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Abstract. Face recognition systems detect faces in moving or still images and 
then recognize them. However, face detection is not an error-free process, 
especially when designed for real-time systems. Thus the face recognition 
algorithms have to operate on faces that are not ideally framed. In this paper 
we analyze quantitatively the impact of face detection errors on six different 
face recognition algorithms. Hence, we propose a matching of face recognition 
algorithms with face detector performance, which can be used for a system 
based on the expected performance of the face detector. 

1 Introduction 

Face recognition has many applications in security and human-machine interfaces. It 
can be applied either like other biometric recognition approaches, by requiring the 
person to pose in a very controlled way, or unobtrusively, on still or moving images 
of the person. In the first approach, the face is manually extracted and, if necessary, 
normalized, prior to the application of any face recognition algorithm. The second 
approach is much more interesting, but poses a serious problem: the automatic 
detection and normalization of the face. 

Many different face recognition algorithms have been reported in the literature 
[1-8] and have been tested on different face databases [8-11], adhering or not to a 
standard evaluation methodology [11-13]. In most of these reports, the performance 
of the different algorithms is assessed on manually extracted and normalized faces. 
Comparisons, when attempted with a common database and methodology, only 
assess which method performs best under a particular type of impairment (pose, 
illumination or expression variation) [13,14]. 

When all these algorithms are used in the context of a fiilly-automatic face 
recognition system, then the faces presented to the recognizer are not manually 
extracted. The automatic face detection process involves finding the face, locating in 
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it some features and based on these, geometrically normalizing the face to match 
some template [15-17]. This is the face registration process. Face detection on still 
images given ample processing time is a problem more or less solved [16], resulting 
to small registration errors. For real-time operation and under unconstrained lighting 
and pose conditions, face registration becomes very difficult [15], and the 
registration errors can grow significantly. 

Hence there is a need to compare the different face recognition algorithms in 
terms of their robustness to face registration errors. Here we address this need by 
assessing the impact of face registration errors on six different face recognition 
algorithms. We use the evaluation methodology in [13] to obtain the performance of 
the algorithms, and then perform statistical analysis of the results to obtain the 
optimum method for different face detection accuracy ranges. 

This paper is organized as follows: In Section 2, the face recognition algorithms 
to be compared are outlined. Then, in Section 3 the evaluation methodology and the 
experimental results are presented. Finally, in Section 4 the conclusions are drawn. 

2 Face recognition methods 

The impact of face registration errors on six face recognition algorithms is 
compared. The algorithms are the Eigenfaces [1], Fisherfaces [3], Elastic Bunch 
Graph Matching (EBGM) [4], pseudo Two-Dimensional Hidden Markov Models 
(2D-HMM) [2], correlation filters [5] and Laplacianfaces [6]. These algorithms have 
been implemented and extensively tested by the authors [18-20] on a variety of 
standard face databases and on a novel video database [13]. They have been 
incorporated into a real-time face recognition system [15] operating in the SMART 
lab [21], allowing us to determine the best algorithm for the system according to the 
performance of the detection system. In the rest of this section, these algorithms are 
briefly introduced. 

2.1 Eigenfaces 

Eigenfaces [1] is a linear subspace projection algorithm that uses Principal 
Component Analysis (FCA). As no class label information is used in PCA, the 
projection is estimated in an unsupervised manner. After linear projection, the 
resulting recognition space is of much lower dimension. The PCA feature vectors are 
robust to noise and minor head rotations, but not to illumination changes [3,18]. 

Since its introduction in 1991, the eigenface technique has seen many 
modifications [3]. In [3,18] the influence of distance metrics and eigenvector 
selection on PCA performance is analysed. Eigenvector selection consists of 
discarding a few eigenvectors with larger eigenvalues and/or some of those with the 
smallest. This is attributed to the empirical observation that the discarded 
eigenvectors with the larger eigenvalues encode direction-of-illumination changes. 
Discarding three such eigenvectors is shown in [3,18] to greatly enhance PCA 
performance. 
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2.2 Fisherfaces 

PCA maximizes the total scatter of the training vectors while reducing their 
dimensions. It is optimum in the mean-squared error sense for representation in the 
resulting subspace, but offers no guarantee of optimality for classification. Linear 
Discriminant Analysis (LDA) on the other hand does take into account class labels 
and maximizes the between-class scatter under the constraint that the within-class 
scatter is minimized. This results to compact clusters for each class, as far as possible 
from each other. This projection is optimum for classification and is supervised. A 
PCA+LDA combination, termed Fisherfaces, was introduced in [3] and was proven 
robust to illumination changes [3,18]. 

2.3 Elastic Bunch Graph Matching 

EBGM [4] assumes that the positions of certain facial features are known for each 
training image. The image regions around these features are convolved with 40 
complex 2D Gabor kernels. The resulting 80 coefficients constitute the Gabor jet for 
each facial feature. The Gabor jets for all facial features are grouped in a graph, the 
Face Graph, where each jet is a node and the distances between facial features are 
the weights on the corresponding vertices. The information in the Face Graph is all 
that is needed for recognition; the image itself is discarded. All Face Graphs from the 
training images are combined in a stack-like structure called the Face Bunch Graph 
(FBG). Each node of the FBG contains a list of Gabor jets for the corresponding 
facial feature from all training images, and the vertices are now weighted with the 
average distances across the training set. The positions of the facial features in the 
testing images are unknown; EBGM estimates them based on the FBG. Then a Face 
Graph can be constructed for each testing image based on the estimated positions. 
The Face Graph of each testing image is compared with the FBG to determine the 
training image it is most similar to, according to some jet-based metric. In [4], a 
number of such metrics is proposed, most of which can also be used for the feature 
estimation step. Our results in [19] indicate that Displacement Estimation Local 
Search is the best choice for facial feature localization; for the actual identification 
stage, Displacement Estimation Grid Search yiQld^ the best recognition rate. 

2.4 Pseudo Two-Dimensional Hidden Markov Models 

Face recognition using HMM is based on approximating blocks from the face image 
with a chain of states of a stochastic model [2]. For the pseudo 2D HMM the image 
blocks are extracted by scanning the face from left to right, top to bottom with an 
overlap both in horizontal and vertical direction. Pixel intensities do not lead to 
robust features, as they are susceptible to illumination changes and other detrimental 
effects. A transformation like the 2D Discrete Cosine Transform attenuates those 
distorting effects, leading to better performance. A pseudo 2D HMM model of 
hidden states is obtained by linking left-right ID HMM models with vertical super­
states. For the training of each class the Baum-Welch algorithm is used. In the 
recognition phase the class that gives the highest value for the probability of the 
observation sequence of the testing image, given the class model, is considered the 
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most likely to be the true identity of the testing face. Our results in [20] indicate that 
close cropping the faces and using mixture of three Gaussians for the states enhance 
performance. 

2.5 Correlation Filters 

Face recognition can be performed by cross correlating a face image with a suitable 
filter and processing the output. Many correlation filters have been proposed [5]; 
amongst them, the Minimum Average Correlation Energy filter (MACE) is reported 
to perform best. It reduces the large sidelobes by minimizing the average correlation 
energy plane while at the same time satisfying the correlation peak constraints at the 
origin. These constraints result in the correlation plane close to zero everywhere 
except at a location of a trained object, where a sharp peak appears. For recognition, 
the output plane is searched for the highest point and that value, as well as the values 
of its surrounding points, is used to determine the class that the face belongs to. We 
have implemented and tested the MACE correlation filter algorithm in [20]. 

2.6 Laplacianfaces 

The Eigenfaces and Fisherfaces algorithms both use linear projection to a subspace 
aiming to preserve the global structure of the face. Laplacianfaces [6] on the other 
hand, is an algorithm that uses optimal linear approximations to the eigenfiinctions 
of the Laplace-Beltrami operator. By aiming to preserve the local structure of the 
face, Laplacianfaces attempts to attenuate the unwanted variations resulting from 
changes in lighting, facial expression and pose. In that, Laplacianfaces shares many 
of the properties of nonlinear projection algorithms. We have implemented and 
tested the Laplacianfaces algorithm in [20]. 

3 Experimental results 

The evaluation methodology proposed in [13] is followed to assess the performance 
of the face recognition algorithms outlined in the previous section. In particular, the 
HumanScan database [22] is utilized. This database offers 20 feature points on each 
face; including the two eye centers. The eye centers are used to register the faces, 
whereas all the rest are utilized in the training images for EBGM. To introduce the 
needed registration errors, Gaussian noise is added to the co-ordinates of the eye 
centers. Then the noisy co-ordinates are used in the face normalization process. 

The variance of the added noise in each co-ordinate is controlled so that the RMS 
error is a given percentage of the eye distance. This way, different versions of the 
normalized database are obtained, with the RMS eye perturbation ranging from zero 
(ideal normalization) to 7% of the eye distance. To get a feeling of the meaning of 
eye perturbation range selected for the comparison of the algorithms, the RMS eye 
perturbation that results form the face detection scheme presented in [ 15] is between 
4.7% (full scale HumanScan faces) and 7.2% (HumanScan faces decimated to 10 
pixels eye distance). Hence, depending on the resolution, state-of-the-art face 



Artificial Intelligence Applications and Innovations 191 

detection systems are expected to have an RMS eye perturbation in the upper half of 
the selected testing range. 

The effect of the eye perturbation on the faces is to shift, scale and rotate them in 
a random manner. Examples of the erroneously registered faces are shown in Fig. 1. 
While some of them are registered moderately well, there are others where the 
registration errors have caused only a tilted part of the face to lie in the template or 
significant background portion to enter the template. 

.^% 

Fig. 1. Effect of 4% RMS eye perturbation on 21 randomly selected HumanScan faces from a 
single person 

The algorithms are tested with 5 training faces per person. This is a moderate 
number for face recognition systems that are intended for smart room or human-
machine interfaces, but a rather large one for security applications. The 400 runs 
described in [13] are carried out, for each of the six algorithms and each of the eight 
different degrees of eye perturbation, allowing for a statistically sound analysis of 
the results. The median value for each group of 400 runs is reported in Fig. 2. Note 
that two variants of the eigenfaces algorithm are tried: the classic one and that 
without the three eigenvectors that correspond to the largest eigenvalues (PCAw/o3). 

From the results depicted in Fig. 2, the correlation filters algorithm is the most 
sensitive to face registration errors, followed by the Laplacianfaces. The rest of the 
methods are close up to 2% RMS eye perturbation, a value that is very optimistic for 
real-time face detectors. This is indicated in the boxplots [23] of Fig. 3, where a test 
of the statistical significance of the different median values is performed. The PCA 
variants and pseudo-2D HMM have statistically similar performance; LDA and 
EBGM are somewhat better, with LDA being the winner at 5% significance level. At 
3% RMS eye perturbation, the subspace projection methods start deteriorating. Of 
these, the first to deteriorate is the PCAw/o3. This is to be expected, since the first 
few eigenvectors encode only illumination changes (hence unwanted within class 
variation) only if the registration is ideal. This is also the reason that PCAw/o3 
performs badly in face databases without ideal face registration, with pose variations 
and with pronounced expression changes [13]. At large RMS eye perturbations, 
above 5% RMS, such as those expected in real-time detectors operating on low 
resolution faces, the performance of supervised and unsupervised subspace 
projection becomes comparable; Eigenfaces even exceed Fisherfaces in performance 
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at 7% RMS, indicating ill-training. This is again to be expected; five training images 
are not able to capture the within class variation introduced by the large registration 
errors. 

60 rj 

2 3 4 5 
RMS eye perturbation (%, relative to eye distance) 

Fig. 2. Probability of misclassification of the face recognition algorithms under varying 
percentage of RMS eye perturbation and 5 training faces per person 
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Fig. 3. Boxplots of the PMC of the linear subspace projection algorithms, the pseudo-2D 
HMM and the EBGM for 2% RMS eye perturbation and 5 training faces per person. The 
difference in the median values (horizontal lines) is statistically significant at the 5% 
significance level only if the notches of the boxes do not overlap 
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The pseudo-2D HMM and EBGM algorithms perform noticeably better than the 
rest at 3% RMS or higher eye perturbation. Both deteriorate only minimally up to 
3% RMS, with EBGM being marginally better up to 4% RMS. After that EBGM 
deteriorates fast, while pseudo-2D HMM retains its performance remarkably well. 
The robustness of EBGM up to 4% RMS is due to the search for the feature points 
inherent to the recognition algorithm. This search can compensate for medium 
displacements of the features from the expected positions. As for the exceptional 
robustness of the pseudo-2D HMM algorithm to face registration errors, it is due to 
the stochastic nature of the model of the face. The transitions between the states 
(overlapping blocks of the face image) are probabilistic, and can account for the 
perturbation of the feature locations. This is the reason for the success of the pseudo-
2D HMM algorithm in the ORL database [2] it was tested when introduced, where 
no particular care has been taken in registering the ORL faces. 

4 Conclusions 

Since in most applications, face recognition algorithms do not perform stand-alone 
but within detection and recognition systems, the face registration errors resulting 
from imperfect face detections become important. In this paper we have 
quantitatively analyzed the impact of face registration errors on six face recognition 
algorithms and one of their variants, to establish ranges of face detection accuracy 
where some of them are optimal. These are summarized in Table 1. The 
experimentally established robustness of the various face recognition algorithms is 
also backed-up by an analysis of the features of the algorithms. 

Table 1. Optimum face recognition algorithms depending on face registration accuracy 

Face registration accuracy ^ .̂ , .^. 
ro/ n A- . T>A;rc\ Optimum algoothm 
(% of eye distance, RMS) l̂̂  I 

[0,2] LDA 
(2,4] EBGM 
> 4 2D HMM 
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