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Abstract Ontologies provide an attractive basis for tiie representation of se
mantic information to be attached to multimedia information. However, the flex
ibility available to develop one's own ontology or partially reuse an existing 
ontology means that human input is unavoidable in the process of creating the 
annotations. We address the issue of how to use ontology reasoning services 
and natural language generation to provide presentations of relevant ontology 
structures for human use. 

1 Capturing InteMed Meanings with Ontologies 

Multimedia resources are complex spatio-temporal signals providing information at 
several levels of abstraction. How to miake the huge amount of multimedia informa
tion more easily accessible to automatic processing of multimedia resources by pro
grams is an important issue. One possible solution is to associate multimedia resources 
with some annotations, with the help of which automatic processes have better under
standing of Ae contents of multimedia resources. However, annotations alone do not 
establish the semantics of the vocabulary used in the annotations.^ 

One way of giving meaning to annotations is to provide some external agreement 
on the meaning of a set of information properties. For example, the Dublin Core Meta
data Element Set [4] provides 15 *core' information properties, such as Title', 'Cre
ator', *Date', with descriptive semantic definitions (in natural language). One can use 
these information properties in, e.g., RDF or META tags of HTML. The limitation 
of the 'external agreement' approach is its inflexibility, i.e., only a limited range of 
pre-defined information properties can be expressed. 

An altemative approach is to use ontologies to specify the meaning of Web re
sources. Ontology is a term borrowed from philosophy that refers to the science of 
describing the kinds of entities in the world and how they are related. In computer 
science, ontology is, in general, a 'representation of a shared conceptualisation' of a 
specific domain [6, 13]. It provides a shared and common vocabulary, including im
portant concepts, properties and their definitions, and constraints, sometimes referred 
to as background assumptions regarding the intended meaning of the vocabulary, used 
in a domain that can be communicated between people and heterogeneous, distributed 
application systems. The ontology approach is more flexible than the external agree
ment approach because usars can customise vocabulary and constraints in ontologies. 

^ For example, an annotation asserting that the object in an image is an elephant does not 
explain what elephants are. 
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Example L The meaning of a user-defined concept 'adults' can be specified as 'per
sons whose age are at least 18', wh^e ^persons' can be an atomic concept in an ontol-
ogy:2 

Adult = Person (1 Ba^^e-atleast 18. 

In general, there are at least two advantages of the ontology approach in creating 
multimedia annotations: (i) It is more flexible; uses can define the vocabulary needed in 
their domain, (ii) Aspects of the intended meaning of these vocabulary can be explicitly 
represented. However, while the above advantage (ii) makes it possible for ontology 
experts to check the intended meaning of terms defined in an ontology, it is usually too 
hard for ordinary us^s to check such intended meaning by themselves. 

In this paper, we address the issue of how to use ontology reasoning services and 
natural language generation to provide human-readable presentation of parts of on
tologies. We claim this is an important way to support human users who have to create 
multimedia annotations. The rest of the paper is organised as follows. Aft^ a brief in
troduction of ontology languages (Section 2), we argue that the human beings play an 
important role in creating multimedia annotations. Based on this observation, we dis
cuss techniques on how to generate natural language to represent axioms in ontologies, 
with the help of classification (Section 4), We provide a worked example (Section 5) 
to illustrate our approach before we conclude the paper. 

2 Ontology Languages 

The technique presented is not restricted to any specific ontology language. As the 
OWL Web Ontology Language is based on Description Logic, here we will assume 
that we will use a Description Logic as the ontology language. 

Description Logics (DLs) [1] are a family of class-based knowledge representation 
formalisms, equipped with well-defined model-theoretic semantics [2]. A Description 
Logic C consists of an alphabet of distinct concept names (C), role names (R) and 
individual (object) names (I); together with a set of constructors to construct concept 
and role descriptions (also called C-concepts and C-roles, respectively). DLs have a 
model theoretic semantics, which is defined in terms of interpretations. An interpreta
tion (written as J ) consists of a domain (written as A-^) and an interpretation function 
(written as ••̂ ), where the domain is a nonen^ty set of objects and the imterpretation 
function maps each individual name a € I to an element aF € A-^^ each concept name 
CN € C to a subset CN^ C A^, and each role name RN € R to a binary relation 
RN^ c A^ X A?, The interpretation function can be extended to give semantics to 
^-concepts and £-roles (see table 1 for the semantics of concept and role descriptions 
of OWL DL), Let (7, D be £-concepts, C is satisflable iff there exist an int^retation 
J s.t. C^ ^ 01 C subsumes D iff for every interpretation X we have C^ C Ifi-, A 
DL knowledge base consists of a set of axioms. Due to the limitation of space, here 

^ Please refer to Section 2 for details of the following I>escription Logics syntax. Note that 
the Semantic Web standard ontology language does not support customised datatype, such as 
atleastlS, which is supported by a datatype extension of OWL DL, called OWL-Eu [10]. 
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Abstract Syntax 
Class(A) 
Class(owl:Thiiig) 
Class(owl:Nothing) 
intersectionOf(Ci, C2,...) 
umonOf(Ci,C2,...) 
complementOf(C) 
oneOf(oi,02,...) 
restiiction(i? someValuesFrom((7)) 
restriction(i? allValuesFrom(C)) 
restrictioE(B hasValue(o)) 
restiiction(il mmCardinality(m)) 
restiiction(JFl maxCardmality(m)) 
restriction(T someValuesFrom(ti)) 
restilction(T allValuesFrom(tA)) 
restriction(T hasValue(tu)) 
restrictioii(T miiiCardi]iality(m)) 
restriction(T maxCardiiiaHty(m)) 
ObjectProperty(5) 
ObjectProperty(5' inverseOf(5)) 
DatatypeProperty(T) 

DL Syntax 
A 
T 
X 

CinC2 
C1UC2 

{oi}U {02} 
3R.C 
\/R.C 

3R,{o} 
^ TUR 
< mR 
3TM 
\/T,u 

S 
S~ 
T 

Semantics 
A ^ c z l ^ 

(aiuC2)^ = cfuc7f 

({0l}U{02}f = {01^,02^} 
{3R,Cf = {x 1 3y,{x, y)eR^AyeC''} 
("iKCf = {x 1 Vy.{a:,2/) Elf-^yeC^} 
(3R.{o}f=={x\(x,o'')elf} 
(^ mRf = {x 1 l{y,{x,y) € R^} > m} 
(< mRf = {x 1 l{y,{x,y) € i?^} < m} 
(BTM)''' = {a; 1 3t.(a;,t> eT^ AtEu"^} 
i^T,uf = {x 1 3t,{x,t) eT^ -*tevP} 
( B T . M f = {a: | {x.iiP) e T^} 
(^ mTf = {a; | ft{t | (x, t) € T^} > m} 
« mT)^ = {x 1 l){t 1 (a;, t) € T^} < m} 
S'-CA'-X A"-

T^ CA^ X An 

Table 1. OWL concept and property descriptions 

we only introduce concept inclusion axioms. A concept inclusion axiom is of the form 
C C.D, where CjDarc £-concepts. An interpretation J satisfies C C D if 0 ^ C Lh^, 

In tMs paper, we use a well known DL reasoning service called classification, 
which is puts concept names in their prop^ place in a taxonomic hierarchy (according 
to subsumption). As a result of classification, we can obtain the following for a named 
concept Z: 

1. the named concepts that are equivalent to it;̂  
2. the named concepts that it covers (minimally subsumes);"̂  
3. the named concepts that it is covered by (is minimally subsumed by).^ 

If necessary, the basic subsumption relation can be recovered from this information. 

3 The Human Element in Annotatioii 
A number of research projects have investigated how annotations for the Semantic 
Web can be semi-automatically derived for existing Web documents, and these could 

^ X is equivalent to F iff X subsumes Y and Y subsumes X. 
^ X covers F iff X subsumes F, F is not equivalent to X, and whenever X subsumes Z and 

Z subsumes F then Z is equivalent to X or F. 
^ X is covered by F iff F subsumes X, F is not equivalent to X, and whenever F subsumes 

Z and Z subsumes X then Z is equivalent to X or F, 
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be adapted for textual documents in general. Techniques include using information 
extraction (IE) systems that exploit information in particular ontologies [5], providing 
special user interfaces that facilitate human markup of text [14] and using machine 
learning to infer general extraction pattems from texts that have already been marked 
up by humans [3]. However, these approaches all assume at least one of the following: 

- Ontology terms always map in a straightforward way onto words in a document and 
vice versa. Yet it is clear that subtle aspects of content are not always signalled in a 
simple way by specific keywords. 

- Generic pattems suffice to detect in natural language relationships from all specific 
ontologies. This ignores the fact that specific domains can have their own sublan
guages and domain-dependent forms of expression (beyond single words). 

- Information extraction expertise is available to create specific pattems for every on
tology. This is unrealistic, given the specialised nature of IE expertise. 

- Humian involvement is required, to augment and edit any annotations that can be 
automatically created and/or create a training corpus for machine learning. 

It is clear that, at present, significant human involvement is required for constmct-
ing document annotations for textual documents. For multimedia resources that are not 
textual, human involvement is indispensible. In addition, domain experts must make a 
significant contribution not only to creating annotations, but also to choosing an on
tology in the first place (from among possibly a number of existing options) and also 
tailoring an existing ontology to meet the needs of the new application. But how will 
these people acquire the expertise to reliably understand and use the distinctions pro
vided by the ontologies they need to work with? A number of tools have been built 
to enable a user to visualise the structure of an ontology (using mainly graphical ap
proaches), but these tools are mainly designed for knowledge engineers, rather than 
domain experts or casual ontology users. 

4 Natural Lai^[iiage Presentation of Ontologi^ 

We believe that natural language is an important medium to exploit in presenting on
tologies (or parts of them) to their users. To understand natural language, a user does 
not require any specialised training. Natural language is also well equipped to express 
the complex logical structures that arise in modem ontologies. Thus our research is 
trying to find ways of exploiting this medium. An ontology takes the form of a set of 
logical axioms, and so the challenge is to present the material of these axioms in com
prehensible way using a language such as English. However, it is important to take on 
board the fact that the axioms may not come in a form ready for direct realisation in 
English. The axioms represent one possible way that the material could have been ex
pressed, but there are many other possible ways that this could have been done equally 
well. For the ontology writer, the choice is arbitrary - because one can rely on rea
soning services for ontologies, it is not necessary to worry about which of the many 
logically equivalent methods of expression to use. This means howev^ that reasoning 
services must also be be used in natural language generation. The most relevant things 
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to say may not be explicitly stated, but nevertheless may follow from the axioms. So 
determining the content to be expressed can be seen as a kind of inference from the 
axioms [8]. 

We now consider how the classification reasoning service can be used to provide 
the basic elements of a natural language answer to two types of questions that people 
ask when they are familiarising themselves with an ontology or seeking to use it for 
making distinctions. 

4.1 AumvmBgWhatisX? 

To answer this question, we first of all classify all concepts, including X, The following 
can then be used to extract the key things to be expressed in an answer: 

- Find Z such that X is equivalent to Z (to say "Xs are Zs"). In addition, if there is 
an axiom directly stating X = Z, for some possibly complex concept Z, then this 
axiom can be stated. 

~ Find Z such that X is covered by Z (to say "an X is a kind of Z"). 
- Find Z such that X covers Z (to say "Xs include Zs"), 

The facts retrieved by these steps are closely related to the "identification", "at
tributive" and "constituency" rhetorical predicates used in McKeown's "identification 
schema" [7], and the overall answer could be constructed using the pattern of that 
schema. It would also be possible to recurse through the Z's introduced in the final 
step, this giving the effect of the "constituency schema", 

4.2 Answering What is the difference between X and Y? 

For this question, again all concepts should initially be classified, and in addition the 
concepts X U Y", X n -^Y and Y n -iX should be named and classified. Useful in
formation for an answer can then be read from the classification results as follows: 
6 

- Find Z such that X U F is covered by Z (to say "Xs and Ys are both Zs"). 
- Find minimal Z such that Z subsumes X and it is not the case that Z subsumes Y 

(to say "Although X s are Zs, Ys are not necessarily so"), ^ 
- Find minimal Z such that Z subsumes Y and it is not the case that Z subsumes X 

(to say "Although Ys are Zs, Xs are not necessarily so"). 
- Find maximal Z such that X subsumes Z and it is not the case that Y subsumes Z 

(to say "Whereas Zs are a kind of X, they are not necessarily a kind of F"). 

If negations of named concepts are also classified, other possibilities not discussed here in
clude finding Z such that Z subsumes X and -^Z subsumes Y (to say "Although Xs are Zs, 
y s are never Zs"), 

"̂  A good way to find minimal Z subsuming or subsumed by something, and satisfying another 
condition, is to search through increasingly long paths of the transitive closure of the "covers" 
relation temiinating when the condition is met. Similarly for maximal Z. 
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- Find maximal Z such that Y subsumes Z and it is not the case that X subsumes Z 
(to say **Whereas Zsw^a kind of F , they are not necessarily a kind of X"). 

- Find Z such that X fl -iF subsumes Z (to say **Whei:eas Zs are akind of X, they are 
never a kind of Y"), 

~ Find Z such that Y (1 -ij^ subsumes Z (to say **Whereas Zs are a kind of Y, they are 
never a kind of X"). 

Again, ways to organise this material as a coherent text can be found in the natural 
language generation literature, e.g. McKeown's "compare and contrast" schema and 
the work of Milosavljevic [9]. 

5 Worked Example 

In this section, we apply our approach to a slightly revised version (for the sake 
of presentation) of the well know pi^za ontology ( h t t p : //www. c o - o d e . o r g / 
o n t o l o g i e s / p i z z a / ) . 

SpicyPizza = Pizza n 3/ia5.SpicyTopping (1) 

VegPizza = Pizza n V/io5.VegTopping (2) 

AmericanHot ^ Pizza n 3/ias.HopGreenPepperTopping f l 3/ia5.DairyTopping (3) 

HopGreenPepperTopping C SpicyTopping (4) 

Caprina = Pizza n 3/ias.TomatoTopping (5) 

TomatoTopping C VegTopping (6) 

VegTopping C -i(FishTopping U MeatTopping U DairyTopping) (7) 

SpicyPizza C Foreign Pizza (8) 

VegPizza C HealthyPizza (9) 

SpicyButNotVegPizza = SpicyPizza n -iVegPizza(lO) 

VegButNotSpicyPizza = VegPizza f l -tSpicyPizza(ll) 

SpicyOrVegPizza = SpicyPizza U VegPizza(12) 

Note that, following our approach described in the previous section, we introduce ax-
ioms (10)-(12) into the ontology only for the second question below. 
What is AmericanHot? 

The classification service tells us that AmericanHot is covered by SpicyPizza, 
and there are no named concepts that AmericanHot is equivalent to or covers. There 
is also one axiom directly stating a complex concept equivalent to AmericanHot. 
Therefore, our explanation of AmericanHot is as foEows: "AmericanHot is a kind of 
SpicyPizza. American Hots are Pizzas that have HopGreenPepperTopping and have 
DairyTopping". 
What is the difference between SpicyPizza and VegPizza? 

Axioms (10)-(12) are now added to the ontology, but (since they are not concepts in 
the original ontology) the concepts defined in these axioms are ignored in the selection 
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of concepts to be used in the natural language explanation. The classification service 
tells us the foEowing: 

i SpicyOrVegPizza is covered by Pizza, 
ii Spicy Pizza is covered by Foreign Pizza, which does not subsume VegPizza, 

ill VegPizza is covered by HealthyPizza, which does not subsume SpicyPizza, 
iv VegPizza covers Caprina, but SpicyPizza does not subsume Caprina, 
V SpicyButNotVegPizza covers AmericanHot. 

There are also two axioms directly defining SpicyPizza and VegPizza. Therefore, our 
explanation of the difference between SpicyPizza and VegPizza is as follows: 

"SpicyPizzas are Pizzas tihat have SpicyTopping. VegPizzas are Pizzas 
that have VegTopping. (i) SpicyPizzas and VegPizzas are both Pizzas, (ii) 
Although SpicyPizzas are Foreign Pizzas, VegPizzas are not necessarily so. 
(iii) Although VegPizzas are HealthyPizzas, SpicyPizzas are not necessarily 
so. (iv) Wh^eas Caprinas are a kmd of VegPizza, they are not necessarily a 
kind of SpicyPizza (v) Whoreas AmericanHots are a kmd of SpicyPizza, they 
are never a kind of VegPizza." 

6 Conclusion and Outlook 

It has been argued that ontologies can be very helpful for multimedia annotations. Wiih 
the fast development of the research and applications of ontologies, users will soon face 
a serious issue: given a set of ontologies about the same topic, which one suits their 
multimedia application best? In this paper, we have addressed the issue of how to use 
ontology classification reasoning service and natural language generation to provide 
presentations of relevant ontology structures for ontology users. The motivation of this 
research is illustrated m the exan^le presented in Section 5. Axioms (l)-(9) are hard to 
understand for users without a logical background to understand. Although ontology 
editors can help organising axioms in ontologies and providing graphic representations 
of axioms to some extent, natural language explanations of the structure underlying the 
axioms are still necessary. In this paper, we have discussed how to provide explanations 
for the two questions: **What is X** and *'What is the difference between X and F", 
which are two useful questions potential users of ontologies would like to ask. 

More complex questions (e.g. What kinds of people have supervisors?) can be 
answered by constructing and naming the appropriate complex concept descriptions 
(here, X= Person n 3supervisor) and answering one of the above questions for that 
concept. Such concepts introduce more complex natural language reaHsation issues 
than simple named concepts. However, whereas previous work does not address the 
problem of selecting which facts to present, there are appropriate natural language 
generation techniques for handling the realisation of complex concepts, as used for 
instance in the Prot6g6 OWL plugin [11] and older work with DLs [15], 

Because there are an infinite number of possible concepts expressible with a given 
set of atomic concept and property names, it would be impossible to compute subsump-
tion relationships beween all possible pairs of concepts. Thus the classification reason-
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ing service only considers the relationships between named concepts. This means that, 
for instance, when answering a question What is a student? the above f^proach might 
be able to say A student is a Mnd of person but it would not be able to respond with A 
student has an academic supervisor, unless the concept Ssupervisor,Academic hap
pens to have been named (and this expansion of the name can be retrieved). In the 
above, we have artificially named certain extra concepts to be classified, but we can
not know in advance all complex concepts that might be informative in the answer to 
a question. Further work wiU address this problem, possibly using approaches from 
approximate reasoning [12] to generate candidate plausible concepts. 
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