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Abstract Second order necessary and sufficient optimality conditions for bang-bang con­
trol problems in a very general form have been obtained by the first author 
These conditions require the positive (semi)-definiteness of a certain quadratic 
form on the finite-dimensional critical cone. In the present paper we formulate 
a generalization of these results to optimal control problems where the control 
variable has two components; a continuous unconstrained control appearing 
nonlinearly and a bang-bang control appearing linearly and belonging to a convex 
polyhedron. Many examples of control of this kind may be found in the literature. 
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1. Introduction 
The classical quadratic optimality conditions for an optimization or optimal 

control problem with constraints require that the second variation of the as­
sociated Lagrangian be nonnegative (positive) in all critical directions. Some 
general results along these lines were given in [5], [6], [7], [8], [9]. 

In the pure bang-bang case, where all control components appear linearly 
in the problem, second order necessary and sufficient optimality conditions 
have been obtained in Milyutin and Osmolovskii [4] in a very general form. 
In [2], [3] we have developed for this case numerical methods of testing the 
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positive definiteness of the quadratic form. A different approacli to second 
order sufficient conditions for bang-bang controls was given in [1]. 

In this paper we formulate both necessary and sufficient quadratic optimality 
conditions for optimal control problems with a control variable having two 
components: a continuous unconstrained control appearing nonlinearly and a 
bang-bang control appearing linearly and belonging to a convex polyhedron. 
Such a type of control problem arises in many applications. Due to space 
restrictions we present only a summary of results on necessary and sufficient 
conditions. 

In Section 2, we give a statement of the general control problem with con­
tinuous and bang-bang control components (main problem). We formulate the 
minimum principle (first order necessary optimality condition) and the notions 
of a Pontryagin and a bounded-strong local minimum. In Section 3, we present 
second order optimality conditions, both necessary and sufficient, for these two 
types of minimum in the main problem. 

2. Control problem on a non-fixed time interval 

2.1 The main problem 

Let x{t) e R'̂ (^) denote the state variable and let u{t) G R''^"), v{t) e 
Rrf(") be the two types of control variables in the time interval t e [to, ti] with 
a non-fixed initial time and final times to and t i . The following optimal control 
problem (l)-(4) will be referred to as the main problem: 

Minimize J{tQ,ti,x{-),u{-),v{-)) ^ J{to,x{to),ti,x{ti)) (1) 

subject to the constraints 

x{t)== f{t,x{t),u{t),v{t)). u{t)eU, it,xit),v{t))eQ, (2) 
F{to,x(to),ti,x{ti))<0, Kito,x{to),ti,xiti))=^0, 

ito,x{to),ti,x{ti))GP. 

The control variable u appears linearly in the system dynamics, 

/ ( t , x, u, v) = a{t, X, v) + B{t, X, v)u , (4) 

whereas the control variable v appears nonlinearly in the dynamics in a sense 
which will be made more precise later. Here, F, K, a are column-vector func­
tions, B is a d{x) x d{u) matrix function, V C R2+2d(^)^ Q ^ jii+d{x)+d{v) 
are open sets and U C R''^") is a convex polyhedron. The functions J, F, K are 
assumed to be twice continuously differentiable on V and the functions a, B are 
twice continuously differentiable on Q. The dimensions of F, K are denoted 
by d{F), d{K). By A = [to,ti] we shall denote the interval of control. We 
shall use the abbreviations 

xo = x{to), xi = x{ti), p = {to,xo, ti,xi). 
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A process 
Tl^{{x{t),u{t),v{t)) \te [toM] 

is said to be admissible, if x(-) is absolutely continuous, u(-), v{-) are measur­
able bounded on A and the triple of functions {x{t),u{t),v{t)) together with 
the end-points p = (to, a;(to), h,^{ti)) satisfies the constraints (2),(3). 

DEFINITION 1 The process H affords a Pontryagin local minimum, if there 
is no sequence of admissible processes li^ — {(a;"(t), w"(t), w"(t)) | t e 
[tg, t"] }, n = 1,2,. . . such that the following properties hold with A" = 

(a) J{W) < J{Il) V n and ig -^ to, t^ -> ti for n~^oo; 

(b) max \x^(t) — x(t)\ —> 0 for n -^ oo; 
A"nA' ^ ^ ^ ̂ ' 

(c) J | w " ( t ) - t x ( t ) | d t ^ O , / | t ; " ( t ) - -y ( t ) | d t -^0 for n^ 
A"nA A"nA 
oo; 

(d) there exists a compact set C C Q (which depends on the choice of the 
sequence) such that for all sufficiently large n, we have (t, x" (t), f" (t)) S 
e a.e. on A". 

For convenience, let us formulate an equivalent definition of the Pontryagin 
minimum. 

DEFINITION 2 The process 11 affords a Pontryagin local minimum, if for each 
compact set C C Q there exists e > 0 such that v7(n') > ^7(11) for all 
admissible processes H' = {{x'(t), u'(t), v'(t)) | t G [tojtj] } such that 

(a) \t'o-to\ <e, \t[-~ti\ <e; 

(b) niax \x'{t) - x{t)\ < e, where A' = [t^, t[]; 

(c) f \u'{t) - u{t)\dt < e; J \v'{t) - v{t)\dt < e; 
A'nA A'nA 

(d) (t, x'{t), v'{t)) e C a.e. on A'. 

2.2 First order necessary optimality conditions 
Let 

U^{{x{t),u{t),vit))\tG [to,ta]} 

be a fixed admissible process such that the control u(t) is a piecewise constant 
function and the control v{t) is a. continuous function on the interval A = 
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[to, ti]. In order to make the notations simpler we do not use such symbols and 
indices as zero, hat or asterisk to distinguish this trajectory from others. Denote 
by 

6* = { T I , . . . , Ts}, tQ<Ti< ... <Ts <ti 

the finite set of all discontinuity points (jump points) of the control u{t). Then 
x{t) is a piecewise continuous function whose points of discontinuity belong 
to 6, and hence x{t) is a piecewise smooth function on A. Henceforth, we shall 
use the notation 

to denote the jump of function u{t) at the point r^ s 6, where 

are the left hand and the right side hand values of the control u{t) at T^, respec­
tively. Similarly, we denote by [x]'^ the jump of the function x{t) at the point 
Tk • 

Let us formulate a first-order necessary condition for optimality of the process 
n in the form of the Pontryagin minimum principle. To this end we introduce 
the Pontryagin or Hamiltonian function 

H{t, X, ip, u, v) = ipf{t, X, u, v) = ipa{t, X, v) + ^B{t, x, v)u, (5) 

where •(/; is a row-vector of dimension d{tl!) — d{x) while x,u,f,F and K are 
column-vectors. The factor of the control u in the Pontryagin function will be 
called the switching function for the u-component 

a{t,x,ip,v) = ^pB{t,x,v) (6) 

which is a row vector of dimension d{u). Denote the end-point Lagrange 
function by 

l{ao,a,P,p) = aoJ{p) + aF{p) + (3K{p), p = (io,a;o,ii,xi), 

where a and /? are row-vectors with d{a) — d{F), d{(3) = d{K), and ao is a 
number. We introduce a tuple of Lagrange multipliers 

A = (ao, a,/?,•(/'(•),'i/'o(-)) 

such that 

are continuous on A and continuously differentiable on each interval of the set 
A \ 6*. In the sequel, we shall denote first or second order partial derivatives by 
subscripts referring to the variables. 
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Denote by MQ the set of the normalized tuples A satisfying the minimum 
principle conditions for the process 11: 

a o > 0 , a > 0 , aF{p)^Q, ao + ^ a , + ^ 1/3̂1 = 1, (7) 

^ = ~H^, ^Q = ~Ht yteA\9, (8) 

^Pito) =-Ixo, i>{ti) = lxi, tpo{to) = -ko, ^o{ti) = lti, (9) 
H{t,x{t),ip{t),u,v) < H{t,x{t),Tp(t),u{t),v{t)) 

for &l\t e A\e, ueU, ve R'̂ "̂̂  such that (t, x{t),v) e Q, (10) 

H{t,xit),iP{t),u{t),v{t))+Mt) = ^ yteA\9. (11) 

The derivatives IXQ and Ix^ are taken at the point {ao,a, p,p), where p = 
{to, x{to),ti, x{ti)), while the derivatives Hx,Ht are evaluated at the point 
{t,x{t),'ip{t),u{t),v{t)) for t e A\9. The condition MQ 7̂  0 constitutes 
the first order necessary condition for a Pontryagin minimum of the process 
n which is the so called Pontryagin minimum principle, cf., e.g., Milyutin, 
Osmolovskii [4]. 

T H E O R E M 3 If the process U affords a Pontryagin minimum, then the set MQ 

is nonempty. The set MQ is a finite-dimensional compact set and the projector 
A I—> {ao, a, (3) is injective on Mo-

In the sequel, it will be convenient to use the simple abbreviation (i) for 
indicating all arguments {t, x{t), ip{t), u{t), v{t)), e.g., 
H{t) = H{t, x{t), tp{t), u{f), v{t)) and cr{t) = a{t, x{t),ip{t), v{t)). 

Let A = {ao,a,P,ip{-),ipo{-)) G MQ- From condition (11) it follows that 
H{t) is a continuous function. In particular, we have [H]'' = H'^'^ ~ H''~ = 
0 for each Tk e 0, where H''' := H{Tk,x{Tk),ip{Tk),u{Tk - 0),v{Tk)), 
H''+ := H{Tk,x{Tk),ip{Tk),u{Tk + 0),V(T^)). We shall denote by H'' the 
common value of i/'^" and H'''^: 

The equalities [H]'' =^ 0, [tp]'^ = 0 ^t'' e 6 constitute the Weierstrass-
Erdmann conditions for broken extremals. We formulate one more condition 
of this type which is important for the statement of second-order conditions for 
extremal with jumps in the control. Namely, for A e MQ and Tk & 0 consider 
the function 

{AkH){t) = Hit,x{t),m,u''^,y{rk)) - H{t,x{t),m,u''-,v{Tk)) 

= a{t,x{t),ip{t),viTk)){u]''. (12) 

LEMMA 4 For each A G MQ the following equalities hold 
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Consequently, for each A e MQ the function (AkH){t) has a derivative at the 
point Tk e 6. Define the quantity 

Then the minimum condition (10) implies the following property: 

LEMMA 5 For each A G MQ the following conditions hold: 

D^{H)>0, fc = l , . . . , s . (13) 

The value D^{H) can also be written in the form 

D\H) = ~-H',+H';- + HtH';+-m'^ 

where H^^ and H^~^ are the left- and the right-hand values of the function 
Hx{t) at Tfc, respectively, [Ht]'^ is the jump of the function Ht{t) at T^, etc. 

2.3 Integral cost function, unessential variables, strong 
minimum 

It is well known that any control problem with a cost functional in integral 
form 

J= I fo{t,x{t),u{t),v{t))dt (14) 

to 

can be brought to the canonical form (1) by introducing a new state variable y 
defined by the state equation 

y = fo{t,x,u,v), y ( t o ) = 0 . (15) 

This yields the cost function J = y{t\). The control variable u is assumed to 
appear linearly in the function /o, 

fo{t, X, u, v) = ao{t, X, v) + Boit, x, v)u. (16) 

The component y is called an unessential component in the augmented problem. 
The general definition of an unessential component is as follows. 

DEFINITION 6 The state variable Xi, i.e., the i-th component of the state 
vector X is called unessential if the function f does not depend on Xi and if the 
functions F, J, K are affine in Xio = Xi(to) and xn — Xi{ti). 
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In the following, let x_ denote the vector of all essential components of state 
vector X. 

DEFINITION 7 We say that the process II affords a bounded-strong minimum 
if there is no sequence of admissible processes 
W = {{x''{t), u"{t), v'^it)) I t e [tg, ty] }, n = 1,2,..., such that 

(a) J{Il^) < J(n), 

(b) t^ -^ to, t1 -^ h, x"(to) -^ x{to) (n -^ oo), 

(c) max |x"(t) - x{t)\ -> 0 fn -^ ooj, where A" = [tg, q], 

(d) there exists a compact set C C Q (which depends on the choice of the 
sequence) such that for all sufficiently large n, wehave {t, x"(t), v'^{t)) G 
C a.e. on A". 

An equivalent definition has the form. 

DEFINITION 8 The processYi affords a bounded-strong minimum, if for each 
compact set C C Q there exists e > 0 such that Jiji) > J(Ji) for all 
admissible processes H' — {{x'{t),u'{t),v'{i)) | t e [t'Q,t']\} such that 

(a) |i'o - tol < e, l̂ i -h\<e, \x'{to) - x(to)| < e; 

(b) max \x'{t) - x{t)\ < e, where A' = [t^, t'^]; 

(c) {t,x'{t),v'{t)) e C a.e. on A'. 

The strict bounded-strong minimum is defined in a similar way, with the 
non-strict inequality ^7(11') > ,7(11) replaced by the strict one and the process 
n ' required to be different from 11. 

3. Quadratic necessary and sufficient optimality 
conditions 

In this section, we shall formulate a quadratic necessary optimality condi­
tion of a Pontryagin minimum (Definition 1) for given control process 11. A 
strengthening of this quadratic condition yields a quadratic sufficient condition 
of a bounded-strong minimum (Definition 7). These quadratic conditions are 
based on the properties of a quadratic form on the so-called critical cone whose 
elements are first order variations along a given process E. The main results of 
this section (Theorems 9 and 12) are due to Osmolovskii. 
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3.1 Critical cone 
For a given process II we introduce thie space Z'^{0) and the critical cone 

K. C Z'^{0). Denote by PQW^IAIS., R'^(^)) tiie space of piecewise continuous 

functions x{-) : A -^ R''^^^ which are absolutely continuous on each interval 
of the set A \ 0 and have a square integrable first derivative. By ̂ ^(A, R'^^")) 
we denote the space of square integrable functions •;;(•): A ^- R''^"). For each 
X € P9W]('^)(A, R''^^)) and for Tfc G 61 we set 

X*"" ^x{Tk-Q)-, 5 ' ' + = x ( T f c + 0 ) , [xf = X^^ - x''~. 

Let z = {io,h,^,x,v), where to,ti e R \ C G R.^ x G PeW]('f)(A,R''(^)), 

i ;eL2(A,R' ' ( ' ' ) ) . Thus, 

z e Z^{e) := R 2 X R^ X P9H/']('^^(A,R''(^)) x L 2 ( A , R ' ^ M ) . 

For each z we set 

xo = x{to) + iox{to), xi =x{t-i) + tix{ti), p= {io,xo,ii,xi). (17) 

The vector p is considered as a column vector. Note that fo = 0, respectively, 
ti = 0 holds for a fixed initial time to. respectively, final time ti. Denote by 
Ip(p) = {i G { 1 , . . . ,d{F)} I Fi{p) = 0} the set of indices of all active 
endpoint inequalities Pi(p) < 0 at the pointp = {to,x{tQ),ti,x{ti)). Denote 
by /C the set of all z S Z'^{9) satisfying the following conditions: 

J'{p)p<0, Fl{p)p<0\/iGlF{p), K'{p)p^0, (18) 

i{t) = f^{t,x{t),u{t),v{t))^{t) + f'vii, x{t),u{t),v{t))vit), (19) 

[xf = [xf^k, fc = l , . . . , s , (20) 

where p = {x{to), to, x{ti), h), [x] = x{Tk + 0) - x(r/c - 0). 
It is obvious that /C is a convex cone with finitely many faces in the space 

2"^{9). The convex cone /C is called the critical cone. 

3.2 Quadratic necessary optimality conditions 
Let us introduce a quadratic form on the critical cone /C defined by the 

conditions (18)-(20). For each A e MQ and z e /C we set 

fi(A,z) ^ {Am + Y,{D\H)il - [tpfxlik) 

H 
{{H:,^{t)x{t),x{t))+2{H^y{t)v{t),x{t)) + {H^y{t)v{t),v{t))) dtp.\) 

to 
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where 

{Ap,p) = {lppp,p) + 2ip{to)xoto + {i>o{to) - i>{to)x{to))tl, 

-2i;{ti)xiii - iMh) - i^{ti)x{h))t\, (22) 

lpp = lppioiQ,a,f3,p), p^ {to,x{to),ti,x{ti)), x'l^^-{x^ + x^^^ 
1 

H:,^{t) = H^^{t,x{t),i>{t),u{t),v{t))^ etc. 
Note that the functional 0(A, z) is hnear in A and quadratic in z. Also note that 
for a problem on a fixed time interval [to, H] we have to = ^i — 0 and, hence, 
the quadratic form (22) reduces to {Ap, p) = {IppP, p). The following theorem 
gives the main second order necessary condition of optimality. 

T H E O R E M 9 If the process U affords a Pontryagin minimum, then the follow­
ing Condition A holds: the set MQ is nonempty and 

max 0(A, 2) > 0 for all z G )C. 

This theorem follows from Theorem 2.3 in [7]. 
We call Condition A the necessary quadratic condition, although it is truly 

quadratic only if MQ is a singleton. 

3.3 Quadratic sufficient optimality conditions 
A natural strengthening of the necessary Condition A turns out to be a suf­

ficient optimality condition not only for a Pontryagin minimum, but also for 
a bounded-strong minimum; cf Definition 7. Denote by MQ the set of all 
A G MQ satisfying the conditions: 

(a) H{t, x{t), ilj{t),u, v) < H{t, x{t), ip{t), u{t), v{t)), for all t e A \ 61, 
UGU, V G R ' ^ ^ " ) , such that (t,x(t),D) G Qmd{u,v) ^ {u{t),v{t)); 

(b) H{Tk,x{rk),ip{Tk),u,v) < H'' forallrfc ee,uGU, vG R'^W such 
that(rfc,x(Tfc),t;) G Q,{u,v) 7̂  {u{Tk -0),v{Tk)), 
{u, v) ^ {u{Tk + 0), w(r'=)), where H'' := H''~ = if'=+. 

Let Are max au' be the set of points v E U where the maximum of the linear 
u'eu 

function au' is attained 
DEFINITION 10 For a given admissible process H with apiecewise constant 
control u{i) and continuous control v{i) we shall say that u{t) is a strict bang-
bang control, if the set MQ is nonempty and there exists A G MQ such that 

Argmax.a{t)u' == [^(t - 0), w(t-F 0)], 
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where [u(i — 0),u(i + 0)] denotes the line segment spanned by the vectors 
u ( t - 0 ) , u ( t + 0). 

If dim(w) =: 1, then the strict bang-bang property is equivalent to a{t) ^ 0 
Vi G A\0 . If the set M^ is nonempty, then, obviously, u{t) is a strict bang-bang 
control. 

DEFINITION 11 An element A G Mo w âro? fo iie strictly Legendrian if the 
following conditions are satisfied 

(a) for each t G A\6 the quadratic form 

is positive definite in R'̂ '̂"),-

(b) for each T^ £ 9 the quadratic form 

{Hvv{rk, x{Tk), ipin), u{Tk - 0), v{Tk))v, v) 

is positive definite in 1M^^'"\ 

(c) for each T^ £ 0 the quadratic form 

{Hyy{Tk,x{Tk),tp{Tk):U{Tk + 0), v{Tk))v, v) 

is positive definite in R^^''^ 

(d) D'^iH) >OforallTk e 9. 

Denote by Leg_,_(MQ") the set of all strictly Legendrian elements A e MQ and 
put 

h 
72 , 72 

j{z) = 4 + ti + (c, 0 + {x{to), x{to)) + J {vit),Ht)) dt. 
to 

THEOREM 12 Let the following Condition B be fulfilled for the process 11: 
(a) the set Leg_,_(Mo') is nonempty; 

(b) there exists a nonempty compact set 

M c Leg+(Mo+) 

and a number C > 0 such that 

max^(A,2) > C7(z) for all z & K,. 
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Then 11 is a strict bounded-strong minimum. 

If the set Leg+ [MQ ) is nonempty and K,-{0} then (b) is fulfilled automatically. 
This is a first order sufficient optimality condition of a strict bounded-strong 
minimum. Let us emphasize that there is only a minimal gap between the 
necessary condition A and the sufficient condition B\ 
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