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Abstract The main goal of this paper is to establish the uniqueness of solutions of finite 
energy for a classical dynamic nonlinear thin shallow shell model with clamped 
boundary conditions. The static representation of the model is an extension of 
a Koiler shallow shell model. Until now, this has been an open problem in the 
literature. The primary difficulty is due to a lack of regularity in the nonlinear 
terms. Indeed the nonlinear terms are not locally Lipshitz with respect to the 
energy norm. The proof of the theorem relies on sharp PDE estimates that are 
used to prove uniqueness in a lower topology than the space of finite energy. 
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1. Introduction 
The model considered governs the vibrations of a thin shallow shell structure. 

The importance of the model stems from a variety of engineering applications 
such as helicopter rotor blades, propellors, acoustic chambers (for noise sup
pression) with curved walls such as aircraft cabins, aircraft control surfaces, 
curved surfaces on modem turbo-jet engines, etc. The primary goals in ap
plications are often to achieve uniform stability or control of the vibrations 
as described, for example, in [9]. These control theoretic applications cou
pled with necessary numerical methods for implementation require a thorough 
knowledge of existence and uniqueness of finite energy (weak) solutions. In 
the next subsection we will describe classical shell theory notation and present 
the variational form of the model followed by a brief review of related litera
ture. An overview of the primary results and relevant proofs will comprise the 
remaining two sections. 
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1.1 The Model 

The model to be considered is an extension of Koiter's nonlinear model for a 
thin shallow shell considered in various forms in [7,4—1,6,5], The shallowness 
assumption as given in [7] is represented by the expression L/R <^ 1 where 
R is the minimum principal radius of curvature, and L is the wave length of 
the deformation pattern on the middle surface. We will utilize much of the 
notation used in [4] and principally developed in [7]. Throughout the paper, 
we will assume that Greek letters belong to the set {1,2} and Latin letters 
belong to the set {1,2,3}. We define the middle surface of the shell S as 
the image of a connected bounded open set fl C S"^ with boundary F under 
the mapping * : (^\C^) G Tl ^ £^ where $ e [C^mf and ^" is the n-
dimensional Euclidean Space. It is assumed that the two tangent vectors given 
by HQ, = d^/d^" are linearly independent at any point on the surface of the 
shell, and combining these two vectors with the normal vector, as = jf^^lf^ 
defines a covariant basis for a local reference frame on the surface of the shell. 
We will denote partial derivatives with the notation $,„ = d^/d^" for any 
point (^1,^2) G H . 

In order to simplify the notation, the summation convention will be used 
in which letters repeated in the roof and cellar of a product will be summed 
over. For example, the contravariant basis for the tangent plane at any point on 
the surface of the shell is given by the two vectors a^ defined by the relation 
a^ • a^ = 5^ where 5^ denotes the usual Kronecker delta symbol. The matrix 
ffla/3 = a" • a^ is the so-caWed first fundamental form of the surface with its 
inverse given by the matrix (a"'^). The second fundamental form, denoted by 
{bap) measures the normal curvatures of the middle surface of the shell. It is 
defined by baf) = ^ a = - a ^ • as,^ == as • a„,/3. 

We represent as u = {ui,U2, us) the vector function of all three displace
ments, while in-surface displacements are given by ^ = {ui,U2) and the 
transverse displacement is denoted by u^. The Christoffel symbols given by 
F^;^ = a" • â ,A are used to define the covariant derivatives for the displace
ment vector of the middle surface u(.^^, ̂ ^) = Wja' in a fixed reference frame. 
In particular, u„|^ = Ua,i3 - ^a/s^x and Us\ap = •"3,a/3 - ^af3'^3,\- In addition, 
the linear strain tensor is denoted by eap{~^) ~ \{ua\(i + •"/3|a)- The model 
assumes that the tangential (in surface) displacements are small relative to the 
transverse displacement. It is also assumed that all deflections are small and 
finite in the sense that for any parameter — 1 < i < 1 the displacements tu 
shall be less than or equal to the middle surface strains in order of magnitude as 
described in [7]. In this case, suitable expressions for the middle surface strain 
tensor ja/s and the change of curvature tensor pap axe given respectively by 
7a/3(u) = ea/sC"^) " ^ " " 3 + 5W3,a'"3,/3 and /9a/3(u) = u^afi- We notc that 
the nonlinearity of the model arises from the third term in ^ap-
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These strain measures, along with an appropriate constituitve law, are used 
to derive corresponding stress measures. The exact form of the stress measures 
depends on the shell material. Thus, we assume the simplest possible scenario, 
as done originally by Koiter in [7] and duplicated in [4] and [1]: that the shell 
consists of elastic, homogeneous, and isotropic material and the strains are 
small everywhere. Additionally, we assume that all nonzero stress components 
are imposed on surfaces which are parallel to the middle surface of the shell. 
Then the tensor of elastic moduli is given by 

£" apXfj, E 

2(1 + 1̂ ) 
a^^af^f" + a'^'a^^ 

1v .^a/J^AM 

Here, E is Young's modulus and v is Poisson's ratio for the material. See [2] 
for a proof of the positivity of the tensor of elastic moduli. Throughout the 
exposition, we let ii represent differentiation with respect to time. 

Since our primary interest is weak solutions, we state the model in the follow
ing variational form: we look for solutions Ua(i) 6 [iJo(^)] '""3(0 ^ i?o(0), 
Ua(t) S \1?(VL)\ ,u-i(t) G iJQ(O) satisfying clamped boundary conditions, 

I du3 

dv 
0, such that for test functions v = (f i, 1̂ 2,1'a) = ( ^ , v^) G 

[i?o^(0)] n i? | ( f i )wehave 

where 

m{n,v) 

m(ii, v) + a(u, v) — n(u, v) = 0 

= pe { (a'^f^ua, vp) + 7 (a"^ [b\bl - blbl^ ii„, vp) } 

+ pe-i { (a"^ [^3|„ + blu>\ , [̂ 31^ + b^^v^]) } 

+ pej { (a"^n„, v^^^b"^) + (a"^ [n3|„ + 26^^^] , vpb^r,) } 

+ pe {{u3,V3)+-f[[b\bl - bfbl] ^3,^3)} 

(1) 

a (u ,v) = 

n(u, v) 

E'"'^''[e^0{-it)^baf3U3],ex^{ir)) 

6 7 ( i?"^^ '^i .3 |a /3, ^̂ 3|A J ^ « ( E " ^ ^ ' ^ [e^pilt) - b^pUs] , bx^V^) 

" ^ ^ ' ' n 3 , „ « 3 , / ? , e A ^ ( l 7 ) ) - I (E'^f^'^ [m,aU3,p] ,bx^V3 

+ 

E' 

^a/3Xfi 

e 

2 
1 

e a / 3 ( ^ ) ^ ba/3U3 + -U^^aU^^p , U3,XV3,^i 

where 7 = e^/12 and initial conditions Ua(0) = u^ G [i?o(r^)] , Ua{0) = 

ui e [L^i^)f, U3{0) = u§ e H§{^), ^3(0) ^ ul e H^{Q) Here we 
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make use of the notation {u,v) — jQUv^d^idS,2 with a = det{aap) and 
a ^ 0. A linear version of this model is considered in [3] to model turbine 
blades. An associated static (nonlinear) model is given in [4] as an extension 
of Koiter's model. It accounts for tangential surface loads in order to obtain, 
as a special case, the nonlinear model for thin elastic plates when there is no 
curvature, bap = 0. The energy of the system (1) is E{t) — Ep{t) + Ek{t) 
where Ek{t) = m(u, u) and Ep{t) — a(u, u). It is well-known that Ep{t) is 
topologically equivalent to [i?Q(f2)] x iJ^(il). 

2. Main Results 

LEMMA 1 (Regular Solutions) For arZji/raryT > Q and initial data {ll^,11"^) 

in [i?o(^)] X [^o(^)] . (•"3;'"3) G Hl{?t) X HQ{Q), there exists a unique, 
global solution to the variational form (1) 

u G C{[0,T], [H^m? X Him) n C\[0,T], [H',{Q)f x HHQ)). 

Proof: The proof of this lemma follows by means of a rather standard nonlinear 
Galerkin argument. As such, we omit the details. 

The existence of finite energy (weak) solutions follows similarly from a 
standard nonlinear Galerkin argument. However, to our knowledge, uniqueness 
has until now been an open problem. 

T H E O R E M 2 (Weak Solutions) For arbitrary T > 0 and initial data 

( n ^ ° , ^ i ) e [H'oi^)]' X [L\n)]\ (ulul) e HiiQ) x H^{i}), 

there exists a unique solution to the variational form (1) such that 

,^3) e C^ ([0,T]; [Hl{Q)f X H^{n)) u. 
•i,U3) eC^{[0,T];[L^{n)YxH^{n) 

The primary mathematical difficulty is due to a lack of regularity in the nonlinear 
terms. Indeed, the nonlinear terms are not bounded in the space of finite energy. 
The proof is an adaptation of the method used by Sedenko in [10] and by 
Lasiecka in [8]. One of the key estimates used in the proof below was proved 
in [8] and is expressed as the following Lemma. 

LEMMA 3 Given e,r > Qandw^ e [H'+''f andw"^ e [H^f then 

{w},w^)\\l, < C ln(l + A„)IK^|li. + ^il^/||^<+. 

ln(l + A„)|K^i|i.+3^||,^i||2,,+. ;,2||2 

(2) 
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where A„ denotes the eigenvalues of the Laplace operator. Note the sequence 
{Xn] is increasing with lim A„ = oo. 

3. Proof of Theorem 2 

Let u = u^ — u^ where u^ and u-̂  are any two weak solutions of (1) satisfying 
the same initial conditions. The first step is to derive an abstract formulation 
for the model. To this end, we make the following definitions. 

DEFINITION 4 Define linear operators A4 and A and space Ti as 

(A^u, xi) = TO(U, u) ; (^u, ii) = a(u, ii). (4) 

H = V{A^I'^) X D ( ^ i / 2 ) = [Hl{^)f X El(Sl) X {{L'{^)f x Hl{^) (5) 

and let A : Ti ^ li. be defined by 

A 
0 - / 

M-^A 0 (6) 

The coercivity of m(u, u) and a(u, VL) were proved in [3] and [4] respectively, 
so the operator A is well-defined. Also, if we define the nonlinear operator Â  
such that (A''(u), v) = n(u, v) with N{vi) — Na{u^) + NsiJt, us) where 

Naius) = UE''^^''us,x,us,f?) 

N3{lt,U3) haBE''^^^ W3,A^i3,M 

then the variational form in (1) implies 

dt + A u 
dtVL 

f A ^ C ^ ) - bx^Us + -Us,XUs^fj, 

0 
dtu J ' \ dtu J V M^^N{u) 

This will be used to prove the following lemma. 

LEMMA 5 Using Definition 4 and (7), the following holds. 

(7) 

u 
dtvi 

< 
n -̂ 0 

A - 1 0 
M~\N{u^)-N{u^)] ds (8) 

H 
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Proof: Acting with A~^ on equation (7) and multiplying by X{s) yields 

a.A-.(,;v).xM)^ + ( A A - ( 4 ) , W ^ 

= (*-"(^-.|iV(uV«(u.)|)'^W)„ "> 
We define 

Using (AX, X ) „ = 0 on (9) yields {dtX(s),X{s))^ = (X(s), F ( s ) ) „ and 

^ £ 9.||X(s)||2,ds = 1^ {X{s), F ( s ) ) „ ds 

it follows 

l\\Xit)f^ < l\\X{0)f^ + 1^ \\X(s)\\n\\F{s)\\uds 

Since ii(0) = 9iu(0) = 0 and A~^ is linear, we have X(0) = 0, so 

l\\X{t)\\j, < ( s u p \\X{s)\\n] ( £ \\F{s)\\nds^ (10) 

thus, for all t < < we have 

lUmli < (sup,e[o.J] \\X{s)\\n) {fo\\F{s)\\ nds] 

sup,g[o,tl \\^{S)\\H < sup^e[o,tl \\^is)\\H (H) 
J^\\F{s)\\nds<J^\\F{s)\\nds 

Combining (10) and (11) gives 

I sup \\X{t)fn< ( s u p \\X{s)\\U (f'\\F{s)\\nds 
^ te[o,tl \s6[o,t] / Vio 

consequently 

sup \\X[s)\\n< f\\Fis)\\nds 

and then using \\X{t)\\n < sup^gjo,*] | | X ( S ) | | H , weget (8). 
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LEMMA 6 The following inequality holds. 

i|X^^^u||L2 < A 
dtvi 

n 

73 

(12) 

Proof: We have 

u 
di ' tu 

A-^Mdtu 
—u 

therefore 

- 1 / u 
dfU = \\A-'/'Mdtn\\h + WM'^^^Wh 

LEMMA 7 The following inequality holds. 

WM'-Z^UHL^ < /"*| |^-i /2[Ar(u2(s))-iV(ui)(s)] | | ds (13) 

Proof: We have 

M-^[N{u'^)-N{u^] 

therefore 

- 1 

0 

M-i /2[ iV(u2) - iV(u i ) ] | | ^ . 
H 

M-^N{u'^)-N{u'^)] 

From Lemma 5, we get 

Applying Lemma 6 yields (13). 

LEMMA 8 Following Lemma 7, we obtain 

^ail i2 + ll^lsll^: < t / iWNaiui) - NUu')\\j, (14) 

+ \\Ns{lt\ul) -^ N3{l!\ul)\\l^2)ds 

Proof The lemma follows from the use of (/Q f{t)dtf < t /g f{tfdt on (13). 
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LEMMA 9 Given e > 0 and r > 0 with e + r < 1, there exists a constant C 
depending on X,n, u^, and u\ such that 

\Na{ul) - N^{UI)\\H-I < C ln( l + A„)||i23||^i + 
C 

Proof: The proof uses the positivity of the tensor of elastic moduli given in 
[2] and the fact that the divergence operator, (•)|/3, is a bounded operator on 
H~^{Q). Recalling the definition of Naius), it can be shown that 

This gives 

•"3,A%,^ ~ '"'3,A'"3,/i 
^ r_ga/3AM f„.2 „,2 

j^apXn 
U3,X [U^ 

< C ||tt3,A [ui^j, + u\^ 

L + 4M)]| 
« - i 

Now apply Lemma 3 to obtain 

||w3,Awi,A|| < C Mn(l + A„) Ij-usll^i + — \ul-u\\ 

IL2 

}Jl + f + r 

(15) 

1^2 

Combining this result with an analogous result for ||tt3_Aii3; |̂i and (15) and 
using the fact that ^̂ 3 amd u\ are H"^ functions leads to the conclusion of the 
lemma. We now prove a similar lemma for N'i{li, U3). 

LEMMA 10 Given e > 0 and r > 0 with e + r < 1, there exists a constant C 
depending on A, n, u^, and Ug such that 

\N^{lt^,ul)-Ni{li\ul)\ 
H-'^ 

< C ln ( l + A„) \\ui\\l^ + Cln(1 + A„) \\u^\\% + 
C_ 

Proof. Using the definition of N-i{lt, uy,) it can be shown that 
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with 

Consequently, 

II i i w ^ 

<\X^ {uo„u\,ut\\ + | | x 2 f a , u \ u 2 ) | | (16) 

It suffices to estimate each term on the right-hand side of (16). In particular, 

Using classical embedding theory and the fact that the second fundamental form 
and the tensor of elastic moduli are bounded yields the following. 

|5„^E"^^^ii3,A [ul^ + u\^ | |^_^ < C ||%,A {ul^ + u\^ I 
:I,2 

11 l l / l -̂  

Applying similar arguments to the remaining terms in (17) leads to 

| | x i ( % , 7 / i ^ l ) | | ^ _ ^ < C | | z i 3 | | H i (18) 

The higher order terms in X"^ make it much more difficult to estimate. First, 

< C | |n3|„S"^^^eA;.(^')| |^„, + C ||z.|„£"^^^6A^(^)||^_^19) 

Applying Lemma 3 to the first term in (19) gives 

h^3|ai?"^^''eAp(^') L , = sup \ u^\^E^I'^^ex^{ll^)^fi^adede 
'' " ^ {ll'PllHi=i}-^f^ 
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(20) 

< C' (^| |ui | |Hi(ln(l + A „ ) | | U 3 | | H I + ^ | | U 3 | | H I + « + - ) 

after applying the supremum. Similarly, 

" " ^ {ll<PllHl=l}-^f^ 
0 

l j d 2 

sup 
{V, |i¥'| |„i=l}-

sup \ j E-P^^^ul^^p 
0 

(•"A,M - r*^U5 + it^^x - r^A^i) \fadi}d^ {11) 

where the definitions of the linear strain (CA;*) and covariant differentiation were 
used in (21) and (22). Using the clamped boundary conditions, 

which applied to (22) yields 

11 2 paPXii (^\\\ 
II ' W ri ^ 

(23) 

sup 
{v, llvll„i=i} 

l^ t2 

< sup C 
{•p. I l ¥ ' l l „ l = l } 

0 

(U3\af0)\,^\ +'^\\iu3\afl3)\,U^ 
IM 7,2 A "112.2 

Expanding the divergence and using Cauchy-Schwarz gives 

('"3ia<^/3)|„^A < |h3|aM|L2 11'/'/̂ ^̂ A117,2 + ll</'/3|,z|L Iksla^iA 

(24) 

IM I i 2 I L 2 

< Fs i / 2 |</'/3%IIL2 + IIV'/slUi ksla^A 
L2 

<c ks _H-2 
ln(l + A„) ||UA|IL2 + — \\ux\\ffr+. WI3\\H^ 
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^G\\ip{iU^ l n ( l + A „ ) | | ' U A | | L 2 + T 7 il'UA|iH'-+^ l^i3llH2 (25) 

for the first term in (24). A similar argument for the third term on the right-hand 
side of (24) leads to 

rv^^<5'"3|a'/'/3|l - < C IL2 

1 
ln(l +A„)||n<5||i2 + —\\ux 

A'' I ff'-+E 

(26) 
Combining these with similar arguments for the remaining terms gives 

\^E-^^'e,,(t)\\ <C l n ( l + A „ ) | | U a | | i 2 + -^\\Ua\\Hr+'^ 

Combining (16), (18), (19),(20), and (27) results in Lemma (10). 

LEMMA 11 Letr = 1- t, then 

(27) 

(28) 

Proof. Lemmas 7, 9, and 10 give 

rt r 
i'"a|li2+||n3i||fi < Ct 

0 
l n ( l + A„)i|'U3||l^i + l n ( l + \n)\\ua\\i2 + 

A'' 
ds 

which implies 

Il'"a|li2 + IIHSII^I < , r / 2 
•An 

+ C i l n ( l + A „ ) / (IIWSIIHI + ll^a||i,2) 
Jo 

ds (29) 

Applying Gronwall's inequality to (29) gives (28). 
Since the sequence {A„} tends to oo, the right-hand side of (28)will go to 

zero as long as i e 0, \h^)- Thus, ii = 0 on 0, \h^)- The bootstrap 

argument completes the proof of the theorem. 
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