mod Q-
I and finally this is equivalent to y = a mod p .

Combining these answers for all prime divisors of Q-1 with the
Chinese Remainder Algorithm we get a solution for y mod Q-I and we

534

compute x = hY mod Q. Repeating this for each prime divisor Q of N
and using the the Chinese Remainder Algorithm again we establish x mod
N . Combining this with the already established value for x mod M we
have arrived at the solution of equation (I) . In, the actual algorithm in the
next section we do not mind about multiplicities of prime factors and we
will also exploit the birthday attack. Furthermore we solve y modulo Q-Z
without the Chinese Remainder Algorithm.

The main algorithm

In what follows we describe our algorithm to solve the D.L. problem
,an algorithm which is allowed to make a polynomial number of calls to a
D.H. oracle and a polynomial number of elementary steps. At the end of
this section we will be specific about these numbers.

Let q(.) be a fmed polynomial. Let P be prime and P-I = MN,
where M , resp. N has small, resp. big prime factors with respect to
B = q(log(P)) (like in the previous section). We want to solve equation
(1). We already remarked that solving x modulo M can be done in
polynomial time. In practical settings we can assume that the factorization
of N is given (otherwise finding a generator modulo P would be
difficult). If the factorization of N is not given we can find the factors of
N in probabilistic polynomial time using Pollard-p-I method [Pol] in an
adapted form (details left to the reader). As we remarked in the previous
section N is squarefree.

Let Q be prime divisor of N . We will establish w defined by x

modulo Q. Let us define L =(P-1)lQ. The algorithm to compute w

requires a generator h of the multiplicative group GF(Q)*, which can be
found in probabilistic polynomial time, [Riel (in a practical setting h is
already constructed while constructing the big prime P). Either w = 0

mod Q or w = hY mod Q. The first possibility appears iff$ = I mod
P. In this (unlikely) case we are done. In the other case we proceed by
computing the unknown y mod Q-I .

535

Now we will describe the residues which has to be computed in our
k

algorithm. Given is the factorization Q-1 = I ~ P . , where

p i <p i+] m d p k I B .
1 j= l

Define for j = (- l) , (O) , l , ..., k - l , (k)

10 = I ,

U j = f ‘j modulo P,

am.
Saj = h J modulo Q for 0 I a < rj,

536

The algorithm starts with computing Uj+1 from U, using the D.H.oracle.
All intermediate Uj have to be stored. The residues Tbj need to be stored
for each different prime divisor p j of Q-I . The residues Saj may need to

be stored (especially if p/2 is a divisor of @ I) . We compute Zj starting
withj = k-1 down to 0 and y j starting from j = k-2 down to -I as
follows. F o r j = k-I down to 0 we search for a and b for which the
equation

holds. Define zj by a+brj+l and yj-1 by yj+zjLlj. Quation (5) always

has a solution and finally we can compute w because it is equal to h
modulo Q.

Now we will briefly sketch why this algorithm computes x mod Q.
After we checked that Q does not divide n we may assume that
x = hY + Qr mod MN for some y and r. By induction we will show that

Q-I-Y -I

y + yi = 0 mod Di for i = k-1 ,...,-I.
This is trivially true for i = k-I. Consider the left side of (5). This is

equal

The exponent can be written as

(@$ + Qt) hyJ$ L ham)

for some t . The right side of (5) is equal to

Equality (5) holds iff the exponents are equal mod M N . This holds iff

537

This last equality holds iff

Under the induction hypothesis y + y j = c Dj for some c. Because lj Dj
equals mj quation (6) holds iff c + a = pj+l - b rj+l mod pj+1. Because
of the chosen range for (a,b) such an equality will OCCUT. For this pair
(a,b) we define z j = u + bj and yj-1 = y j + z j Dj. NOW it holds that

Becausepj+l Dj = Dj-1, this proves our induction step and ends the
sketch of the proof.

We repeat this algorithm for each (big) divisor Q of N and use the
Chinese Remainder Algorithm to find x modulo N. After that another
combination with x modulo M establishes the solution x (modulo P-1)
of our original problem (equation (l).)

In the following theorem we assume that the factorization of P-1 is
given and also that generators of the multiplicative groups GF{Q)* are
given for each big prime factor Q of P - I . Furthermore we require that
the D.H. oracle gives the right answer for each question.

Theorem : An algorithm to solve the D.L. problem for a prime P
for which the totient of P-I is smooth with respect to P and q requires
order log*(P) calls to the D.H.oracle and order log2(P) Jq(log0
multiplications. This algorithm requires order Iog2(P) Jm of
bits of memory space.

538

The first two assumptions of the three assumptions in the paragraph
just preceding our theorem can be dropped and we still have (probabilistic)
polynomial-time equivalence. This is also the case if we weaken the last of
the three assumptions (because of the algebraic structure we can construct
“majority answers”).

Conclusion

At this moment no efficient algorithm to compute the Discrete
Logarithm is known for the case where the totient of P contains a prime
factor bigger than Pe, where e is some fixed positive real number. So we
could safely use a Dflie-Hellman key exchange for the subcase where the
biggest prime factor of the double-totient is smaller than some fixed
polynomial in the logarithm of P

An interesting property of our algorithm to solve the D.L. problem
using a D.H. oracle is that it mimics the algorithm to solve the D.L.
problem in polynomial time without a D.H. oracle for the case where P-I
itself is smooth. It is conceivable that a polynomial-time algorithm to solve
the D.L. problem for the case where the totient of P-I (the double totient
case) is smooth may enable us to design an algorithm to solve the D.L.
problem in the triple totient case in polynomial time and a polynomial
number of calls to a D.H. problem. If this goes on for higher and higher
totients we at last have proved that either the general D.L. problem has a
polynomial-time solution or there exists primes for which the D.H.
problem is hard.

References

[DH] Diffie, W. and M.E. Hellman, New directions in cryptography, IEEE
Trans. Inf. Theory, IT-22, pp. 644-654, Nov. 1976.
[Odl] Odlyzko, A.M., Discrete logarithms in finite fields and their
cryptographic significance, Advances in Cryptology : Proc. Eurocryp t ‘84,
Lecture Notes in Computer Science 209, Springer, Berlin etc., pp. 224-
314, 1985

539

[Poh] Pohlig, S.C. and M.E. Hellman, An improved algorithm for
computing logarithms over GF(p) and its cryptographic significance, IEEE
Trans. Inf. Theory, IT-24, pp.106-110, Jan 1978.
[Pol] Pollard, J.M., Theorems on Factorization and Primality testing,
Proc. Cambr. Philos. Soc., 76, pp 521-528, 1974
[Riel Riesel, H., Primality Testing and Factorisation, B irkhauser, Boston,
1985

	Abstract
	Introduction
	Main idea
	The main algorithm
	Conclusion
	References

