
A Framework for Teaching Software Testing
using F/OSS Methodology

Sulayman K Sowe^, loannis Stamelos^ and Ignatios Deligiannis^

^ Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece. Tel: +30-2310-991927 Fax: +30-2310-998419

sksoweQcsd.auth.gr, stamelosOcsd.auth.gr
Information Technology Department, Technological Education Institute,

54700 Thessaloniki, Greece, igndel@it.teithe.gr

2

Abstract . In this paper we discuss a framework for teaching software
testing to undergraduate students' volunteers. The framework uses open
source software development methodology and was implemented in the
"Introduction to Software Engineering" course at the department of
Informatics, Aristotle University, Greece. The framework is in three
phases, each describing a teaching and learning context in which stu­
dents get involved in real software projects activities. We report on our
teaching experiences, lessons learned and some practical problems we
encountered. Results from preliminary evaluation shows that students
did well as bug hunters in the bazaar and are willing to participate in
their projects long after graduation.

1 Introduction

Software engineering (SE) educators are always in search of relevant materi­
als and novel pedagogies that will provide life-long learning experiences and
improve the quality of students learning outcomes. However, the teaching and
learning situation in SE courses in most universities is acute. Students do not
get the chance to participate in long-term projects where they can be exposed
to the SE principles and techniques we teach them. In most cases students have
to complete their assigned projects in one semester, making it difficult for them
to be involved in large and long-term projects. The reality is that SE education
does not always expose students to "real-world" projects [3]. Involving students
in software projects in local companies is one way of exposing them to real
software projects. However, [7] concluded that most companies are not wilHng
to sacrifice their software to students. By utilizing Free and Open Source Soft­
ware (F/OSS) projects freely available in the Internet, computer science (OS)
lecturers may overcome this obstacle. F/OSS projects are ^bazaars of learning^-
they offer a meaningful learning context in which students can be exposed to
real-world software development. In this paper we present a framework which
provides such a context. The framework was implemented as a pilot program to
teach software testing in the Introduction to Software Engineering (ISE) course.
Fifteen undergraduate students took part in the program. Our evaluation of the

Please use the following format when citing this chapter:
Sowe, S.K., Stamelos, I., and Deligiannis, I., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 261-266

262 Sulayman K Sowe, loannis Stamelos and Ignatios Deligiannis

framework shows that students did well in software testing in F/OSS projects.
Our contribution may also strengthen some areas of the IEEE/ACM CS curricu­
lum guidelines [4], which recommends that a CS curriculum should incorporate
Capstone projects. Like F/OSS projects, capstone projects are managed by the
students and solve a problem of the student's choice.

F/OSS in Software Engineering Education: The Bazaar model [5] of
developing F/OSS represents a decentralized software development where vol­
unteers develop software online, relying on extensive peer collaboration through
the Internet. In F/OSS projects, the developer-user alliance exposes the source
code to a large number of testers and ensures rapid evolution of the code.
According to Linus Law ("Given enough eyeballs all bugs are shallow''^), many
people (testers, debuggers, co-developers) looking at the source code will ensure
that bugs/defects will be found and fixed quickly. Many studies (e.g. [1, 2, 3, 6])
see F/OSS as a pedagogical tool and a viable methodology which gives students
practice in dealing with large quantities of code written by other people. Impor­
tant as these studies are, a framework for teaching SE courses in general and
software testing in particular in the informal context of F/OSS is lacking in the
literature. The overlook might be that the F/OSS paradigm has some pecuHar
characteristics which make teaching in this context harder to integrate into the
formal SE curricular structure of most universities.

1 Phal l i

» Pm^asSetecdcn. 1̂ fiTvoViig students i i ^

[^ ,

Fig. 1. F/OSS Teaching and Learning Framework.

2 F/OSS Framework for Teaching Software Testing

The Introduction to Software Engineering (ISE) course, in which the framework
was implemented, is offered as a 12 weeks course during the 5*̂ ^ semester. The
F/OSS framework for teaching software testing is shown in Figure 1.

2.1 Phase 1

At the beginning of the semester we discussed with the 150 students enrolled in
the course about involving them in software testing in F/OSS projects. Fifteen
students volunteered to take part. For the first two weeks the students received
8hrs of lectures on the following topics:

A Framework for Teaching Software Testing using F/OSS Methodology 263

- F/OSS project (Activities and Testing in F/OSS).
- F/OSS communities (Formation and Roles).
- Communication (Etiquettes of forums/mailing lists).
- Collaborative platforms (CVS, Bugzilla, Bug Tracking Systems (BTS), etc).

At the end of the session students were guided to browse projects hosted
at sourceforge.net. In choosing a project, students were asked to pay particular
attention to the following F/OSS projects selection criteria:

- operating system (Linux, Windows) and programming language used,
- number of developers and how active the forums are,
- development status (Alpha, Beta, Mature).

Having identified their projects, each student was asked to make a class
presentation, detailing the history of the project, bug reporting procedures,
and testing tools used.

2.2 Phase 2

In week 3 students learnt how to register in their projects, use bug tracking
systems, and browse and report bugs. They practiced writing fictitious bug
reports for their colleagues to criticize. In their projects, students implemented
the testing strategy shown in Figure 2.

R»ipT.»5Mr.wy ««»i<*ig
yurHLfet,iri«.Vt»MtJ05»

Fig. 2. F/OSS Testing Strategy.

They download and installed the software (1 - 2) and applied various soft­
ware testing techniques (3). This may result in the discovery of bugs, which are
then logged into the project's bug database using standard bug reporting pro­
cedure and tools (4). Where a student is not able to find a bug, he/she may run
more tests (5) or selected another project to continue testing (6). Every time
a student submitted a bug, he/she notifies the lecturer. Students were asked
to continuously login to check the status of their submission and engage com­
munity members. During the fifth week students who already made progress in

264 Sulayman K Sowe, loannis Stamelos and Ignatios Deligiannis

their projects by finding and submitting 2-3 bugs were asked to make a class
presentation to discuss their experiences (e.g. types of bugs found, how they
were found, what they think caused the problem, how they reported them, and
what responses, if any, were received).

2.3 Phase 3

Based on their presentations and testing activities, the students were graded
as follows: Class presentation (10%), Project participation (12%), Concise bug
reports (13%), and Testing activity (15%).

3 Results and Discussions

In validating the framework we discuss students' participation in their respective
projects and the results of a survey we conducted.

3.1 Students Testing Activates

At the end of Phase 2, two students withdrew from the program. The remaining
13 tested in 16 projects^, found 72 bugs, reported 68, fixed 15, and received 43
rephes from the F/OSS community. The mean numbers of bugs found and
reported per student were 5.54 and 5.23, respectively. This means that students
reported slightly less bugs than they found, because some of the bugs they
found were already reported. The mean value of bugs fixed per student was
1.15. Thus, the students performed best in finding and reporting bugs in their
projects. They did not do well in fixing bugs. The mean number of responses
to a bug report was 3.31. Figure 3 shows how the students fair in each activity.

Fig. 3. Distribution of students' testing activities. (6/n)=bugs found. (6r*p)=bugs
reported. (6/cc)=bugs fixed. (rep)=replies to a submitted bug.

^ Games (8), Mozilla Suite (4), Multimedia (2), Mobiles and Networks (1), Astronomy
(1)

A Framework for Teaching Software Testing using F/OSS Methodology 265

3.2 Survey results

In week 6 the students were invited to complete an online questionnaire con­
taining 21 items. The aim of the survey was to validate the framework from
students' point of view. Ten students completed the survey. We group the re­
sponses into five categories.

1. Students Motivation. According to the survey students enjoyed software
testing in F/OSS projects (100%) and would continue testing in their projects
after graduating (90%). Furthermore, most students would prefer to have
their other CS courses taught using F/OSS methodology (90%).
2. The Teaching Context. 80% of the students reported getting help
from the lecturer when selecting their projects, making it easy for 60% of
them to find a project to participate in. While students collaborated and
discussed their projects amongst themselves (90%), 80% preferred discussing
their projects and bug reports (50%) with the lecturer.
3. Using F / O S S Testing Tools. 80% of students prefer the BTS to report
bugs because it is easy to use.
4. Testing Activity. On average, students used the software for at least 1-2
days (50%) before they could find any bugs. Since students found the BTS
easy to use, the process of reporting bugs was also easy (90%). While it was
easy for most students to describe the bugs they found (70%), 20% found
this exercise difficult. When asked if finding bugs in their projects was easy,
students responses were evenly split (50% - 50%). Students were able to read
and understand bugs others reported (80%), but only a few (30%) are able
to fix any bugs reported in their projects. Even a smaller percentage (20%)
were able to fix their own bugs. So our students could best be described as
bug hunters than bug fixers. In this role Students are able to contribute to
their projects 'eyeballs' just looking for and contributing bugs.
5. F / O S S Community Response. At the beginning many students were
hesitant that they were not getting prompt feedback, but 70% of them later
reported that their projects' communities are very responsive. 60% reported
that their projects (or rather the portals which host the project) provided
useful information to help them in their bug reporting activity.

4 Conclusion

In this paper we have proposed a framework for teaching software testing us­
ing F/OSS methodology. The implementation of the framework in a formal CS
course with a sample of fifteen undergraduate volunteers was discussed. Our
experience shows that SE education could benefit from such a teaching and
learning approach by exposing students to "real-world" software engineering
projects. The projects in which the students tested were very responsive and ap­
preciative. While we have already graded and published the students results, we
still continue to get emails from them about responses they received from their

266 Sulayman K Sowe, loannis Stamelos and Ignatios Deligiannis

projects. We enthusiastically continue to respond accordingly. Our presentation
resolves two key issues about F/OSS in SE education. Firstly, project-based
CS courses need not depend on closed-source projects outside the university in
order to give students experience in real-world projects. Second, it is possible
for CS lecturers to integrate the informal F/OSS teaching and learning context
into their formal curricular structure to teach CS courses (e.g. software test­
ing). It was satisfying to note that most students will continue participating
in F/OSS projects after the end of our pilot program. However, we were faced
with the hard reality that students must complete their testing activity at the
end of the semester.

Validity threats and future work: Our data set consists of a small ran­
dom sample of student volunteers, about 10% of the students in the ISE course.
Thus, there is danger in generalizing the results to other CS courses, classes,
and possibly to other universities, where sample size, skills, and backgrounds of
the students are probably different. However, because there are few published
results in this area, we hope that our findings will act as a base for further
research in this area. We plan to repeat the program with a larger sample next
semester. Furthermore, we are currently conducting two online surveys (post-
students survey and staff survey) to help us further validate the framework.

References

1. D. Carrington, and S. Kim, Teaching Software Engineering Design with Open
Source Soitware.33rd ASEE/IEEE Frontiers in Education Conference,{Ma.y 16,
2005); http://www.cs.wm;edu/~coppit/csci690-spring2004/papers/1273.pdf

2. M. D. German, Experience teaching a graduate course in Open Source Software
Engineering. In Proceedings of the first International Conference on Open Source
Systems. Geneva, 326-328 (2005)

3. C. Liu, Enriching software engineering courses with service-learning projects and
the open-source approach. In Proceedings of the 27th international Conference on
Software Engineering, ICSE '05. ACM Press, 613-614 (2005).

4. Software Engineering 2004 Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering, IEEE/ACM Joint Task Force on Comput­
ing Curricula, (2004), (December 10, 2005); ht tp: / /s i tes .computer .org/ccse/
SE2004Volume.pdf

5. S. E. Raymond, The Cathedral and the Bazaar. O'Reilly, Sebastopol,(1999).
6. S. K. Sowe, A. Karoulis, and I. Stamelos, A Constructivist View of Knowledge

management in Open Source Virtual Communities. In A. D. Figueiredo, A. P.
Afonso (Eds), Managing Learning in Virtual Settings: The Role of Context. Idea
Group Inc., 285-303 (2005).

7. Z. Alzamil, Towards an effective software engineering course project. In Proceed­
ings of the 27th international Conference on Software Engineering, ICSE '05.
ACM Press, 631-632 (2005).

