
Source Code Author Identification Based on
N-gram Author Profiles

Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis,
Sokratis Katsikas

Laboratory of Information and Communication Systems Security
Department of Information and Communication Systems Engineering

University of the Aegean, Karlovasi, Samos, 83200, Greece
{gfran, stamatatos, sgritz, ska)@aegean.gr

Abstract. Source code author identification deals with the task of identifying
the most Hkely author of a computer program, given a set of predefined author
candidates. This is usually .based on the analysis of other program samples of
undisputed authorship by the same programmer. There are several cases where
the application of such a method could be of a major benefit, such as
authorship disputes, proof of authorship in court, tracing the source of code
left in the system after a cyber attack, etc. We present a new approach, called
the SCAP (Source Code Author Profiles) approach, based on byte-level n-
gram profiles in order to represent a source code author's style. Experiments
on data sets of different programming language (Java or C++) and varying
difficulty (6 to 30 candidate authors) demonstrate the effectiveness of the
proposed approach. A comparison with a previous source code authorship
identification study based on more complicated information shows that the
SCAP approach is language independent and that n-gram author profiles are
better able to capture the idiosyncrasies of the source code authors. Moreover
the SCAP approach is able to deal surprisingly well with cases where only a
limited amount of very short programs per programmer is available for
training. It is also demonstrated that the effectiveness of the proposed model is
not affected by the absence of comments in the source code, a condition
usually met in cyber-crime cases.

1 Introduction

Nowadays, in a v^ide variety of cases it is important to identify the author of a
(usually limited) piece of code. Such situations include authorship disputes, proof of
authorship in court, cyber attacks in the form of viruses, trojan horses, logic bombs,
fraud, and credit card cloning etc. Although source code is much more formal and
restrictive than spoken or written languages, there is still a large degree of flexibility

Please use the following format when citing this chapter:
Frantzeskou, Georgia, Stamatatos, Efstathios, Gritzalis, Stefanos, Katsikas, Sokratis, 2006, in IFIP
International Federation for Information Processing, Volume204, Artificial Intelligence Applications
and Innovations, eds. Maglogiannis, I., Karpouzis, K., Bramer, M., (Boston: Springer), pp. 508-515

Artificial Intelligence Applications and Innovations 509

when writing a program [6]. Source code author identification is much harder than
natural language authorship attribution or writer identification (of handwriting) or
even speaker recognition. The traditional methodology that has been followed in this
area of research is divided into two main steps ([5, 7, 1]). The first step is the
extraction of software metrics representing the author's style and the second step is
using these metrics to develop models that are capable of discriminating between
several authors, using a classification algorithm.

However, there are some disadvantages in this traditional approach. The first is
that software metrics used are programming language dependant. For example
metrics used in Java cannot be used in C or Pascal. The second is that metrics
selection is not a trivial process and usually involves setting thresholds to eliminate
those metrics that contribute little to the classification model. As a result, the focus in
a lot of the previous research efforts, such as [1] and [5] was into the metrics
selection process rather than into improving the effectiveness and the efficiency of
the proposed models.

In this paper we present an approach to source code author identification we call
the SCAP (Source Code Author Profiles) approach, which is an extension of a
method that has been applied to natural language text authorship identification [3]. hi
the SCAP method, b3^e-level n-grams are utilised together with author profiles. We
propose a new simplified profile and a less complicated similarity measure that
proved to be quite effective even in cases where only limited training set is available
for each author. Our methodology is programming language independent since it is
based on low-level information and has been tested to data sets from two different
programming languages Java and C++. Special attention is paid to the evaluation
methodology. Disjoint training and test sets of equal size were used in all the
experiments in order to ensure the reliability of the presented results. Moreover, the
significance of the comments in the source code is examined. It is demonstrated that
the effectiveness of the SCAP model is not affected by the absence of comments, a
condition usually met in cyber-crime cases.

The rest of this paper is organized as follows. Section 2 describes our approach
and section 3 includes the source code author identification experiments. Finally,
section 4 contains conclusions and future work.

2 The SCAP Approach

In this paper, we present the SCAP (Source Code Author Profiles) approach, which
is an extension of a method that has been successfully applied to text authorship
identification [3]. It is based on byte level n-grams and the utilization of a similarity
measure used to classify a program to an author. Therefore, this method does not use
any language-dependent information.

An n-gram is an n-contiguous sequence and can be defined on the b3^e,
character, or word level. Byte, character and word n-grams have been used in a
variety of applications such as text authorship attribution, speech recognition,
language modelling, context sensitive spelling correction, optical character
recognition etc. In our approach, the Perl package Text::N-grams [4] has been used

510 Artificial Intelligence Applications and Innovations

to produce n-gram tables for each file or set of files that is required. The n-gram table
contains the n-grams found in a source code file and their corresponding frequency
of occurrence.

The algorithm used, computes n-gram based profiles that represent each of the
author category. First, for each author the available training source code samples are
concatenated to form a big file. Then, the set of the L most frequent n-grams of this
file is extracted. The profile of an author is, then, the ordered set of pairs {(xi; fi).
(x2; f2),...,(xL; fO} of the L most frequent n-grams Xj and their normalized
frequencies fi. Similarly, a profile is constructed for each test case (a simple source
code file). In order to classify a test case in to an author, the profile of the test file is
compared with the profiles of all the candidate authors based on a similarity
measure. The most likely author corresponds to the least dissimilar profile (in
essence, a nearest-neighbour classification model).

The original similarity measure (i.e. dissimilarity more precisely) used by Keselj
[3] in text authorship attribution is a form of relative distance:

.2
f r.. . r . r . y f^.r.r^.. r..^..^'

n^ profile

fl{n)-fl{n)
f\{n)+f2{n)

V 2
/l(«)+/2(«) " Z J

ne profile

2(fl(n)-f2in))

f\{n) + /2(«)
(1)

where fi(n) and f2(n) are the normalized frequencies of an n-gram n in the author and
the program profile, respectively, or 0 if the n-gram does not exist in the profile. A
program is classified to the author, whose profile has the minimal distance from the
program profile, using this measure. Hereafter, this distance measure will be called
Relative Distance (RD).

One of the inherent advantages of this approach is that it is language independent
since it is based on low-level information. As a result, it can be applied with no
additional cost to data sets where programs are written in C++, Java, perl etc.
Moreover, it does not require multiple training examples from each author, since it is
based on one profile per author. The more source code programs available for each
author, the more reliable the author profile. On the other hand, this similarity
measure is not suitable for cases where only a limited training set is available for
each author. In that case, for low values of n, the possible profile length for some
authors is also limited, and as a consequence, these authors have an advantage over
the others. Note that this is especially the case in many source code author
identification problems, where only a few short source code samples are available for
each author.

In order to handle this situation, we introduce the SCAP approach. It includes a
new similarity measure that does not use the normalized frequencies fi of the
n-grams. Hence the profile we propose is a Simplified Profile (SP) and is the set of
the L most frequent n-grams {xi, X2,..., XL}. If SPA and SPp are the Author and
Program Simplified Profiles, respectively, then the similarity distance is given by the
size of the intersection of the two profiles:

\SP^r^SPp\ (2)
where |X| is the size of X. In other words, the similarity measure we propose is the
amount of common n-grams in the profiles of the test case and the author. The
program is classified to the author with whom we achieved the biggest size of

Artificial Intelligence Applications and Innovations 511

intersection. Hereafter, this similarity measure will be called Simplified Profile
Intersection (SPI). We have developed a number of perl scripts in order to create the
sets of n-gram tables for the different values of n (i.e., n-gram length), L (i.e., profile
length) and for the classification of the program file to the author with the smallest
distance.

Table 1. The data sets used in this study. Program sample length is expressed by means of
Lines Of Code (LOG)

MacDonellC++ OSJaval NoComJava OnlyComJava 0SJava2
No Authors 6
Min-Max
Samples per 5-114
Author
Total Samples 268
Training Set
Samples
Testing Set
Samples
Size of
smallest
sample (LOG)
Size of biggest ^^^^
sample (LOG)
Mean LOG in
Training Set
Mean LOG in
Test Set
Mean
LOG/sample

134

133

19

206.4

213

210

8

4-29

107

56

51

23

760

155.48

134.17

145

8

4-29

107

56

51

10

639

122.28

95.92

109.1

6

9-25

92

46

43

6

332

64.58

56.48

60.53

30

4-29

333

170

163

20

980

170.84

173.03

172

3 Experiments

3.1 Comparison with a previous method

Our purpose during this phase was to check that the presented approach works at
least equally well as the previous methodologies for source code author
identification. For this reason, we run this experiment with a data set that has been
initially used by Mac Donell [7] for evaluating a system for automatic discrimination
of source code author based on more complicated, programming language-dependent
measures. All the source code samples were written in C++. The source code for
programmers one, two, and three were from programming books and programmers
four, five, and six were experienced commercial programmers. Detailed information
for the C++ data set is given in Table 1. The best reported result by Mac Donell [7]
on the test set was 88% using the case-based reasoning (that is, a memory-based

512 Artificial Intelligence Applications and Innovations

learning) algorithm. Table 2 includes the classification accuracy results for various
combinations of n (n-gram size) and L (profile size). In most cases, classification
accuracy reaches 100%, much better than the best reported ([7]) accuracy for this
data set (88% on the test set). This proves that the presented methodology can cope
effectively with the source code author identification problem based on low-level
information.

More importantly, RX) performs much worse than SPI in all cases where at least
one author profile is shorter than L. This occurs because the RD similarity measure
(1) is affected by the size of the author profile. When the size of an author profile is
lower than L, some programs are wrongly classified to that author. In summary, we
can conclude that the RD similarity measure is not as accurate for those n, L
combinations where L exceeds the size of even one author profile in the dataset. In
all cases, the accuracy using the SPI similarity measure is better than (or equal to)
that of RX). This indicates that this new and simpler similarity measure included in
SCAP approach is not affected by cases where L is greater than the smaller author
profile.

Table 2. Classification accuracy (%) on the MacDonellC++ data set for different values of
n-gram size and profile size using RD and SPI similarity measures

Pro

file

Size

1000

1500

2000

2500

3000

RD

100

100

98

99

56

3

SPI

100

100

100

100

100

RD

100

100

100

100

100

4

SPI

100

100

100

100

100

RD

100

100

100

100

100

n-gram Size

5

SPI

100

100

100

100

100

RD

100

100

100

100

100

6

SPI

100

100

100

100

100

RD

100

99

100

100

100

7

SPI

100

99

100

100

100

RD

99

99

100

100

100

8

SPI

99

100

100

100

100

Table 3. Classification accuracy (%) on the OSJaval data set

Pro

file

Size

1500

2000

RD

88

35

3

SPI

100

100

RD

100

80

4

SPI

100

100

RD

100

100

n-gram Size

5

SPI

100

100

RD

100

100

6

SPI

100

100

RD

100

100

7

SPI

100

100

RD

100

100

8

SPI

100

100

Table 4. Classification

Pro

file

Size RD

500 94

1500 35

2000 33

3

SPI

94

98

92

I accuracy (%)

RD

94

47

14

4

SPI

94

90

98

on the NoComJava set

RD

94

80

20

n-gram Size

5

SPI

94

98

100

RD

94

96

31

6

SPI

94

98

100

RD

92

98

61

7

SPI

94

98

100

RD

92

98

78

8

SPI

92

98

100

Artificial Intelligence Applications and Innovations 513

Table 5. C Classification accuracy (%) on the OnlyComJava data set

Pro
file
Size

1500
2000

RD

98
23

3
SPI

98

91

RD

98
98

4
SPI
98

100

RD

98
98

n-gram Size
5

SPI

100
100

RD

95
95

6
SPI

95
100

RD

95
95

7
SPI

95
98

RD

95
95

8
SPI

98
98

3.2 The role of comments

The experiments described in this section are based on a data set of open source
programs written in Java. In more detail, source code samples by 8 different authors
were downloaded from freshmeat.net. The amount of programs per programmer is
highly unbalanced, ranging from 4 to 30 programs per author. The source code
sample size was between 23-760 lines of code. In many cases, source code samples
by the same programmer have common comment lines at the beginning of the
program. Such comment lines were manually removed since they could (positively)
influence the classification accuracy. The total number of programs was 107 and
they were split into equally-sized training and test sets. Hereafter, this data set will
be called OS-Java 1.

This data set provides a more realistic case of source code author identification
than student programs that have been used in similar studies ([2], [5]). Open source
code is similar to commercial programs which usually have comments and they are
usually well structured. Most of the open source programs are longer than the
student programs. More importantly, this data set enables us to examine the role
comments play in the classification model. We have decided to perform three
different experiments on this data set. For this reason, we first filtered out any
comments from the OS Java 1 data set, resulting a new data set (hereafter, called
NoComJava). Then, another data set was constructed using only the comments from
each source code sample (hereafter, called OnlyComJava). Note that in the latter
case, the resulting data set includes fewer programs than the original because any
source code files with no comments were removed. The OnlyComJava data set
includes samples by 6 different authors with 9 - 2 5 files per author. Detailed
information for OSJaval, NoComJava, and OnlyComJava data sets is shown in
Table 1.

The application of the proposed methodology to the OSJaval, NoComJava, and
OnlyComJava data sets is described in Tables 3, 4, and 5, respectively. Notice that
two different profile sizes are indicated (1500 and 2000) since they provide the best
results (as has been demonstrated in previous study [2]). The classification results for
the OSJaval data set are perfect for any n-gram size and similarity measure. This is
mainly because the source code samples of this data set are relatively long.
Moreover, for many candidate authors there is a sufficient amount of training
samples. Interestingly, the accuracy remains at the top level when removing the
comment lines of these samples (NoComJava data set). However, this stands only for
the SPI similarity measure. RD fails to retain such performance in most cases. In
more detail, for L=500, RD and SPI have (almost) identical performance. When L
increases to 1500, the accuracy of RD drops for low values of n (n<6). When L

514 Artificial Intelligence Applications and Innovations

increases to 2000, the accuracy of RD drops for all values of n. This happens because
at least one author has author profile shorter than the predefined value of L. RD is
not able to handle effectively such cases. Note that the accuracy of SPI increases
with L. This is a strong indication that the proposed SPI similarity measure better
suits the source code author identification problem. On the other hand, when
examining only the comments of each source code sample (OnlyComJava dataset),
the RD similarity measure is more competitive, which indicates that it better suits
natural language.

Table 6. Classification accuracy (%) on the 0SJava2 data set

Pro
file

Size

1000

1500

2000

2500

3000

RD

93

92

31

13

14

3
SPI

93

92

92

93

89

RD

93

94

72

37

13

4
SPI

94

94

94

94

94

RD

95

95

95

54

24

n-gram Size

5
SPI

95

95

95

95

95

RD

94

96

95

79

38

6
SPI

94

96

94

94

95

RD

96

96

95

94

58

7
SPI

95

97

96

94

95

RD

94

95

96

95

75

8
SPI

94

95

96

95

95

Again, the best results are obtained using the SPI measure. Probably, this is
explained by the extremely short samples that constitute the OnlyComJava data set.

3.3 Dealing with many authors

The previous experiments have shown that our approach is quite reliable is quite
reliable when dealing with a limited number of candidate authors (6 to 8). In this
section we present an experiment that demonstrates the effectiveness of the proposed
method when dealing with dozens of candidate authors. For that purpose a data set
was created by downloading open-source code samples by 30 different authors from
freshmeat.net. Hereafter, this data set will be called 0SJava2. Details on this data set
can be found in Table 1. Note that the available texts per author ranges from 4 to 29.
Moreover, in average the samples of this data set are longer in comparison to the
OSJaval. This data set includes programs on the same application domain written
by different authors. In addition the samples of many authors are written over a long
time period and therefore there might be programming style changes of certain
authors.

The samples were split into equally-sized training and test set. Note that the
training set was highly unbalanced (as OSJaval). The best accuracy result was
96.9% and has been achieved using the SPI similarity measure as can be seen in
Table 6. Again, RD fails to deal with cases where at least one author profile is
shorter than L. In most cases, accuracy exceeds 95%, using the SPI similarity
measure indicating that the SCAP approach can reliably identify the author of a
source code sample even when there are multiple candidate authors. The best result
corresponds to profile size of 1500.

Artificial Intelligence Applications and Innovations 515

4 Conclusions

In this paper, the SCAP approach to source code authorship analysis has been
presented. It is based on byte-level n-gram profiles, a technique successfully applied
to natural language author identification problems. This method was applied to data
sets of varying difficulty demonstrating surprising effectiveness. The SCAP
approach includes a new simplified profile and a less-complicated similarity measure
that better suit the characteristics of the source code authorship analysis problem. In
particular the SCAP approach can deal with cases where very limited training data
per author is available (especially, when at least one author profile is shorter than the
predefined profile size) or there are multiple candidate authors, conditions usually
met in source code authorship analysis problems (e.g. source code authorship
disputes, etc.) with no significant compromise in performance.

More significantly, the role of comments in the source code is examined. The
SCAP method can reliably identify the most likely author when there are no
comments in the available source code samples, a condition usually met in cyber-
attacks. However, it is demonstrated that the comments provide quite useful
information and can significantly assist the classification model to achieve quasi-
perfect results. Actually, the comments alone can be used to identify the most likely
author in open-source code samples where there are detailed comments in each
program sample.

A useful direction for further work would be the discrimination of different
programming styles in collaborative projects. In addition, cases where all the
available source code programs are dealing with the same task should be tested.
Finally, the visualization of the stylistic properties of each author could be of major
benefit in order to explain the differences between candidate source code authors.

References

1. B Ding, H., Samadzadeh, M., H., Extraction of Java program fingerprints for software
authorship identification, The Journal of Systems and Software, Volume 72, Issue 1, Pages
49-57 June 2004.

2. Frantzeskou, G., Stamatatos, E., Gritzalis, S., Supporting the cybercrime investigation
process: Effective discrimination of source code based on byte level information, in Proc.
2nd International Conference on e-business and Telecommunications Networks
(ICETE05), 2005.

3. Keselj, V., Peng, F., Cercone, N., Thomas, C, N-gram based author profiles for authorship
attribution. In Proc. Pacific Association for Computational Linguistics 2003.

4. Keselj, V.,. Perl package Text::N-grams http://www.cs.dal.ca/~vlado/srcperl/N-grams or
http://search.cpan.org/author/VLADO/Text-N-grams-0.03/N-grams.pm. 2003.

5. Krsul, I., and Spafford, E. H, Authorship analysis: Identifying the author of a program, In
Proc. 8th National Information Systems Security Conference, pages 514-524, National
Institute of Standards and Technology, 1995.

6. Krsul, I., and Spafford, E. H., 1996, Authorship analysis: Identifying the author of a
program, Technical Report TR-96-052, 1996.

7. MacDonell, S.G, and Gray, A.R. Software forensics applied to the task of discriminating
between program authors. Journal of Systems Research and Information Systems 10: 113-
127 (2001).

